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Abstract

Models of ion temperature gradient-driven turbulence are reexamined in terms of
the structure of the turbulent spectrum for radially localized modes to explain the
significant difference b;atween, the radial profiles of ion heat conductivity inferred from
lpcal tur»bulence models and those observed in experiments. The strong radial inhomo-
geneity of the eﬁ'ective density of the turbulence spectrum in k is shown to produce a
significant increase of the fluctuation level and ion thermal diffusion toward the plasma

edge as compared with the local models.

*)permanent address: Kurchatov Institute of Atomic Energy, Moscow 123182, USSR



I. Introduction

Anomalous diffusion in tokamaks is often attributed to turbulent processes caused by unsta-
ble small-scale perturbations. The 7;-mode turbulence is widely regarded as a likely model
for theoretical description of the anomalous ion thermal diffusion. The main reason for this
is a relatively good (order of magnitude) quantitative agreement between theoretical predic-
tions of this model and actually observed levels of anomalous transport in large tokamaks.!
However, the model always underestimates the transport in colder regions of plasma column
(near the edge). The reason for this is that the usual assumption of a locally homogeneous
turbulence leads to the so-called gyro-reduced Bohm scaling X; oc T%2/B? of the theoretical
ion heat condﬁctivity X; with temperature T' and magnetic field intensity B. Such scaling
makes X; drop with decreasing temperature, while the actual experimental levels of turbu-
lence and transport usually increase toward the edge.? This discrepancy can be explained
in L-mode regimes as being due to another kind of driving instability, namely, the resistive
ballooning modes. In the H-mode and hot-ion regimes, however, such treatment cannot
be applied because the edge temperature is too high for resistive modes to be effective in
providing the large, radially increasing X; required by the ion power balance.

In this article we propose an alternative treatment of the 7;-mode turbulence that explains
the high effective levels of fluctuations and transport in the outer half of plasma radius
without invoking additional instabilities. We do not to revise earlier linear and nonlinear
studies of the topic, but rather make a new interpretation of the previous research, so that
our result can be expressed as a correction factor F(r), which can be applied to most previous
estimates of X;(r) from the n;-modes.

We now proceed to the description of theoretical foundations of our approach. Most of the
relevant general results are already published in our earlier paper,® while here we concentrate

on its applicability and predictions in the particular case of the n;-mode turbulence.



II. Approximation of Independent Subsystems in a
Turbulent State

Let us assume that the anomalous transport coefficient X* can be represented as a sum over
P

the turbulent spectrum, such as

= Xk:.fl(k)lfzﬁkl2 : | (1)

where k is the wave-vector, @y is the wave amplitude, and g describes the phase shift between

$x and Ty. If this is the case then for roughly equivalent waves it can be rewritten as

= (g(k)Igxl*) - Ny , © (2

where Ny is the effective number of waves in the spectrum and the angular brackets denote
the mean value of quantity over all k’s. Our aim is to concentrate on the role of tl::factor
Ny, which can be importa,nt for radially localized modes.

From expression (2) one can see that if the wave amplitudes ¢y are given independently,
then X* o« Ny, and the anomalous transport should grow rapidly with an increase of the den-
sity of the spectrum. However, this is not so if we are considering a turbulent system where
saturated amplitudes are determined by the nonlinear transfer of energy in the spectrum. In

such a case the total energy in fluctuations is usually bounded from above so that

B =Y K¢l = (K*|¢k[?) - Np < E; . (3)
k

Comparing expressions (2) and (3) we note that the number of modes N will not enter into

the final result if we use the limit E, and the equipartition of energy among modes as an

estimate for the level of turbulence (4 = ( |¢k|2)1/ ? < (E,/Ng)'/?). This is why the density

of the spectrum is usually considered unimportant for mixing-level estimates of X°.
Nonuniform systems with complex turbulent behavior may retain tfaces of the N-dependence

in the following manner. Suppose that in the same medium there are F independent tur-

bulent processes, each of which is saturated by a nonlinear interaction. Then the turbulent
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heat conductivity is a sum of partial heat conductivities induced by each process separately.
An obvious example is a coexistence of drift, plasma and Alfvén Wa;ves in the same volume,
each saturating by its own physical process while contributing to the overall transport. A
less obvious, but also possible case, is when the independent turbulent processes are caused
by different subsets of modes of the same physical origin that for some reason are weakly
interacting between each other. Now the nonlinear saturation is produced by the energy
transfer within the given subsystem of modes, while such transfer between different subsys-
tems is weak. We argue that due to the radial localization of different helical components
around corresponding rational surfaces this is the case for drift-wave turbulence.
Separating in Eq. (1) groups of terms corresponding to different subsystems and perform-

ing partial summation within each group we get
X =3 "Xg~(Xo)  F, (4)
[+ 4

where X,, are partial transport coeflicients caused by independent turbulent processes, labeled
by a. Since saturation occurs independently within each group, the saturation level (3) is
relevant only for determination of each X, = Lk, ga(k)|¢k|?, while the overall transport X°
may be F' times higher.

At this point we need to explicitly formulate our assumptions about the n;-mode turbu-

lence, which can be summarized as follows.

1. The unstable excited n;-modes are radially localized. It means that all perturbations
can be decomposed into a series of helical modes (with given poloidal and toroidal
wavenumbers m and n), each of which is non-zero only in vicinity of the corresponding

rational magnetic surface, where the safety factor ¢(r) = m/n.

2. Radial localization of modes means that for any given magnetic surface with radius
radius r there is only a finite number of modes with non-zero amplitudes. The spectrum

of turbulence thus contains only a few excited modes at any given radius and is far from
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being continuous. (Of course, at other radii the sets of non-zero modes are different

and the total number of excited modes is huge.)

3. We assume that possible poloidal correlations due to ballooning effects between differ-

ent helical waves is broken.*

4. Finally, we postulate that the nonlinear interactions between different helical modes
are much weaker than those between waves of the same helical symmetry (m' = km,
n' = kn, which are sitting on the same resonant surface, ¢(r) = m/n = km/kn,
k = 0, ii, i?, £3,...). At this time we do not have direct numerical evidence for
validity of this last assuniption, but there are some qualitative arguments in its favor,

which are discussed below.

When these assumptions about the 7;-mode turbulence are satisfied then we can use
Eq. (4) for the anomalous transport coéfﬁcient, where a will now label nonlinear perturba-
tions of different helical symmetry, or @ = m/n. One implication of this formula is that the
effective number of helical waves F is proportional to the radial density of resonant magnetic
surfaces and is, typically, a sharply rising function of minor radius (in a tokamak). If (X,) is
given by the usual mixiﬁg-level estimate, then F is the new correction factor, which should
be introduced for description of three-dimensional turbulence.

Figure 1 illustrates two possible limits involved in the calculation of the sum ", X, for
radially localized modes. In area (A) the helical modes do not overlap, so that F < 1,
and this regime is characterized by quasilinear saturation. In area (B) the radial density of
turbulent states is high, so that the overall level of transport may be above the mixing-level
estimates due to the significant overlapping. It is clear that without overlapping different
helical perturbations do not interact and assumption (4) is strictly satisfied. In the strongly
overlapping regime there is a limit when interaction with the bath of other helical states

becomes comparable to nonlinear interactions within the single-helicity subsystems. If the



difference of interaction efficiency can be described by a small parameter ¢ < 1 then the
number of effectively independent turbulent states F' cannot exceed Fia = 1/€ > 1. (Since
if the number of turbulent states exceeds Frnax then the energy transfer from any given helical
state to all others will exceed the energy transfer within the subsystem and thus the levels
of nonlinear saturation will not be independent.)

Figure 2 serves as a qualitative argument for the existence of such a small parameter for
the n;-modes. These modes are radially localized (6z < r), which means that any given
wave may effectively interact only with those others, which have non-zero amplitudes within
the area of support® (éz) of the first mode. In the graph each wave is represented by the
crossing of lines corresponding to given integer wavenumbers m and n. Overlapping modes
should fit into a narrow sector, so that n - [¢(r,) — ¢’67] < m < n - [g(r,) + ¢6r], where
6r = 6z/2 is the mode width and ¢’ is the radial derivative of ¢(r). One can see that with
these restrictions it is hard to satisfy the three-wave interaction condition (m/ = m + m”,
n' = n 4+ n") unless the modes have the same helical symmetry, that is unless the k vectors

are collinear and modes are on the same line m = ng(r).

III. Enhanced Diffusion Due to n,-modes

The formula expressing the effective turbulent transport through the radial density of reso-

nant rational surfaces and the local diffusivity has been derived in Ref. 3:

X°(r) = —SL%—’J gf:.mX(r,m)&c(r,m) . (5)

Here m; and my are the lower and upper boundaries of the excited spectrum of modes produc-
ing significant transport; X(r, m) is the averaged value of transport caused by a single helical
subset of modes within its area of support, viz., §z(r,m). Both X and 6z retain dependence
on the lowest poloidal wavenumber m in the corresponding helical subset. Equation (5) is a

good approximation of the actual sum, Eq. (4) in the overlapping limit (F > 1). A similar



treatment of the sum over k for radially localized modes has been used by Diamond and
Rosenbluth.®

For evaluation of expression (5) we need knowledge of explicit dependencies X(m), dz(m),
and m;, my. A reasonable approximation for these can be found in the following way.

According to Ref. 7 the heat flux from one mode behaves as

Qi(ky) o Akyl¢k|2 ) (6)

while the saturated amplitude is taken as the mixing-level estimate
c*ky|8e*/ B* o< C(ms) - v - )

Here k, = m/r is the poloidal component of the wave-vector; vs; is the ion diamagnetic
velocity; ¢ is the normalized electrostatic potential; A and C(5;) are some functions of n;
and other plasma parameters but are independent of k,.

Combining Egs. (6) and (7) we get X;(m) < 1/m or

X,-(m) = X,-(m,- % . . (8) |

At least for kyp; > 1 (where p; is the ion Larmor radius) the typical n;-mode spectrum
decreases with k, faster than |@g| ~ k; ', which is assumed above. The mode-coupling model
solved in Ref. 7 suggests that within the scale-range €,/q < k,p; <1 (¢, = 1/(|VInn|R), R
is the major radius) the form of the spectrum follows |¢| ~ k', while in the region k,p; > 1
it drops as ¢x| o & 3, producing negligible transport. If we take the short-wave spectrum
in this form, that will be essentially equivalent to setting the upper limit of the spectrum to
™y & r/p;, since the contribution from short-wave perturbations in Eq. (5) is much smaller
than that from perturbations with &, < p;.

We consider two different approximations for the §z(m)-dependence. The first (a) is

6z oc 1/m, which is based on the assumption k, ~ k,, and the second (b) is §z ~ const.



Since 6z and X enter in Eq. (5) only as a product, the m-dependence of case (a) may also
be interpreted as 6z ~ const. but |¢| ~ k;15.

The lower boundary of the spectrum, viz., m;, can be estimated from the condition of zero
linear growth rate, when the growth rate® of the linear mode 7 is balanced by the parallel
damping

7 ~ by (oxiopins) /& [kylori (9)
where vp; is the toroidal magnetic drift frequency; n; = 8InT;/d1nn is the ratio of logarith-
mic derivatives of the ion temperature and density; & is the component of the wave-vector
along the magnetic field; vr; is the ion thermal velocity. Since ky = k, - (zs/Rgq), where z
is the distance from the resonant surface, s = rq’/q, and R is the major radius, relation (9)
gives the radial width of the marginally stable mode with broadest radial extent. Invoking
ky ~ k, again, we get m; ~ r/z and

rs (%

Rq (vai vpims)1/2 (10)

m; &

Now we can substitute the m-dependence of X and éz in expression (5), which yields

X(r) = F(r) - X°, where X° = X(m;), and the “density of states” correction F' becomes
!
F, = 0.6—5—]2—| 6z(m;)m? In <:;—‘:) , (11)

for the case ‘a’ with éz < 1/m, and

lg' |6z

Fb ~ 0.6 q2 m,-(mf—m,-), (12)

if we take 6z ~ const. (case ‘b’). Using obtained m; = \/e,s7/qp; and m; = r/p; we arrive

at the final form of correction factors

141,:0.6\/,;—,,’”82 In (-2 (13)
@pi  \s\En) '’

and

Fy=06—. (14)
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Here €, = 1/(|VInn|R).

Figure 3 shows the effect of obtained correction factors on the agreement between theo-
retical and experimental profiles of X;. The dot-dashed curve represents the “experimental”
X;, i.e. that derived from the ion power-balance analysis of the experimental data from
the Tokamak Fusion Test Reactor (TFTR) supershot 44669 before (A) and after (B) pellet
injection. These two discharge states have been used in Ref. 2, where the corresponding
heat diffusivity (filled circles) has been found from the local kinetic theory and conventional
mixing-length formulas. We use this result in place of X°, so that the two upper curves in each
graph correspond to this result multiplied by F, (diamonds) and F (open circles). One can
see that case ‘b’, when the transport is dominated by fhe short-wave end of the spectrum,
significantly overestimates the transport, while case ‘a’, where the dominant contribution
comes from long-wavelength modes, actually improves agreement of theory with experiment.
Also note that assumptions about the form of turbulent spectrum and the radial extent of
excited modes are not refined, and thus the fine-tuning of these parameters may change the
correspondence within the factor of 5 differéhce beﬁween corrected theory and experiment,
but the t_endency of the correction factors F to increase the heat conductivity in the outer
part of the plasma column is robust. This is the physical consequence of assurﬁptions (1)-(4)

(formulated in Sec. IT) concerning the nature of the drift-wave turbulence.

IV. Conclusions

In this work we note that the conventional analysis of the radial dependence of the anomalous
ion heat conductivity based on local models of the 7;-mode turbulence has been incomplete.
In particular, with the separate treatment of two-dimensional single-helicity self-interactions
and essentially three-dimensional nonlinear interactions of different helical waves, the strong
radial variation of the density of mode rational surfaces becomes important and leads to a

qualitatively new description of the thermal diffusivity.



Results in this article follow from assumptions given in items (1)-(4) in Sec. II, concerning
the nature of the 7;-mode fluctuations and the hierarchy of nonlinear interactions, and can

be summarized as follows:

1. There is a general effect that causes the weak-turbulence transport coefficients to in-

crease with radial density of excited localized modes;

2. The density of states is an important parameter of turbulence, which should be con-
sistently included in 3-D numerical simulations even if the turbulence regime is not

weak;

3. Correction factors, calculated for the m;-turbulence, change the scaling of transport
estimates from the gyro-reduced Bohm ~ T,-S/ ?/B? to Bohm-like ~ T}/B, but with a

complicated dependence on current, temperature and density profiles;

4. With the additional assumption that the anomalous transport is caused predominantly
by the long-wave end of the turbulence spectrum, the found correction to the turbulent
transport appears to improve the correlation between theoretical and experimental

profiles of X;(r) for TFTR supershots.
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Figure Captions

1. Helical subsystems of the turbulent spectrum are localized in radius to the vicinity
of corresponding mode rational surfaces. Relative position of these surfaces may
cause non-overlapping (A) and overlapping (B) regimes. z is the area of support

of the mode.

2. The wave-number plane, where the overlapping modes are represented by crossings
within the narrow sector (shown by dashed lines), which corresponds to the area
of support of one mode. Vectors show possible three-wave interactions within the

single-helicity subset of modes.

3. Anomalous ion heat conductivity versus minor radius as found in experiment and
estimated from different theoretical models for the TFTR. supershot 44669, before
(A) and after injection of the pellet, (B). The experimental profiles of X; found from
the power-balance are shown by dash-dotted lines; predictions of the local kinetic
formula (Ref. 2) are represented by filled circles, these results multiplied by the

correction factors F, and F; are shown by diamonds and open circles respectively.
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