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Abstract

A review of classical percolation theory is given, with an emphasis on novel applica-
tions to statistical topography and turbulent diffusion. Statistical topography involves.:

the geometrical properties of the iso-sets (contour lines or surfaces) of a random poten-: .

tial 1(x). For rapidly decaying correlations of 3, the iso-potentias fall into the same.
universality class as the perimeters of percolation clusters. The topography of long-
range correlated potentials involves many length scales and is associated either with
the correlated-percolation problem or with Mandelbrot’s fractional Brownian reliefs. In
all cases, the concept of fractal dimension is particularly fruitful in characterizing the
geometry of random fields. The physical applications of statistical topography include
diffusion in random velocity fields, heat and particle transport in turbulent plasmas,
magnetoresistance in inhomogeneous conductors with the Hall effect, and many oth-
ers. A geometrical approach to studying transport in random media, which captures
essential qualitative features of the described phenomena, is advocated.

*To be submitted to Reviews of Modern Physics.
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I. INTRODUCTION

A. General

The percolation problem describes the simplest possible phase transition with nontrivial crit-
ical behavior. The pure geometrical nature of this transition and its compelling application
to diverse physical problems have drawn the attention of many researchers and the percola-
tion theory is well reviewed (Shante and Kirkpatrick, 1971; Essam, 1972; Kirkpatrick, 1973;
Stauffer, 1979; Essam, 1980; Zallen, 1983; Stauffer, 1985; Kesten, 1982; Deutscher et al.,
1983; Shklovskii and Efros, 1984; Sokolov, 1986). The general formulation of the percolation
problem is concerned with elementary geometrical objects (spheres, sticks, sites, bonds, etc.)
placed at random in a d-dimensional lattice or continuum. The objects have a well-defined
connectivity radius Ao and two objects are said to communicate, if the distance between
them is less than Ay. One is interested in how many objects can form a cluster of commu-
nication and, especially, when and how the clusters become infinite. The control parameter
is apparently the density no of the objects (their average number per unit volume), or the
dimensionless filling factor § = noAd. The percolation threshold, n = ., corresponds to the
minimum concentration at which an infinite cluster spans the space. Thus the percolation
mode] exhibits two essential features: critical behavior and long-range correlations near the
critical value of the control parameter 7.

This model is relevant for a number of transport problem in disordered media, which
exhibit critical behavior, such as the electron localization (Anderson, 1958; Ziman, 1969)
and hopping conduction in amorphous solids (Shklovskii and Efros, 1984; Zallen, 1983).
Other applications of percolation theory may concern the spreading of disease in a garden
or, say, the critical concentration of bribe-takers to impede the normal funcfioning of a
government.

Not only critical phenomena can be associated with the percolation model. Consider,



for example, the diffusion of a passive tracer in a two-dimensional, steady, incompressible

random flow
V(:v,y) = V@[)(.’D, y) X2, (1‘1)

where 9(z,y) is a random stream-function. The streamlines of this flow are the contours of
). The geometry of the éfreamlines is associated with the geometry of percolation clusteré as
follows. Let us call “objects” the regions where ¥(z,y) is less than a specified constant level
h. If 2 = Y(z,y) is imagined to be £he elevation of a random lémdscape and h designates
the level éf flooding, then the objects are the. lakes. Two neighboring lakes “communica,te”
if they merge into a bigger lake, which is a “ciuster.” So the contours ¢(z,y) = h present
the coastlines of the lakes, that is, the envelopés of the clusters. The control paraméfer of
this percolation problem is the level h which assumes that at some critical level, h = hc,
 the lakes form an infinite ocean and among the contours W(z,y) = he there is at least one
infinitely long.
Flow (1.1), however, includes streamlines lying at all levels, and its transporting proper-

ties show no critical behavior in the only relevant control parameter (Péclet number)

‘which is the ratio of the root-mean-square stream-function %o and the molecular diffusivity
Dy of the tracer. Neverthelesé, if the Péclet .r'mmber is large, P > 1, the tra,nspbrt shows
long correlatidn because the tracer particles advected along very large streamlines diffuse
from these lines to more typical short-closed lines very slowly and hence providé a significant
coherent contribution to the turbulent diffusivity D*. The larger the Péclet nu:r}})gg,_\"che
longer and narrower the bundles of streamlines which dominate ‘the eﬁ'ective‘ fi;aﬁspc;Art in
the considered flow. Under déﬁgite constraints, the effective diffusivity scales as (Isichenko
et al., 1989) |

D¥ ~ Dy P03 P>, (1.3)

5




where the exponent 10/13 is expressed in terms of the critical exponents of two-dimensional
percolation theory.

The effective diffusion in a random flow presents an example of a long-range correlated
phenomenon without critical behavior. The critical exponents of the percolation transition
enter the result because the large value of the control parameter (P > 1) picks up a near-
critical (in the sense of the contour percolation) set of streamlines dominating the effective
transport. Unlike the transport processes occurring- on the percolation clusters (Aharony,
1984; Orbach, 1984; Rammal, 1984; O’Sha.ughnéssy and Procaccia, 1985a, 1985b; Havlin
and Ben-Avraham, 1987; Hans and Kehr, 1987; Harris, 1987), the motion along the incom-
pressible streamlines involves transport around the percolation clusters.

The appearance of formula (1.3) leaves little hope for its derivation using a regular per-

turbation theory method in solving the advective-diffusive equation

%7% +vVn = DyVin (1.4)

for the tracer density n. Instead, geometrical arguments can be used to reduce the advective-
diffusive problem to the problem of random contours whose critical behavior is not amenable
to any kind of a perturbation analysis but is well described in terms of percolation theory.

The problem of critical phenomena (Domb et al., 1972-1987) belongs among the most
difficult in nonlinear physics. This is well manifested in the fact that several decades separate
Boltzmann-Gibbs statistical mechanics and the first solution of the Ising model by Onsager
(1944). After Wilson (1971a, 1971b, 1975) introduced the renormalization-group technique
to the theory of phase transitions, the number of solvable critical models rapidly increased
(Ma, 1976; Baxter, 1982). Some of the analytical results on percolation criticality were
obtained relatively recently (den Nijs, 1979; Saleur and Duplantier, 1987).

The value of the available results on critical behaviors is grossly increased by the uni-

versality of critical exponents describing the behavior of the order parameter and of other



physical quantities near the critical point. Universality implies that the set of critical expo-
nents is structurally stable, that is, does not change under a small perturbation of the model
itself, provided that the perturbation does not introduce long correlations that decay slower
than some algebraic function. This universality leads to the possibility of new applications
of critical phenomena theory that might go far beyond the phase transition problems in
statistical pﬁysics.

This paper concentrates on applications such as the processes of transport in classical
random media including turbulent flows or inhomogeneous conductors. Many problems of
this kind are reduced to the statistical properties of contours (isolines) of random potentials
studied in the framework of statistical topography. In the simplest case of a potential:charac-
terized by a single scale of length, and a rapidly decaying correlation function, the statistical
topography problem is mapped onto the simplest percolation problem delivering allineces-
sary characteristics of the long-range contour behavior. For the case of algebraic behavior
in the random potential correlator, the topography involves essentially many length séales,
but still can be studied using a renormalizé,tion-type technique hinged on the knowledge of -

the monoscale-percolation exponents.

B. Fractals

An essentially geofnetfical approach to studying transport processes requires a cbncise char-
acteristic of random fields. The fractal dimension serves such a characteristic. Introduced
originally by Hausdorff (1918) and Besicovitch (1929), the concept of fra,ctivpnal, or gen-
eralized dimension was first used in fairly abstract mathematical studies on nﬁmber theory
(Besicovitch, 1935a, 1935b; Good, 1941). The fractal dimension was introduced in a physical
context by Mandelbrot (1975a, 1977, 1982, 1983), whose works generated a widespread in-
terest in fractal geometry (Pietrqnero and Tosatti, 1986; Paladin and Vulpivani, 1987; Peitgen

and Saupe, 1988; Feder, 1988; Voss, 1989). Fractal dimensions were reported for numerous




environmental data (Burrough et al., 1981) and even for space-time (Zeilinger and Svozil,
1985). The most sensible physical applications of fractals are concerned with turbulence
(Mandelbrot, 1975b; Procaccia, 1984; Sreenivasan and Meneveau, 1986; Constantin et al.,
1991; Benzi et al., 1991), chaotic attractors (Kaplan and Yorke, 1979; Mori, 1980; Farmer
et al., 1983; Grassberger and Procaccia, 1983), and critical phenomena (Suzuki, 1986), in-
cluding transition to chaos in classical systems (Jensen et al., 1985). Of course, there are
many others (Mandelbrot, 1983; Feder, 1988).

The original Hausdorff-Besicovitch definition of the “dimensional number” D of a set of
points F' imbedded in a d-dimensional space is as follows. Let F' be divided into the subsets
Ui, Us,... having the diameters (maximum linear size measured in the d-space) Ay, As,...,
respectively. Denote by U(F,)) the set of all possible divisions of the set F' with A; < A,

Then the “exterior s-dimensional measure” M,(F) is defined as ..

M,(F)= lim  inf Z Az (1.5)

Finally, if M,(F) = 0 for s > D, and M,(F) = oo for s < D, then D is the “dimensional
number,” or the “fractional dimension” of F.

Another definition of D, which is due to Kolmogorov (1958) and known as capacity, is

im log N by
A—+0 log A

D= (1.6)

9

where the covering number N is the minimum number of d-dimensional cubes of side A
needed to cover the set F'. The Hausdorff-Besicovitch and Kolmogorov definitions of D are
equivalent, except for completely pathological cases that are of no physical interest (Young,
1982). The parameter D satisfies evident inequalities 0 < D(F') < d and D(F') < D(F), if
F' C F, and can in principle take on arbitrary fractional (and even irrational) value, such
as log 8/log3 = 1.893. .. for the Sierpinski carpet shown in Fig. 1. For “well-behaved” sets,

the dimension D equals the topological dimension, which is an integer, such as D = 0 (set

F1



of isolated points), D = 1 (a smooth curve), D = 2 (a smooth surface), and D = 3 (a
.region of finite volume). Mandelbrot (1982) proposed the term “fractals” for the sets whose
dimensional number D is greater than the topological dimension and less than the dimension
d of the encompassing space. For this case, Mandelbrot coined the term “fractal dimension”
for D.

The most appealing property of fractals is their self-similarity, or scaling, meaning that
some parts of a whole are similar, after rescaling, to the whole. For example, the upper left
square comprising one nineth the area of the Sierpinski carpet (Fig. 1) can be magnified three
times to reproduce the original carpet. This is an example of an exact self-similarity. For
fractals involving a random element, one speaks about a statistical self-similarity, meaning
equivalent, after the proper rescaling, statistical geometrical distributions characterizing a
part and the whole fractal. Examples of random fractals are the trajectory of 'a"f-“':j_:?féift‘i“éle
pursuing Brownian motion (D = 2, see Fig. 2) and the infinite cluster near the percolation
threshold (D = 91/48 for d =2 and ~ 2.50 for d = 3). |

It is importé,nt to note that virtually no real physica,l object qualifies for thek"fforma,l
deﬁnitibn‘ of a fractal involving a nontrivial (that is, lying between the topological and the

ambient dimension) Hausdorff-Besicovitch dimension (1.6). Instead, physical fractals can be

defined as geometrical objects having a sufficiently wide scaling range [Amin, Amax] specifying

the length scales of a self-similar behavior. As soon as the ratio Amax/ Amin becomes much

larger than unity, one can speak about a fractal. Specifically, in the scaling range, the

covering number Ny behaves proportional to A=L. If one restricts oneself to the area of the
size Amax €qual to the upper limit of the scaling range, then the covering number N, . is

apparently of the order of one, hence

D .
N, ~ ()‘Ijl\ax> , )\mm < A < Apax . (17)

Expression (1.7) replaces the more mathematical definition (1.6) of the fractal dimension D

F1

F2




and is actually used in the computation of D using box-counting algorithms (Feder, 1988).
Furthermore, definition (1.7) generalizes the Hausdorff-Besicovich definition (which corre-
sponds to the limiting case Ay, = 0) in that the fractal dimension can also characterize the
long-scale behavior. For example, an infinite percolation cluster at the percolation threshold
is self-similar in the scaling range [Ag, 00|, where Aq is the size of communicating objects
(Kapitulnik et al., 1984). In fact, a percolation cluster is one of the most popular models
of a fractal. The long-correlated properties of virtually all critical phenomena implies a
statistical self-similarity in a diverging scaling range, which makes fractal géometry quite a
suitable language to describe phase transitions (Suzuki, 1986).

In general, Amax in (1.7) can be replaced by a smaller variable radius, @ < Amax, and

putting A = A, we obtain the radius-mass relation

M(a) ~ (/\L)D , @ > Amin , (1.8)

min
where the center of the circle of radius a lies on the fractal and it is assumed that the mass
covered by a Amin-sized box is unity.
Using formula (1.7), one can measure the fractal dimension of curves (topological dimen-

sion 1) by a compass. Let A be the compass step. Then the measured length is

L(A)= ANy~ (/\r:'\ax)D o AP, (1.9)
The observation that there is no “actual” length of a coastline, meaning that the result (1.9)
depends on the accuracy A, became one of the stimuli for introducing the concept of fractals
(Mandelbrot, 1967; 1975b).

Normally, different definitions of the fractal dimension yield the same result. One, how-
ever, should be cautious with self-affine fractals, that is, those reproducing themselves after

rescaling which is different in different directions. Usually, the distance in such systems is

measured in different directions by quantities of different physical dimensionality, such as

10



time and length. For the fractal dimension to be meaningful, one has to switch to nondimen-
sional variables, a procedure that involves using some units of measure (seconds, centimeters,
etc.). Hence the scaling range of self-affine fractals may depend on the units used. A further
complication is that, for self-affine fractals, the “box-counting dimension” (Eq. (1.7)) and
the “compass dimension” (Eq. (1.9)) may be different (Mandelbrot, 1985). One example of
a self-affine fractal is the graph {¢, By(t)} of a fractional Brownian function Bp(t), whose
definition and properties are discussed in Sec. III.B. While the box-counting (Hauédor.ﬁ'—
Besicovitch) dimension of the fractional Broﬁnian graph equals 2 — H (0 < H < 1), its
compass dimension is 1/H (l /2< H<1) (Mandelbrot 1985).

In table I we depict fractal dimensions and scahng ranges of some geometrlcal obJects
discussed in this paper. Notice that the same objects can have different values. of fractal
vdvimension in different scaling ranges. "

To calculate the fractal dimension of more complicated objects involving cross-sections of
fractals by a plane or by a line or the intersection of several fractals, a simple formula.can be

used. Consider two fractals, Fy and F3, with the fractal dimensions D; and D, respectively,

in a d dimensional cube with the edge a. Accordmg to Eq (1.7), the covering number of F

is N p (F}) ~(a/ /\)D' If all the cube is divided into boxes with the size ), then F; intersects
the following fraction of boxes: | ‘

pa(F) _ N,\”(z.v;-). (%)d ~ (i)dei . | (v1v.10)

a

Suppose that there is no correlation in the position of F, and F;, then we find the fraction .

pA(F) of A\-boxes covering the intersection F' = FiNF;:
2d—Dy-D;

A
pA(F) = pA(F1)pa(F2) =~ (2) : o (1a)
Comparing (1.11) with the relation py(F) = Nx(F)()/a)? « (A/a)?~P we find the fractal

dimension of the intersection (Mandelbrot, 1984)
D=D,+D,—-d. (1.12)

11
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A corollary of the intersection rule (1.12) concerns the cross-sections of fractals by regular
shapes. Let D; = d — 1 be the dimension of a plane in the space (d = 3) or of a line in the
plane (d = 2). Then the fractal dimension of the cross-section is unity less than that of the
fractal Fi:

D=D;-1. (1.13)

A generalization of the intersection rule (1.12) for the case of N independent intersecting

fractals reads

D=Dy+...+Dy—(N=1)d. (1.14)

Of course, formulas (1.12)—(1.14) are valid as long as D > 0, otherwise the intersection is
essentially empty. The scaling range of the intersection of several fractals is the intersection
of individual scaling ranges unless one of the fractals is self-affine. For example, the self-
affinity of the fractional Brownian graph (D = 2 — H) leads to an upper bound on its scaling
range (see table I), which depends on the unit of measure. This bound can be lifted by a 71
cross-section: The fractional Brownian zero-set (D = 1 — H) is a self-similar fractal in an
unbounded scaling range.

Among the most intensively studied fractal objects are the chaotic, or “strange” attrac-
tors that present a generic invariant set for dissipative dynamical systems with the dimension
of the phase-spase d > 3. The first example of such attractor was studied by Lorenz (1963).
The motion on the attractor is characterized by (a) the sensitive dependence of the trajec-
tory behavior on initial conditions, that is, exponentially diverging neighboring orbits, and
(b) exponentially shrinking phase-space volume. In terms of the characteristic Lyapunov
exponents (Lichtenberg and Lieberman, 1983), A; > A; > ... > Ay, which describe the
growth rates of the edges of an infinitesimal phase-space hypercube, this means that A; > 0,

whereas ¢, A; < 0. Kaplan and Yorke (1979) conjectured that the fractal dimension of a

12



chaotic attractor be given by the simple formula .
J
D =J'+;Ai/|1\j+1l, (1.15)
where j is the maximum integer for which Zf-;l A; > 0. Young (1982) showed that formula
(1.15) is exact for d = 3. Notice that one of the Lyapunov exponents of a dynamical system is
necessarily zero (in the direction of the phase-space flow) that leads to further simplification

of the Kaplan-Yorke formula for d =3 (A; > 0= A; > Az; |As| > Ay):
D=2+ A/l (116)

Thus the fractal dimension of a chaotic attractor in a system with three degrees of freedom
lies between 2 and 3, because the chaotic behavior (A; > 0) of self-avoiding orbits-is not
possible on manifolds with the dimension two or less.

~ The concept of fractal dimension decribes bnly geometrical, or static propertié"s'!?';c"i’l‘f\'":’gié:l'f- .
similar objects. The chdracterization of dynamical propertiés of fractals, such as the fraction
of time spent by a particle in a given subset of an attractor (Grassberger, 1983b), the

relative intensity of energy dissipation in turbulence (Frish and Parisi, 1985), or the Telative

intensity of passive scalar gradients in chaotic advection (Ott and Antonsen, 1988), involves - =" %

a continuous set of exponents (Hentschel and Procaccia)

N
log Y pf
1 =1

D,(F) = —Timy (1.17)

Here p; (va" p; = 1) is the corresponding “relative importance” called probébiiity fnea.sure,
or mass density, of the subset U;(A) C F contained inside the i-th covering cube with the
edge A. In the limit ¢ — 0 expression (1.17) becomes the fractal dimensi;)i; (16)For
a “homogeneous fra,ctlal,” whose parts are _équally important, the probability measure 1s
constant, p; = N5, and the generalized dimension D, equals the fractal dimension D(F)

for all g.

13



The set F' can be represented as a union of a continuous family of subsets F}, each being
a fractal of the fractal dimension f(a) < D(F'), and characterized by the singularity of the
probability measure p;(A) &< A%, The generalized dimension D, is ralated to the a-singularity

dimension f(«) as (Jensen et al., 1985; Halsey et al., 1986)

D(F) = —minga — f(e)] (1.18)

The continuously changed generalized dimension D, and the corresponding function f(«)
present the mathematical formalism of the theory of multifractals (Paladin and Vulpiani,
1987; Feder, 1988). The self-similarity property of multifractals is more complicated than
that of homogeneous fractals and is described in terms of multiscaling (Jensen et al., 1991).

In this paper, we are primarily concerned with homogeneous fractals, such as percolating
streamlines of an incompressible random flow. The streamlines are homogeneous fractals

due to the Liouville theorem applied to the Hamiltonian equations of tracer particle motion.

14



II. PERCOLATION

In this section a brief review is given of lattice and continuum pércola,tion theories with an
emphasis on the universality of critical behavior. In the long run, this universality enables
the success in applying percolation theory to a number of problems, which seem to be very far
from the original one introduced by Broadbent and Hammersley (1957). An incomplete list
of problems, to which percolation theory has been applied, includes hopping conduction in
semiconductors (Seager and Pike, 1974; Shklovskii and Efros, 1984), gelation in polymers (de
Gennes, 1979a), electron localization in disordered potentials (Ziman, 1969; Thouless, 1974;
Ziman, 1979), random intergrain Josephson contacts in high-T, superconductors ((i‘;arevich
et al., 1988), gas-liquid transition in colloids (Safran et al., 1985), permeability c;%w’;orous
rocks (Thompson et al., 1987), plasma transport in stochastic magnetic fields (Kador;ltsev
and Pogutse, 1979; Yushmanov, 1’990; Isiéhenkd, 1991b), turbulent diffusion (Gruzmov et al,
1990), epidemic processes (Grassberger, 1983a), and forest fires (MacKay and J an,1984) :
The goal of this section is not to compete with majorvreviews on percolation theory

(Shante and Kirkpatrick, 1971; Essam, 1972; Kirkpa.trick, 1973; Stauffer, 1979; Essam,
1980; Zallen, 1983; Stauffer, 1985; Kesten, 1982; Deutscher et al., 19é3; Shklovskii and
Efros, 1984; Sokolov, 1986) but rather to serve as a precursor to further discussion. We also
supplement earlier review articles by covering recent analytical and numerical results related
to hull exponents, correlated percolation, and continuum percolation.

~ In this section, we focus primarily on the geometrical properties of percolation clusters
that are described by the so-called static exponents. A variety of dynamic properties of
percolation clusters including conduction and random walks on clusters, their elastic prop-
erties, etc., are given lesser discussion. Review of the dynamics of percolation clusters and
of other fractals is given in Aharony (1984), Orbach (1984), Rammal (1984), Havlin and
Ben-Avraham (1987), Hans and Kehr (1987), and Harris (1987).

15



In Sec. A the simplest conceptual problem of random percolation on a periodic lattice is
discussed and a review of the exponents of critical behavior near the percolation threshold
is given. The scaling theory of percolation clusters, which relates different percolation expo-
nents, is outlined in Sec. B. The universality of critical exponents, that is, their insensitivity
to the geometry of the underlying lattice is discussed in Sec. C. Correlated percolation is
reviewed in Sec. D. In Sec. E we discuss different formulations of the continuum percolation

problem, which are free from lattice constraints.

A. Lattice percolation and the geometry of clusters

This new kind of a mathematical problem was motivated by the question of percolation of a
fluid through a porous medium or a maze, thus resulting in the term “percolation problem.”
Broadbent and Hammersley, the founders of the percolation theory, coined the term “perco-
lation” as opposed to the term “diffusion.” According to Broadbent and Hammersley (1957),
if diffusive processes involve a random walk of a particle in a regular medium, then percola-
tion processes involve a regular motion (e.g., fluid or electric current flow) through a random
medium. The simplest problem of this kind can be formulated as follows. Given a periodic
lattice embedded in a d-dimensional space, and the probability p for each site of the lattice to
be “occupied” (and hence with the probability 1 —p to be “empty”), what is the distribution
of resulting clusters over sizes and other geometrical parameters? A cluster means (by defi-
nition) a conglomerate of occupied s sites, which communicate via the nearest-neighbor rule
(Fig. 3). In percolation theory special attention is given to the percolation threshold, p = p.,
at which an infinite cluster spans the lattice. Besides this site percolation, one can introduce
the idea of bond percolation, with clusters of connected conducting bonds (Fig. 4). The
bonds are conducting with the probability p and, correspondingly, blocked with the prob-
ability 1 — p. The site- and the bond-percolation problems are very similar to each other.

There also exists a hybrid site-bond formulation of the percolation problem (Heermann and

16
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Stauffer, 1981). To be specific, we discuss percolation theory mainly on the example of the
site problem.

Statistically, one can describe the cluster distribution by the cluster density n,(p), which
is the number of clusters including exactly s occupied sites, per unit volume. It is convenient
to choose the unit volume, which corresponds to one site of the lattice. For sufficiently
small s, the density n,(p) can be calculated in a straightforward way by simply counting the
number of permissible configurations (“lattice animals”) of a cluster (de Gennes et al., 1959;
Sykes and Essam, 1964a; Sykes and Glen, 1976; Sykes et al., 1976a, 1976b, 1976¢c; Essam,
1980). These expressions for ns(p) are polynomial functions of p. For example, a cluster
consisting of a single site on a two-dimensional square lattice means the occupancy of the

site (probability p) and the emptiness of the four nearest neighbors (probability (1'% p)?).

Hence, n;(p) = p(1 —p)*. Analogously, ny(p) = 2p%(1 —p), na(p) = 2p3(1 —p)®+4p°(
etc. For higher s, the calculation of n,(p) becomes menacingly cumbersome and is best done
on computer (Ma}tin, 1974). =

The percolation problem would be somewhat tedious, Were the cluster distribution a
smooth function of the probability p, as suggested by the above series expansions for finite s.
The central point of the theory is that, for each of lattice, there exists a critical probability
Pe, 0 < pe<1,atwhichan infinite cluster definitely (i.e., with the probability one) appears.
The existence of this critical transition — the percolation threshold — is heuristically evident
from the following argument. For p = 1 —¢g, 0<e <1, the percolation to infinity through
occupied sites cannot be destroyed by removing a small fraction ¢ of sites (Fig. 3(c)). On
the other hand, for small p <« 1, it is clearly exponentially improbable to percolate to a
large distance a through occupied sites, hence, for a — oo, the probability of finding such a
cluster tends to zero. Thus, for p < 1, there is no infinite cluster (Fig. 3(a)). This indicates
the existence of a critical probability p, (Fig. 3(b)), which, roughly speaking, is “of the order

of 1/2.7
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The value of the critical probability p. depends on the dimension of space d, the kind
of problem (site or bond), and the type of lattice. In two dimensions, p. can be calculated
exactly for some lattices (Sykes and Essam, 1963, 1964b). The critical probabilities of certain
lattices can be simply related to each other. Suppose there exists a one-to-one correspondence
between the bonds of two lattices A and B. Suppose further that, if a bond on lattice A is
conducting, then the corresponding bond on lattice B is blocked, and visa versa. If, under
such convention, the percolation through lattices A and B are mutually excluding, then
these two latices are said to be matching, or dual: A=B*. Geometrically, the corresponding
bonds of matching lattices “cut each other” (see Fig. 5). The simplest examples of matching
lattices are triangular (T) and honecomb (H); the square lattice (S) is self-matching: S=S*.

The critical probabilities of matching lattices are complementary:
Pe(A,b) +p(A¥,0) =1, - (2.1)

where “b” means the bond-problem. It immediately follows that the critical probability for

the two-dimensional square lattice is
p:(S,b) =1/2. (2.2)

One can similarly introduce matching between bond- and site-lattices. For example, the

sites of the triangular lattice match the bonds of the square lattice (Fig. 5(c)), hence
pe(T,8) =1 —pc(S,0)=1/2. (2.3)

For matching bond problems on triangular and honeycomb lattices, Sykes and Essam (1963,
1964b) found an additional exact relation for critical probabilities based on the star-triangle

overlapping property. This relation yields
1 —3p.(T,b) + pg(T, b)=0, (2.4)

hence

p:(T,b0) =1 —p,(H,b) = 2sin(r/18) . (2.5)
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In the three-dimensional case, no percolation threshold is known exactly, and only nu-
merical data are available. Table II shows the values of p, for the simplest lattices. At
first glance, there is no apparent rule describing the values of the critical probabilities p, for
different lattices. An approximate rule, however, was found by Scher and Zallen (1970), who
noticed that, for each dimension, there exists an invariant, which is almost independent on
the type of lattice. This invariant, ¢, = fp., is the critical fraction of space occupied by
the spheres (discs in 2D) of the bond-length diameter, positioned in the occupied sites of
the lattice. The quantity f is called the filling factor of the lattice and denotes the volume
fraction occupied by mutually touching spheres positioned at each site. The critical space
occupation probability equals ¢, = 0.44 4 0.02 in two, and ¢, = 0.154 £ 0.005 ingthree
dimensions. |

The decrease of the critical probability with increasing dimension d is easily undeg_sﬁg‘gd.
For example, 2D bond clusters on a square lattice (S) are nothing more than a planar: cfoés-
section of 3D bond clusters on a simple cubic lattice (SC) at the same probability p Even
though all 2D clusters are finite (p>< p:(S,b) = 0.5), they can belong to an infinite 3D cluster
communicating via the third dimension (p > p.(SC, b) ~ 0.248). The lattice filling fa,ctor. f
is also smaller for higher dimensions: f(S) ==/4, f(S5C)= /8.

A more fundamental difference between two- and three—dimensional percolation is that
in 3D one can introduce two nontrivial critical probabilities, p, = po; < peo- Let us call the
clusters of occupied sites (or conducting bonds) “black.” The second critical probability p.
specifies the threshold of percolaﬁon through “white” clusters of vacant siteés (or blocked
bonds) corresponding to the occurance probability 1 — p. Since the black and the white
percolation problems are identical, we conclude that pe; =1 — pa.

In two dimensions, simultaneous percolation through both black and white clusters is
impossible unless these clusters may cross each other (as is the case for bonds on a tfiangular

lattice). This is well manifested in that the critical percolation probabilities p. are not less
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than 1/2 (with the mentioned exception for the triangle bonds; see table II). For p. > 1/2
(square sites, honeycomb sites and bonds) and 1 —p, < p < p., there is percolation through
neither black nor white clusters.

In three dimensions, one generally has p. < 1/2 (see table II) so that p;y < pee. The
presence, at py < p < P2, of both black and white infinite clusters reflects the existence
of different nonintersecting, isotropic paths to infinity. (This is why freeway overpasses
are made three-dimensional.) The difference between two and three dimensions becomes
especially distinct for percolation in the continuum (Sec. E).

The cluster density n,(p) accounts only for finite-size clusters. The infinite cluster is
characterized by the density Pe(p), which denotes the probability for a given site to belong
to the infinite cluster. (Sometimes P, (p) is defined as the conditional probability for a
given occupied site to belong to the infinite cluster. These two definitions of P(p) differ
by the factor of p, which is unimportant for the critical behavior near p = p..) It can be
shown (Kikuchi, 1970; Newman and Schulman, 1981) that, in two or three dimensions, there
exists either exactly one (for p > p.) or no (for p < p) infinite cluster. The sum of all the
probabilities for a given site to belong to either a finite-size cluster or the infinite cluster
must equal p (the probability to be simply occupied):

oo

Z‘;sns(p) + Pu(p)=p- (2.6)
In the subcritical case, p < pe, Peo(p) is identically zero. For p > p., Po(p) is positive,
consequently, in the vicinity of the percolation threshold, the function Py, (p) is non-analytic.

There is extensive numerical evidence of the power dependence

Pul(p) < (0= p)0(p—ps) s Ip—pel €1, (2.7)

where 6(z) is the Heaviside step function. The exponent # is one of the standard set of

critical exponents c, 8,7,... (Domb et al., 1972-1987) that govern the behavior of different
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quant.ities near the critical point;

5, g ne(p) o |p — pe*™ (2.8a)

5, ; sny(p) o (p —po)’ (2.8b)

Sp 2 s”na(p) o< Ip — pe| ™7 (2.8¢)

S S amp)e- ™ oc Y sy
=

€(p) x Ip —pe|™ . (2.8¢)

In Eqs. (2.8), the operator S, denotes the main singular (as a function of z).part of
the subsequent expression. Specifically, this operator yields zero when applied tosanian-
'a.lytic function. “Singular” in this context‘ means a function t;hat is either discontinuous
or has a discontinuous derivative of some order at p = p,. All expressions (2.8) assume
lp—p| <1, 0<H<KL Eqﬁation (2;8b) is a direct consequence of Egs. (2.6) and, (2.7).
The quantity {(p) in Eq. (2.8¢) is the so-called correlation, or coherence length, which is a
characteristic size of the cluster distribution (see Sec. B). This is not an average radius of
percolation clusters (the average linear size is of the order of the lattice period as small clus-
ters still dominéfce) but rather a maximum size, above which the clusters are exponentially
scarce. The correlation length £(p) is also the upper bound of the scaling range where perco-
lation clusters behave self-similarly and hence may be characterized by a fractal dimensibn
(Stanley, 1977, 1984; Margolina et al., 1982; Kapitulnik et al., 1984). Equivalently, the cor-
“relation length separates an algebraic behavior of a cluster correlation function (Shklovskii
and Efros, 1984) from its exponential decay. |

Table III summarizes the percolation critical eiponents. These exponents depend only

‘on the dimension of the space but not on the type of lattice and the kind of percolation
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problem (see Sec. C). As discussed in the Sec. B, phenomenological (scaling) arguments can
be used to derive relations between the critical exponents entering Egs. (2.8), so that only
two of them are left to be calculated from first principles. The choice of these two “basic”
exponents is relative; we will consider the correlation length exponent v and the infinite
cluster density exponent § as the basic percolation exponents. In two dimensions (d = 2),
these indices .are known analytically (den Nijs, 1979; Pearson, 1980; Baxter, 1982), namely,
v = 4/3 and B = 5/36. For d = 3, only numerical estimates are available: » ~ 0.90 and
B =~ 0.40 (see table III).

In the analogy, which can be drawn between the percolation problem and magnetic
phase transitions (Stauffer, 1979), the sums on the left-hand sides of Eqgs. (2.8) can be
regarded as free energy (2.8a), spontaneous magnetization (2.8b), susceptibility (2.8c), and
magnetization (2.8d) in the external field H. In these terms, the probability difference p—p.
corresponds to the temperature difference T, —T', so that subcritical (finite) clusters present a
“high-temperature” (disordered) phase, and the supercritical infinite cluster spans the space
to form a “low-temperature” (ordered) phase. Hence the infinite cluster density P (p) plays
the role of the order parameter of the percolation phase transition (Kikuchi, 1970).

Generally, the lattice percolation problem can be placed among other discrete lattice
phase transition models, such as the Ising (1925) model, the g-state Potts model (Potts,
1952; Nienhuis et al., 1979), the n-vector model O(n) (Stanley, 1968; Nienhuis, 1982), and
others (Baxter, 1982). The Ising model, which was historically the first analytically solved
phase-transition model, is the particular case of O(n) for n = 1 and also of the ¢g-state Potts
model for ¢ = 2. The percolation problem corresponds to a proper limit of the Potts model
for ¢ — 1 (Fortuin and Kasteleyn, 1972).

In two dimensions, there is a powerful technique for the calculation of various critical
exponents. This technique is based on the representation of the “Coulomb gas” introduced,

in its most convenient form, by Kadanoff (1978). A review of the results obtained with this
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method can be found in Nienhuis (1984).

Another approach for possibly exact evaluation of critical exponents in two dimensions is
based on the conformal invariance technique (Polyakov, 1970; Belavin et al., 1984; Dotsenim
and Fateev, 1984; Saleur, 1987). This method predicts a discrete series of “permissible”
fractal dimensions (Kac, 1979; Larsson, 1987).

d; = (100 — 2?)/48 , | (2.9)

where z is an integer. Speculating on the correspondence between various objects (e.g.,
clusters and their subsets) and conformal fields, one can pick up a conformal dimension
(2.9) closest to a numerical value and claim an exact result (Larsson, 1987). All analytically

known fractal dimensions associated with 2D percolation clusters and random walks belong

to this list of “magic numbers” (see table IV). L

In cases when analytical results were not available, the most accurate estimates for,critical
probabilities and critical exponents were obta,ined using the series expansion method;(Sykes
and Essam, 1964a; Sykes et al., 1976a, 1976b, 1976¢c; Adler et al., 1990). The idea.of the
method (Domb and Sykes, 1960) is to present diverging sums, such as the one in -Eq. (2.8c),

in the form of series in p (low-density expansion) or 1 — p (high-density expansion), using - .- -.: .

-the lattice animal enumeration. The critical behavior is'then studied by locating the nearest
singular point of the series on the real positive axis of p.

‘The critical exponents introduced above are usually referred to as static exponents, be-
cause they characterize only the geometry and distribution of clusters. Percolation clusters
are usually used for modelling such physical objects as amorphous solids (Zallen, 1983), com-
posité materials (Garland and Tanner, 1978), porous rock (Thompson et al., 1987), polymers
(de Gennes, 1979b), etc. In studying various physical properties of such media (conductiv-
ity, elasticity, permeability, etc.), the corresponding properties of percolation networks are

described in term of dynamic exponents. The simplest problem of this kind associated with
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the appearance of an infinite cluster is the problem of long-range conductance in a random
resistor network (Kirkpatrick, 1973; Skal and Shklovskii, 1974; Shklovskii and Efros, 1984;
Havlin and Ben-Avraham, 1987; Harris, 1987). For bond percolation where each “conduct-
ing” bond has a fixed resistance of unity, while “blocked” bonds have an infinite resistance,
the large-scale behavior of the system undergoes a sharp transition from an insulator (p < p.)
to a conductor (p > p.). Near the percolation threshold, the long-range direct-current con-

ductivity oq4c has a singularity of the form
Odc X (p _pc)“a(p - pc) . (210)

The conductivity exponent p is one of the dynamic exponents. The value of p =~ 1.3 is
relatively well established for two dimensions. In the three-dimensional case, the computation
is more expensive and reported results are more-controversial, g = 1.7-— 1.9 (see table III).
The processes of ac conductivity in random resistor network are described by a set of néw
exponents studied theoretically by Bergman and Imry (1977) and Hui and Stroud (1985)
and experimentally by Yoon and Lee (1990).

The critical exponents a, 8, 4, 6, and v characterize the distribution of clusters. For
many applications, the structure of an individual cluster is also important. Let us introduce
for brevity some terms characterizing the geometry of a percolation cluster. We will call s,
the number of sites belonging to the cluster, the “cluster mass” and a, the maximum linear
size of the cluster, the “cluster diameter,” or simply the “size.” (Notice that some authors
refer to the number of sites s as the “size.” Sometimes, the “mean cluster size” is defined
as the ratio of sums on the left-hand side of Egs. (2.8¢c) and (2.8b). We will not follow this
notation.) The mass s and the size a of a large cluster are related by s(a) o a®, which is a
direct consequence of the radius-mass relation (1.8) for a fractal. The fractal dimension d.
does not depend on the cluster size. What changes with the probability p, or with the size

a, is the scaling range, which is [\, a] for a finite cluster and [\, é(p)] for the infinite one.
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The fractal dimension d, of a percolation cluster can be expressed through other expo-
nents. To establish this relation, let us notice that the density Ps(p) of the infinite cluster
is its mass to volume ratio M(a)/a® at a > £(p). Writing this relation at the lower limit
of its applicability, a ~ £(p), we find M(¢(p)) =~ fd(p)Poo(p). On the other hand we have
M(a) =~ (a/Xo)% for Ag < a < £(p). Using this radius-mass relation on the upper limit
a = £(p), and Egs. (2.7), (2.8¢) we conclude (K#pitulnik et al., 1984)

_, B
do=d-*. (2.11)

* Notice that in the early work by Stanley (1977), who proposed to describe near-critical
percolation clusters by an “effective dimension,” an incorrect expression for the dimension

was given (d, = d — 28/v). Thus, the fractal dimension d. of a percolation cluster is.always

smaller than the dimension d of the ambient space, due to numerous “holes” in the.cluster. .

In two dimensions, d. = 91/48 ~1.90; for d = 3, d, ~ 2.5 (see table III). g
For the problem of electrical conductivity of a random network and other dynamic. prop-

erties, another object is relevant — the “backbone” of an infinite percolation cluster. The

conductivity problem is more convenient to describe in terms of bond percolation. The back-

T ‘UI P

bone is defined as the network of unblocked connected bonds, through which one can go to .. .ic...

inﬁnity by at least two non-intersecting paths (Fig. 6). In other words;y the backbone is a set
of bonds, through which electric current would flow, were a voltage applied to the cluster at
“infinitely remote electrodes. The rest of the cluster is referred to as a collection of “dead,”
or “dangling ends.” A dangling end can be disconnected from the cluster by cutting a single

bond.

Similar to the fractal dimension d. of the whole cluster, one can introduce. the backbone

fractal dimension d;. This exponent was. determined numerically by Herrmann and Stanley
(1984), who found d; = 1.62£0.02, for d = 2, and dj = 1.74 £0.04, for d = 3. The inequality

dy < d. means that almost all the mass of a large cluster is concentrated in its dangling ends.
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The closest conformal dimension (2.9) to the 2D d; value is (at ¢ = 5) 25/16 ~ 1.56,
which lies slightly beyond the reported statistical error. This discrepancy questioned the
universality of the “magic numbers” (2.9) (Larsson, 1987).

The backbone, in turn, can be devided into multiply-connected paths (Harris, 1983).
For example, the singly-connected bonds bear all the current flowing through the cluster,
hence these bonds are sometimes called “red” (Stanley, 1984; another term for this object —
“cutting bonds”). Coniglio (1981) found that the fractal dimension of the set of red bonds
is simply related to the correlation length exponent v : d.; = 1/v. In two dimensions,
d- = 3/4, which corresponds to the conformal dimension (2.9) at 2 = 8. The red bonds are
present only in the “incipient” infinite cluster, that is, the infinite cluster at p = p.. The
backbone of a supercritical infinite cluster (p > p.) has a network-like structure and, since
the hole sizes in the network are bounded from above by a finite correlation length £(p), the
singly-connected (and generally, finitely-connected) bonds do not exist.

From the viewpoint of conduction, a percolation backbone behaves as a multifractal,
where the natural measure of fractal inhomogeneity is the Ohmic dissipation density (Paladin
and Vulpiani, 1987).

The minimum-distance path connecting two remote points on a near-critical cluster was
invoked for the model of “growing clusters” (Alexandrowicz, 1980; Stanley, 1984; Grass-
berger, 1985). The minimum, or chemical path has the fractal dimension dp, o~ 1.1. If this
object corresponds to a conformal field, the Larsson (1987) conjecture that dpin = 17/16
may be valid, which is the closest conformal dimension (at z = 7) to the numerical data (see
table III).

Another geometrical characteristic of a cluster is its outer perimeter, or the “hull” L,
defined as the number of empty sites that (a) are adjacent to the cluster sites and (b) can be
related to infinity via a chain of empty sites connected as either nearest or next-to-nearest

neighbors. The hull may also be presented as a continuous line of the length L; (d = 2), or
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a surface of the area Lj, (d = 3), enveloping the cluster from outside (see Fig. 7). Without
restriction (b) one would have the full (outer and inner) perimeter, which scales directly
proportional to the cluster mass s (Reich and Leath, 1978). In two dimensions, the outer
and the inner perimeters are topologically disconnected and the external hull mass Lj is
much less than the cluster mass s. This leads to the existence of a nontrivial, for d = 2, hull
exponent dj, which is the fractal dimension of the hull. The hull measure L; is expressed

through its size a as follows:

Ly o« a® . (2.12)

The hull exponent in two dimensions was computed by Ziff (1986), who found d;, =1.750 £
0.002 (see also data in table III). Sapoval et al. (1985) and Bunde and Gouyet (1985) ar-

gued on a similarity between diffusion fronts and percolation hulls that led to the héiiristic .

conjecture for the hull exponent:

i

d=1+1/v=T/4, d=2. (2.13)

Later analytical study of Saleur and Duplantier (1987) confirmed result (2.13) from the first

principles.

The properties of an internal hull, that is;-of a line enveloping an internal hole in‘the @ s iy

cluster, are very similar to those of the external hull. Indeed, an internal hull can be consid-

ered as the external hull of a complimentary cluster of vacant sites (probability 1 — p) that
fills up a hole in the original cluster.

One can introduce hull critical exponents analogously to those associatéd ‘with clusters
themselves. For example, the beta exponent B, is defined similarly to Eq. (2.11), d; =
d—Pu/v, v = v. The values B, = 1/3, =, =2 for d = 2 suggest that percolation hulls are
more simple objects than underlying percolation clusters and are of independent significance.
Weinrib and Trugman (1985) showed that percolation hulls are associated with a special kind

of random walk called a “smart kinetic walk” (SKW) which can be generated with no regard
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to clusters (Ziff et al., 1984; Ziff, 1986, 1989). Other importance of percolation hulls lies in
their ability to model the fronts of diffusion-limited aggregation (Meakin anci Family, 1986)
and contour sets of random functions (see Sec. E).

Grossman and Aharony (1986, 1987) found that properties of external perimeters of
percolation clusters can be drastically changed by only a slight modification if the perimeter
definition. They defined another, “unscreened,” or “accessible” perimeter as the set of empty
sites neighboring the occupied cluster sites and related to infinity through a chain of empty
nearest neighbors only (in contrast to the “natural” hull definition allowing also for next-
to-nearest-neighbors in the chain). The unscreened perimeter can be presented as the “hull
of the hull” (see Fig. 7). The numerical result d, = 1.37 £ 0.03 (Grossman and Aharony,
1986) for the unscreened perimeter of a 2D percolation cluster was strongly different from
the prediction of Eq. (2.13). A similar result for the modified perimeter, d, = 1.343 £0.002,
was reported by Meakin and Family (1986).

Saleur and Duplautier (1987) noticed that a “natural” hull, or a smart kinetic walk with
the fractal dimension dj, = 7/4 is equivalent to a self-avoiding walk (SAW) at the © point
describing a collapse transition of a polymer chain in a solvent (de Gennes, 1979a), which
is an unstable tricritical point (Levine and Sarbach, 1985; Duplantier and Saleur, 1987).
The Grossman-Aharony modification of the hull definition corresponds, in these terms, to
an increase in the repulsive interaction of the polymer chain that drives its fractal dimension
to the standard excluded-volume SAW value dgaw = 4/3 (Nienhuis, 1984).

In three dimensions, due to the multi-connected topology of the external boundary of a
cluster, it was conjectured (Stauffer, 1979; Sokolov, 1986; Gouyet et al., 1988; Strenski et al.,
1991) that the external hull comprises a finite fraction of the net cluster perimeter, hence

the fractal dimensions of the cluster and of its hull are the same:

dy=do=d—BJv, d=3. (2.14)
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B. Scaling and distribution of percolation clusters

Percolation clusters belong to the class of random physical fractals (Gefen et al., 1981;
Mandelbrot and Given, 1984; Kapitulnik et al., 1984). Here “random” is an opposite to
“deterministic,” which describes such regular structures as the Sierpinski carpet (Flg 1).
Unlike deterministic fractals, percolation clusters are not exactly but only statistically self-
similar. “Physical,” meaning an opposite to “mathematical,” implies a finite range of this
self-similarity. For a separate finite cluster, the scaling range is [Ag, a], where )q is the period
of the lattice and a is the size of the cluster. For the distribution of all clusters, the range of
self-similarity is [Ag, £(p)] and at p = p, this range becomes infinite. | -

Given the “basic” exponents v, which governs the behavior of the coherence length 13

(2.8¢), and the mﬁmte cluster density exponent £, the remammg critical exponents entermg

Egs. (2.8) can be obtained phenomenologically, using scaling, or self-similarity arguments’
To do so, we first find the asymptotics of the cluster density ns(p) for s > 1. Suppose
Ip — p| < 1 so that £(p) > Xo. Let us call clusters of linear size lying between a and 2a

the “a-clusters.” Since there is no characteristic scale between \q and é(p), the denSIty N,

of a-clusters (their number per unit volume) must behave algebraically with a, which is the

F1

only kind of dependence without a charecteriet_ie,seale: N, ~ (Ao/ a»)‘é, do < a< £(p). On o

the other hand, on scales A > £(p), the self-éimilarity is changed by the statistical ﬁhiformity
in the cluster distribution that means that the £(p)-clusters have a density of a.pproximetely

¢7%(p). Thus z must equal the space dimension d and we find

N,=Cya™%, M<a<gé(p), (2.15)

where C is a coefficient of the order of unity. The distribution (2.15) implies a dense packing

of a-clusters in space, for each a € [Ag, ¢ (p)] For a > £(p), the algebraic dependence (2:15)
is changed by an exponential decay (Stauffer, 1985). Notice that formula (2.15) is valid for

both under- and supercritical cases. At p > p., the finite clusters lie in the holes inside
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the infinite cluster, where the correlation length £(p) is the maximum size of the hole. In
other words, if the cluster size essentially exceeds the correlation length, this means that this
cluster is almost surely infinite.

The density of a-clusters (2.15) enables us to calculate the distribution of clusters over

masses. For the given size a, a-clusters have typically the mass s(a) > (a/)\)%, hence

2s(a)
No~ Y n, ~s(a)ngg (2.16)

s=s(a)
Egs. (2.15) and (2.16) lead to the following expression for the density of s-clusters:
n,=03-8"7,1l<Ks<ks(f), (2.17)
with the exponent (Stauffer, 1979)

(2.18)

The expression

de
5(6) = (“”)) —lp—p e (2.19)

Ao
is the characteristic mass of the largest finite cluster, where
1 1
= = . 2.20
7T vd, T vd-8 (2.20)

Known the distribution of clusters over masses (2.17), it makes no difficulty to calculate the

rest of critical exponents defined in Egs. (2.8). The result is

a=2—vd, y=vd-28, 6=—B——1. (2.21)

If one is interested in the cluster distribution both in the scaling region, 1 < s < s(£), and
in the region of exponentiation decay, s > s(¢), a more general formulation of the self-similar

distribution may be used. Stauffer (1979) gives the universal scaling in the form

ns(p) =s""f((p—p:)s°) , |lp—p|<l, s>1, (2.22)

where the universal function f(z) is finite for 2 — 0 and falls off exponentially for |z| — oo.

Expression (2.22) is a generalization of our simple argument.
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C. The universality of critical behavior

A fundamental concept in the physics of phase transitions is the universality of critical expo-
nents. This concept reduces the enormous number of different models to a few universality
classes, whose sets of critical indices are to be calculated and tabulated. This happy circum-
stance by no means implies that the calculation of the exponents is easy. In a sense, it is the
job for the whole physics of critical phenomena (Domb et al., 1972-1987). In these terms,
the percolation problem belongs to one of the simplest universality classes, which is usually
called the universality class of random, or uncorrelated percolation. It was established that
the critical exponents v and S, as well as all others, do not depend on the kind of the lattice
(e.g., square, trlangular, etc.) and the kind of the percolation problem (site or bond) The
~only “crude” parameter that affects the value of the exponents is the dimension d of the
ambient space. This statement has been confirmed on a vast variety of -numerical experi-
ments and is not subJect to any serious doubt. (About a partial violation of universality in
continuum models see Sec. E.)

There may be seen a certain analogy between the universality of critical behavior 1n lattice

models and the universal behavior of singularities of differentiable mappings studied in the

framework of the catastrophe theory (Poston and Stewart, 1978; Arnold, 1983). In bothcases -+ % ™

the corresponding power exponents are structurally stable, that is, are unchanged uﬁder a
small perturbation in the lattice model or the mapping, respectively. A principle difference
between critical phenomena and universai catastréphes is that the critical exponents describe
long-rangf; (in real physical space) correlated behavior, whereas the catastrop};e theory deals
with the nonanalyfical expansion of the inverse (with respect'to the originalﬂdiffqrer\;ti\@ble
Cmapping) near the singular point.

The property of the universality complies with the long-range self-similarity of percolation

clusters. On spatiél scales much longer than the lattice period Ay, the fine texture of the
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lattice is “invisible” and thus cannot affect the long-range scaling properties of clusters near
the percolation threshold. This argument suggests that one may consider the percolation
‘problem on an irregular lattice, or even without any lattice, and to expect the same critical -
behavior as in regular-lattice models. This leads to the idea of continuum percolation (Sec. E)
that exhibits critical properties similar to those of the lattice percolation problem.

Not only lattice may be changed but also the rules of the game on it. Kertész et al.
(1982) studied the percolation model with restricted valence. In this model, the number
of occupied nearest neighbors of a site should not exceed the valence v; otherwise, the
occupation of the site is prohibited. If v equals the coordination number of the lattice, the
percolation is unrestricted. It was found that, while the percolation threshold depends on v,
the correlation length exponent v is invariant.

One may also test the patience of the universality in other manners. For example, the
definition of the connectivity can be changed from the nearest-neighbor rule to the next-
to-nearest neighbor, etc. The exponents of this long-range percolation studied by Quinn
et al. (1976) and Hoshen et al. (1978) did not show any noticeable difference from those
of the nearest-neighbor percolation. So much more surprising were the numerical results of
Meakin and Family (1986) and Grossman and Aharony (1986, 1987) reporting the fractal
dimension d, of the external perimeter of a 2D percolation cluster, unambiguously less than
d, = 7/4, under only a slight modification in the definition of the perimeter (see Sec. A).
This observation led Grossman and Aharony to assume a hierarchy of hull fractal dimensions
depending on the definition of the hull. Saleur and Duplantier (1987) ruled out this possibility
by arguing that only two perimeter exponents are possible, d, = 7/4 (for the “natural hull”
— SKW) and d, = 4/3 (for the “unscreened perimeter” — SAW). This conjecture appears to
recover (although a more sophisticated) concept of universality.

Into the same class of universality may fall problems of quite a different nature. Alexandrow-

icz (1980) proposed a model of a “critically branched self-avoiding walk” (CBSAW), which
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belongs to the universality class of random percolation, meaning that some of the CBSAW
critical characteristics scale similarly to those of percolation clusters. Such an ansatz ap-
peared to be quite useful for the computation of clusters. In a similar sense, we will refer
the contours of certain random potentials to the universality class of random percolation,
meaning the same long-ljange scaling propertieé of the contours as those of the percolation
hulls (see section III). ”

The term “uncorrelated percolation” is not accidental. Introducing gradually growing
long-range correlations between sites or bonds, one will ultimately drive the percolation

problem out of the boundaries of its uncorrelated universality class.

D. Correlated percolation

The standard formulation of the lattice percolation problem assumes indepefxdeht ogcupation
of sites characterized by the only parameter — the probability p. This simplified model does
not take into account possible correlations which are present in rﬁost 'applications of igterest.
To allow for correlations, one can characterize the system by in iﬁﬁnite set of raﬁ‘dom variables

0;, which are unity at occupied sites (¢ is the site nimber) and zero at vacant sites. The

average value of 6; is the occupation probability, (6;) = p. If §; are independent, then the . i, . . .

standard (“random”) percolation model is recovered. In general, the, site correlations are

characterized by the occupation correlation function
Cg(X,' - Xj) = (01 9_7> - p2 . (223)

For the percolation model to be viable, the critical behavior should be insensitive to
short-range correlations, when the correlation function (2.23) falls off sufficiently fast (say,
exponentially) at large distance |x; — x;| — oo. Harris (1974) studied the eﬁ'ec.t of short
correlations on the cluster scaling in the ﬁlodel of a phase transition with randomly fluctu-

ating local critical temperature. He derived the following criterion of the irrelevance of the
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fluctuations:

v>2/d. (2.24)

Using expression (2.21), the Harris criterion (2.24) can be equivalently written as o < 0.
The idea of this result is that a long-range, near-critical cluster behavior is determined by
the occupation probability pe = (0;), averaged over the size of the order of the correlation
length ¢(p). The fluctuation of p; can be estimated using the standard “N =1/2 pyle” where
N « ¢¢ is proportional to the number of sites in a box with the size £, 6pe/pe o €42
If we now require that §p; be less than the critical proximity |p — p.| o< €~1/*, then we
arrive at inequality (2.24). As this criterion is fulfilled in any dimension (see table III),
we conclude that short-range correlations do not drive the percolation problem from its
standard universality class. In a more general context, the Harris criterion (2.24) determines
the condition of the irrelevance of short-range “quenched” disorder for critical behavior
(Weinrib and Halperin, 1983).

The critical behavior, however, can drastically change for correlated percolation, when the
occupancy of different sites are long-range correlated. Mathematically, this is expressed in a
slow (e.g., algebraic) decay of the correlation function (2.23). One such example is the Ising
model where the probabilities are proportional to the Boltzmann factor exp(—FE/T) with
the energy E determined self-consistently from the resulting distribution of sites (Coniglio
et al., 1977; Penrose et al., 1978). This analogy is straightforward only in two dimensions,
where the critical points of the magnetic and the percolation transition are the same (in 3D
they are different).

In another approach to correlated percolation (Weinrib, 1984) the occupation probabili-

ties p; are considered random numbers defined by their average (p;) = p and the correlation -

function ,

ep(xi —%;) = (pip;) = p° . (2.25)
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So this formulation involves a two-step process: first, random p; are drawn for each site, then
the site occupancy is generated according to the probabilities p; : 6; = 0(p; —r), where r is a
random variable uniformly distributed in [0,1] and 6(z) is the Heaviside step-function. Sub-
stituting the expression for §; into Eq. (2.23) we conclude that the two correlation functions
are the same: cg(p) = ¢,(p) = c(p).

1t is believed that, although insufficient for a complete characterization of the distribution
of p;, the two-point correlation function ¢(p) contains enough information to determine
the critical behavior. For an algebraically decaying correlation, c¢(p) o p*#, H < 0, the
criterion of universality can be obtained analogously to the Harris criterion (2.24). Here, the

fluctuation of the ¢-scale-averaged occupation probability pe is calculated as

1/2

tpe = ({(o —p>2>f)m o (é'd A c(p)pd—ldp) o< €, (226)

ety

H<-1/v. ~(2.27)

For a slower fall-off of the correlation function, —1/v < H < 0, the percola.tioﬁ: prob-

lem becomes essentially correlated. In this case, the critical behavior becomes different, in

particular, the exponent v is replaced by a new one (Weinrib and Haj})erin, 1983; Wéihrib, o

1984),
V(H)=-1/H>v, -=1/lv<H<O0. ‘ - (2.28)
Here the tilde distinguishes the correlated percolation exponent from that of thé uncorrelated
percolation. Result (2.28) corresponds to the threshold ‘proxirﬁity lp — pel balanced by the
probability fluctuation (2.26). | -
Isichenko and Kalda (1991b) have used a heuristic scale-separation-method to conjecture

that beta exponent of correlated percolation is the same as in random percolation,

BHY=8, -1/v<H<O0. (2.29)
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The same method applied to the 2D hull exponent evaluation leads to the result (see
Sec. IIL.E)

. 10— 3H
G(H) =141 - H)dy 1) 7mg = =,

d=2, -1/u<H<0, (2.30)

The correlated hull exponent (2.30) is identified with the fractal dimension of a contour line
of a random function with an algebraic covariance. As a three-dimensional hull has the same

fractal dimension as the cluster, we conclude analogously to (2.14) that

~

dy(H)=d,(H)=d - B(H)/9(H)=3+BH, d=3, -1/v<H<O. (2.31)

The correlated percolation exponents are given in table V. For correlated percolation,
the same scaling arguments are valid as those used in the random percolation problem. In
particular, one can calculate other correlated exponents, &, 7, 5, using relations similar to
(2.21). Notice that formula (2.13) for the hull exponent cannot be simply generalized for the
correlated percolation problem, as well as for higher dimensions. Relations (2.13) and (2.30)

are not consequences of scaling arguments but rather first-principle results.

E. Continuum percolation

Although the lattice formulation of the percolation problem is very convenient for both ana-
lytical and numerical studies, most natural disordered systems lack perfect lattice structure
and require a different approach. The universality of percolation critical exponents well
stands moderate violence such as introducing short-range correlations or changing the type
of lattice within the same dimensionality. This invokes the idea that the very existence of a
lattice is not necessary. The continuum percolation problem has various formulations, among
which the following three are the most popular.

(a) In the problem of voids, or “Swiss-cheese” model (Halperin et al., 1985), equally-sized

or size-distributed spherical voids are placed at random in a uniform transport medium

TV

(Fig. 8). The spherical holes are allowed to overlap with one another. At a critical value F§
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of the hole-volume fraction, the infinite cluster of the underlying medium ceases to exist,
and the system fails to support any transport or exhibit a mechanical rigidity. The “Swiss-
cheese” model may be appropriate to describe transport and elastic properties of porous
media.

(b) In the problem of spheres, or “inverted Swiss-cheese” model, also known as the prob-
lem of random sites (Skal and Shklovskii, 1973; Pike and Seager, 1974), the roles of the two
 different media are switched: The spheres support the transport and the substrate does not
(Fig. 9). One may introduce a “hard core” to model an “excluded volume” repulsive inter-
action between the spheres (Gawlinski and Redner,. 1983; Balberg, 1987). Such interaction

is nothing more than a short-range correlation, which can shift the percolation threshold

but clearly leaves the critical exponents intact. At a critical filling factor, n = (4/3)mnr®.

for d = 3, and = 7nr? for d = 2 (n is the density and and r the radius of the spheres.

or discs), the overlapping spheres form an infinite cluster and the system is able to support
a long-range current. It 'W&S found that the critical parameter equals 7. ~ 1.1 in two, and
Ne 0.35 in three dimensigns (see table V). The percolation threshold 7, is only slightly
changed by the interaction of spheres (Pike and Seager, 1974; Bug et al., 1985). The fraction

¢ of volume occupied by randomly overlapping objects is less than 7-(énd of course ¢ < 1)

and is determined by the formula (Shante and Kirkpatrick, 1971)
¢ =1—exp(-n), | (2.32)

which is valid in the limit of a large number of objects. The model of random sites was used
to describe hopping conduction in doped semiconductors (Shklovskii and Efros, 1984) and
phase transitions in ferromagnetics (Abrikosov, 1980).

(c) In the potential model, a smooth random function t(x) is considered, and one is
interested in the geometry of regions where 1 (x) < h =const (see Fig. 10). This model was

invoked for the processes of localization of quasi-classical electrons (Ziman, 1969; Zallen and
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Scher, 1971) where 1 (x) is the potential created by disordered impurities and & is the energy
of an electron. The inequality 1(x) < A specifies the classically allowed area for the electron.
Above a critical energy level h = h., a connected subset (cluster) of the allowed region
stretches to infinity, and electrons can conduct electric current, otherwise, on a macroscopic
scale, the system behaves like an insulator. The potential model is also relevant for the

quantized Hall effect (Trugman, 1983). To describe critical levels of the potential continuum

* where

model, Zallen and Scher (1971) used the compelling image of a “flooded landscape,’
1 (z,y) denotes the elevation of the Earth’s relief and & the water level, so that the inequality
¥(z,y) < h describes the flooded area. At sufficiently low h, one clearly has “ponds” and
“lakes” in an infinite land (Fig. 10(a)), whereas at higher level there will be localized islands
in an infinite ocean (Fig. 10(c)). The specific of two-dimensional geometry implies the
impossibility of the simultaneous existence of both land and marine paths to infinity for a
generic isotropic landscape. This leads to the existence of a sharp transition at A = h. from
percolating land to percolating ocean, when the last infinite land path disappears and the
first infinite see path is conceived. Thus at this critical level A =A h. there does exist an
infinite coastline — a contour of the potential ¥(z,y) (Fig. 10(b)). For a random function
1(x), which is statistically equivalent to —t(x) (without any loss of generality we may put
the average (1 (x)) = 0), the sign-symmetry leads to the critical level A, = 0 and the volume-
occupation fraction ¢, = [ P(1)dy = 1/2, where P(¢) is the distribution function of 9(x)
(Zallen and Scher, 1971). This result is due to the unique value of the percolation level in
two dimensions. In three-dimensional case, there may exist simultaneous percolation through
“3D land” and “3D ocean,” since the topology of space admits non-intersecting, statistically
isotropic paths to infinity. So one may introduce two percolation levels, hci (= hc) and hco,
such that for A < h. there is percolation only through “land” (i.e., the region ¥ (x) > A),
for b > h only through “sea” (i(x) < k), and in the interval hy < kb < hy the “sea”

and the “land” percolate simultaneously. For a sign-symmetric distribution of 1(x), one has
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hei = —he # 0 (Shklovskii and Efros, 1984).
Zallen and Scher (1971) proposed to use instead of the level h the fraction of “wet”

volume,

s=¢h)= [ PW, (239

where P(3) is the probability distribution function of the random potential. The critical
area fraction, ¢, = 1/2, which is the case for a 2D sign-symmetrical (i.e. P(y) = P(—v))
potential, is somewhat higher than the critical space ;)ccupation probability for lattices
(Scher and Zallen, 1970), ¢.(2D lattice) = 0.44 & 0.02. Unlike the critical level h., the
three-dimensional value of @, ~ 0.15 (Zallen and Scher, 1971) is much more universal with
respect to particular models of the potential. This quantity turned out to be very close
to the corresponding lattice critical volume-fraction, ¢.(3D lattice) = 0.154 + 0005 Skal
et aé. (1973) confirmed thié conjecture by'caicula,ting ¢. for several different Gaussian 3D
potentials, which all gave very close results: ¢, = 0.17 £0.01. The percolation threstiolds of
continuum models are summarized in table VI. '

It .was established (Pike and Seager, 1974; Geiger and Stanley, 1982; Elan et al;, 1984)
that static exponents describing the geometrical properties of continuum clusters near the
percolation threshold are the same as for lattice models in the same dimension. The dynamic

‘ éxponents, on the contrary, were found to be not universal, varyiné' from one continuum
model to another. (.T here does exist the universéility of the transport exponents within the
subclass of lattice models.) Feng et al. (1987) explained the universality of static exponents
and the nonuniversality of dynamic exponents using mapping of continuum models onto
irregular-lattice models.

The Swiss-cheese model is mapped onto the bond percolation on a latticé whose bonds

are the boundaries of the Voronoi polyhedra constructed around the voids (Elan et al., 1984).

TVI

A bond is blocked if the corresponding pair of voids are overlapping (Fig. 8). In the inverted F8

Swiss-cheese model, the sites of the equivalent lattice lie in the centers of the spheres (Fig. 9). F9
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The mapping of the potential model onto a lattice was proposed by Ziman (1969) and,

more explicitly, by Weinrib (1982). In these constructions, the sites are associated with the

local minima of (x), and the bonds come through saddle points connecting two valleys

(Fig. 10(d)). Then the contour lines are the external and internal perimeters of the bond
percolation clusters on the equivalent (irregular) lattice. Two neighboring flooded valleys
form a connected lake if the water level h exceeds the elevation 3, of the mountain pass
(saddle) between them. So the inequality 1, < h means that the bond coming through
the saddle is conducting, whereas at 3, > h it is blocked: 6; = (h — ¥,(x;)). The bond

probability p(h) = (8;) is then given by
h
p(h) = /_ _ P(ds)des (2.34)

where P,(%);) is the distribution function of saddle point elevations. Similarly, the bonds on
the equivalent lattice for the potential —3(x) connect maxima of ¥(x) and come through its
saddles. In two dimensions, through a non-degenerate saddle point come only two (mutually
perpendicular) steepest descent lines, hence the equivalent lattice of —3(x) matches that of
P(x) (see Fig. 10(d)). In the case of a statistically sign-symmetric potential ¥(x) when the
critical probabilities of these two lattices are the same, we obtain p, = 1/2, hence h, = 0.

Gruzinov et al. (1990) used an approach where one starts from a degenerate, periodic
potential ¢(x) and then the degeneracy is lifted by a small random perturbation (Fig. 11).
This procedure maps the potential continuum problem onto the standard regular-lattice
percolation.

The existence of these mappings clearly explains the universality of static critical expo-
nents in the absence of long correlations in the potential ¥(x). In Sec. III.C we show that
the criterion for the universality of critical behavior in the potential continuum model is a

sufficiently fast decay of the correlator,

Clp) = (b(x+ pYb(x)) = O(s™") . (2.35)
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For the power behavior C(p) o p?#, —1/v < H < 0, the continuum potential model is
mapped onto the correlated percolation problem (Sec. D).

Regarding the dynamic characteristics, their universality may break, even at universal
static exponents, due to broadly varying “strengths of the bonds” resulting from the map-
ping.: Consider, for example, the Swiss-cheese model. Random overlapping of voids leads
to randomly varying widths of “necks” (bonds) passing between three neighboring spheri-
cal holes (Fig. 8(b)). The probability distribution of the neck widths remains finite for the
width tending to zero, hence the equivalent lattice resistor network has a broad (power-law)
distribution of the bond resistances, in contrast to the standard lattice problem where each
resistance is either zefo or one. This state of affairs leads to a possible change in trans-
port exponents. (Sen et al., 1984; Halperin et al., 1985; Bunde et al., 1986; Lubensky and
Tremblay, 1986; Machta et al., 1986). Feng et al. (1987) analyzed the bond strengt}isfmd
found that, in all three two-dimensional continuum models, the conductivity expong'fit i is
the same as in a standard lattice model, whereas in thé 3D Swiss-cheese model u éxceeds
its lattice counterpart. The inverted Swiss-cheese model and the potential model p'i‘reserve
fhe universal (lattice) value of the conductivity éxponent p in three dimensions. A similar

analysis was done for the elasticity and permeability exponents.

Due to the diversity of various continuum models, of which we discussed only simplest

ones, the concept of the universality in continuum has a broader sense. Here, the universal-
ity means the invariance of critical exponents with respect to gradually changed parameters
of the random ensemble (voids, potentials, etc.), provided that these parameters lie within
well-defined boundaries of the corresponding universality class. In other words, the critical
exponents are piecewise constant functions of the parameters of the model. In these terms,
the correlated percolation is not universal because its critical exponents (2.27)—(2.30) contin-

uously depend on the parameter H. One may call such a behavior a “continuous universality

class.”
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Another approach to the concept of universality can be suggested that does not deal
with an ensemble. Instead, a particular realization of, say, potential ¥(x) can be considered
and the corresponding critical indices introduced. Thene the potential is infinitesimally
perturbed by a smooth perturbation, whose correlator decays sufficiently fast, and the new
critical exponents are determined. If for any such perturbation the exponents remain ezactly
the same, then the initial potential ¥ (x) is said to be structurally stable. The concept of
structural stability is the central one in the catastrophe theory (Poston and Stewart, 1978;
Arnold, 1978, 1983). In various applications, one is usually concerned with not an ensemble
of random potentials, but rather with a unique, but generic realization, if there are no special
reasons for the potential to be degenerate in one way or another. The intuitive notion of
“generic” corresponds to the well-formalized concept of “structurally stable.”

For a structurally unstable (degenerate) function, critical behavior may be different.
Trugman and Weinrib (1985) proposed an interesting example of continuous percolation for
the potential W(x) = [t(x) — ho}?, where hg equals the critical level of 4 (x). Such a system
exhibits an exotic behavior: Its percolation threshold is zero in terms of both the critical
level h, and the critical volume fraction ¢., and the exponents are different from those of
the universality class of random percolation. The “@, = 0” potential W(x) is structurally
unstable: any mismatch of ho from the critical level of ¥(x) drives the problem to the
universality class of standard percolation. |

In summary, the continuum percolation problem treats the connectivity properties of
randomly distributed objects that has much in common with the lattice percolation. Specif-
ically, the contour lines and surfaces of a random potential are associated with the hulls of
percolation clusters. In the next section, we discuss the statistics of contours in more detail.
For various applications, one may also be interested in the geometry of more complicated
objects such as the regions occupied by level contours with diameters of the given order a,

regardless of the level h. These issues will be discussed in the framework of a more general

42



statistical topography, for which the continuum percolation should be regérded a prerequisite.
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ITI. STATISTICAL TOPOGRAPHY

The term “statistical topography” was introduced by Ziman (1979) for the theory of the
shapes of random fields, with a special emphasis on the contour lines and surfaces of a
random potential 1(x). One of the first studies on this subject was undertaken by Rice
(1944, 1945), who was basically concerned with random functions of one variable, in respect
with the noise effect on telephone transmission. For Gaussian noise amplitude 1(t), Rice
derived the expected frequency of the crossings ¥(t) = h, for a given sensitivity threshold
h. Longuet-Higgins (1957a, 1957b, 1957c, 1957d) generalized Rice’s approach for a two-
dimensional random function ¥ (z, y) and applied its topographic properties to the specks and
twinkles on a random water surface (Longuet-Higgins, 1960a, 1960b, 1960c). The statistics
of contour lines was also invoked for studying the information contents of two-dimensional
images, for example, in television (Swerling, 1962). A mathematical survey of the statistical
topography of Gaussian random fields was given by Adler (1981).

The most compelling example of the statistical topography is presented by the diverse
and whimsical patterns of natural coastlines and islands. The geographical considerations in-
spired Mandelbrot (1967) to introduce the concept of fractals. After enjoying a considerable
descriptive success, this approach gained a predictive force with introducing the “fractional
Brownian functions” (Mandelbrot 1975b; Berry and Hannay, 1978; Berry and Lewis, 1980).
These functions possess a power Fourier spectrum in a wide raﬂge of wavelengths. In turbu-
lent media, such fields are usually described by Kolmogorov-type spectra (Zakharov, 1984).
In particular, this kind of spectrum for gravity waves leads to fractal water surfaces (Stiassnie
et al., 1991).

Another approach to the problem of the statistical topography has been developed, with-
out any apparent connection with the information theory, environmental studies, or turbu-

lence, in the solid-state-physics commuhity (Ziman, 1969; Zallen and Scher, 1971; Skal and
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Shklovskii, 1973), on the basis of the (continuum) percolation theory. Study of the electronic
structure of disordered materials motivated the “monoscale” percolation approach since both
the crystalline lattice and known concentration of impurities suggest a well-defined charac-
teristic scale of the problem. Ziman (1969) was the first to draw attention to the isosurfaces
of random potentials that embrace classically accessible regions for the electron motion in
a disordered potential. General as the correspondence principle between the quantum and
classical mechanics might seem, there is, however, no apparent relation between this quasi-
classical localization and the intrinsically quantum effect of the Anderson localization of
the electron wave-function (Anderson, 1958; Thouless, 1974). An exclusion appears to bé
a two-dimensional electron gas in a strong magnetic field (Trugman, 1983) experirf;gntally
realized with a metal-oxide-semiconductor field-effect transistor (MOSFET) (Prange and

Girvin, 1990). This system has drawn much attention in the last decade since the di overy

of the quantized Hall effect (von Klitzing et al., 1980).

o
Wi

More classical effects, whose behavior depends on random isolines, include anomalous
diffusion in turbulent plasmas (Kadomtsev and Pogutse, 1979; Isichenko, 1991b; Isi:gﬁenko
and Horton, 1991) and the magnetoresistance of inhomogeneous plasmas and semicon&%ctors '
(Dreizin and Dykhne, 1972; Isichenko and Kalda, 1991a).

‘The investigation of transport processes in some random media requlres detailed :infor-
mation of the distribution of random contours, whereas the random potential often ﬁossesses
many length-scales. The percolation approach has been combined with the multiscale spec-
tral description in Isichenko and Kalda (199ib) where a heuristic method of tﬁé “sepa,réttion
of scales” was used t‘o develop the statistical topography of power-spectrum random func-
tions.

This section is organized as follows. In Sec. A the spectral and correlatior;i“propertiesvof

random functions are described and a discussion is given of the behavior of Gaussian random

fields. In Sec. B the fractional Brownian approach is presented. In Sec. C we briefly return
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to monoscale reliefs to more generally restate their topographic properties related to the
percolation problem. Section D is devoted to the continuum problem of “graded percolation”
corresponding to a monoscale potential with a small average gradient. In Sec. E the approach
of the separation of scales is described in the context of the multiscale statistical topography.

In Sec. F the statistical properties of the separatrices of random potentials are discussed.

A. Spectral description of random potentials and Gaussianity

Discussing a random potential 1(x), we should be more specific and determine what exactly
is random in t and what is not. Since we are particularly interested in the spatial geometry

of the potential, the first idea is to characterize 1 by a correlation function (covariance)

Clp) = Wx)b(x+ p)) , (3.1)
or by a delta-variance,

A(p) = ([¥(x) — p(x + p)I*) = 2[C(0) — C(p)] - (3.2)

Here the angular brackets denote averaging over the statistical ensemble of ¢. It is assumed
that expressions (3.1) and (3.2) do not depend on x, that is, the random potential ¥(x)
is stationary. For stationary random fields, the ensemble-average is the same as the space-
average (over x) for almost any realization of ¥ (the ergodicity property). “For almost any”
means “with the probability one.”

For a general random field, the two-point correlation function (3.1) is insufficient to
completely characterize the statistical ensemble. For a comprehensive information about
¥(x) one needs to know the whole sequence of the three-point, four-point, etc., correlation
functions. For a Gaussian random potential, on the contrary, all properties of the ensemble
can be extracted from the average (¥(x)) and the correlator C(p). A standard approach
is to use the Fourier expansion as first principle and to consider the Fourier components

Y to be independent random variables. Suppose the function %(x) to be periodic with a
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sufficiently large period £ along each coordinate axis in a d-dimensional space. Then the
* Fourier series expansion,

P(x) = 4? i €, (3.3)
is taken over the wavevectors k lying in the nodes of a d-dimensional simple cubic lattice with

the period k¢ = 27/ L. Suppose the following statistical properties of the Fourier harmonics:

(Yx) =0, (Yxvw) = Fcdiik - (3.4)

We will focus primarily on the case when the spectral density Px is an isotropic power

function inside a wide wavenumber range [kn,, kd],
B = () = kAR, ke <k <k<ho, (3.5)

and Py falls out sufficiently fast outside this interval. It is convenient to divide the scaling
range [k, ko] into log,(ko/km) octaves and to represent the “multiscale” potential 4(x) as

a sum of “monoscale” functions,

P = T pa), . (3.6)

=2 )

where the A-component (x) is defined by the partial sum

b= T e )

1<lkia<
and represents a function with a single characteristic length A. Then the Fourier (k-) spec-
trum (3.5) corresponds to the “A-spectrum”
v 1/2
U = [A®)]ms = | D P : . (3.8)
L<lklr<t
Replacing the sum in Eq. (3.8) by integral according to the usual rule 37y - kzd S dk, we

obtain

¢/\=A1AH7 /\0<<)\<<Am, (3.9)
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_ (=9
H="">, (3.10)

2H __ 1)11/2
i_l)] , (3.11)

A= [A 5, ¢ 577
where Ao = k3, A = k!, and the numerical factor Sy equals 1 (for d = 1), 27 (for d = 2),
or 4 (for d = 3).

The representation of the A-spectrum (3.7)-(3.9) is convenient because the potential
covariance (3.1) and the delta-variance (3.2) are expressed through the exponent H in a
universal way for each dimension d. Using Fourier expansion, expression (3.1) is rewritten
as

Clp) =23 Pce™*P . (3.12)
The integral over k corresponding to the sumkin (3.12) converges on both limits (so that we
may put k, =0, ky = oo without significant change in result), if ~(d+1)/4 < H<0 (d=
1,2, or 3). Then we have

C(p)=CaAp™, X< p<in, (3.13)

where

n['(—H) 272

_mi=q) = 14
22HT(1+H)’ G T(2H + 2)sinzH ’ (3.14)

(i =2 (-2H)cosmH , (=
and T denotes the Euler gamma function. Similarly, the series for the delta-variance,
Alp) =2 P(1-€*P), (3.15)
k

converges insensitive to k., and ko for 0 < H < 1 and equals

Alp) =na Ap™, X < p LA, (3.16)
with the numeric coefficients
_ 27 _ wl(1-H)
"= TEH + )smaH’> 7T 2EHT(1+H)' a1
272 '

"= 2H + D)T(2H + 1)sinnH
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Thus, the correlation function is a convenient spectral characteristic for negative H, whereas
for 0 < H < 1 the delta-variance turns out to be more convenient.

A random potential defined by Fourier series (3.3) with independent random Fourier com-
ponents 1y belongs to the important class of Gaussian random functions. Indeed, according
to the Central limit theorem, a sum of a large number of independent random variables is

distributed with the Gaussian probability distribution function

243

where % is the value of the potential at a fixed point x. The Gaussian distribution (3.18)

P() = (2r 3)™* exp (—M) , (3.18)

is completely defined by two parameters: the expectation (1) and the variance ¥ =
((¥ — (¥))*). Gaussian random variables have the nice fe_:aturé of additivity: A sum of several
Gaussian random variables is also Gaussian with both the expectation and the variance being
the sum of the expectations and the variances of the constituents, respectively. Furthermore,
the joint probability distribution of several Gaussian random variables ¢;, ¢ = 1,.. fl,\n, is
given by the multivariate Gaussian distribution (Adler, 1981)

P(tbr, ... tha) = (27)/%(det Cij)~"/2 exp (—% Zl (s — (:)) O (5 — (%))) , (3.19)

. W= - -

where

Ci; = ((%i — (i) (5 — (%)) (3.20)

is the covariance matrix, and C,-;l denotes the element of the inverse matrix. Notice that the
mulfivariate Gaussian distribution (3.19) is completely determined by the first- and second-
order moments of the participating variables, that is, by the expectations (v;) and the
covariance matrix Cj;. Speéiﬁcally, a stationary Gaussian random field (x) is completely
defined by its average (without loss of generality put (¥) = 0) and its correlation function
(3.1). Given C(p), we can simply calculate the two-point probability density P (31, 2|1, X2),

which quantity is defined through the probability P(v1,%2[x1,%2)d1di, for the potential
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value (1) to be within the interval [t1, 11 +d;] simultaneously with 1(x2) € [1h2, P2+dibs).
Substituting 11 = ¥(x1), %2 = ¥(x2) into Egs. (3.19)—(3.20) we have

1 oo [_ L83+ 43) — 2C(p)rn
27/ — C*(p) P( 298 — C(p)) ) (3:21)

where p = x; — X3 and the variance %2 = C(0). In the limiting cases p — 0 (C(p) — ¥3?)

P(@bla%lxhxz) =

and p — o0 (C(p) — 0), expression (3.21) reduces to

P(1) (b1 — ¢a) p—0, (3.22a)
P(¢1,¢2|X1,X2) =

P(sh1)P(s) <1+¢;—?C(p)+...)  pooo. (3.22b)

Equation (3.22a) corresponds to the identical distribution of +; and 5, ones the points x;
and X, become the same, whereas (3.22b) implies asymptotically independent distribution
of 1, and %, in the limit of infinitely remote (uncorrelated) points x; and x,. Three-point
and higher probability densities can be calculated in quite a similar manner.

Analogously, one can calculate individual and joint distributions of various random quan-
tities, such as the elevation 1, the slope V4, etc. Differentiating Eq. (3.1) with respect to

p, we obtain

(¥00) =00, wevee) =220, (Vatovived) = ~F AL (329

Expressions (3.23) can be used to calculate the expected measure My(%) of the iso-set 1(x) =
h per unit volume. In d dimensions, the iso-set is characterized by a (d — 1)-dimensional
measure: the number of crossings ¥(z) = h for d = 1, the total length of the contours
(z,y) = h for d = 2, and the total area of the isosurfaces P(z,y,z) = h for d = 3. Quantity
M,(h) equals the modulus of V(x) averaged over the joint distribution of ¢ and V1) at
the given level ¥ = h (Rice, 1944, 1945; Longuet-Higgins, 1957a; Swerling, 1962):

Ma(h) = {|V¥l) gy = [ [VOIP(R, VE)IVY, (3.24)
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where P(1, V1) is the joint probability distribution function of 1) and V) at the same point

x. Using formulas (3.19)—(3.20) for the isotropic case C(p) = C(p), we obtain

— 1 1h? (V¢j2
P, V¥) = iy (_2_% -y ) | 929
where
Yo' = ~(1/d)C"(O) - (3.26)

is the variance of each component of V. Averaging |V1| over distribution (3.25) at ¢ = A,

we find the average frequency of the h-level crossings (Rice, 1944, 1945),

My(h) = %%\/—c"(o) exp (—-2%> , - 1 (3.27)

and the average total length of isolines 9(z,y) = h per unit area (Longuet-Higgins:"}z'!vi'&'95k7a;

B

Swerling, 1962), |

The knowledge éf the correlation function C(p) is sufficient to calculate other %;rerage |
characteristics, such as the number of the saddle points, maxima, and minima 0._f. H(x).
Rice (1944) derived the average number of maxibma and minima in one dimensio.ﬁ. The
distribution of minima of a 3D Gaussian random potential was calculated by Halperin and
Lax (1966) in respect of the low-energy density of states of the Schrédinger equation with
a disordered potential. Weinrib and Halperin (1982) investigated the deﬁsity (per unit ¥
" interval) of saddles, maxima, and minima of the intensity of a 2D laser speckle field, which
was modelled by a complex Gaussian random variable. |

Regarding the topological characteristics of iso-sets of Gaussian random fields, their in-
vestigation is a much more difficult task. Swerling (1962) established certain inequalities for
the number of connected contours pieces comprising the iso-set ¢(m,y) = h. Some other

characteristics are given in Adler (1981). As discussed in Secs. C-E; percolation theory
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presents a powerful tool for studying more subtle topological properties of level lines and
surfaces.

Returning to the spectral description of random fields, notice that a decreasing power
spectrum (3.9) with H < 0 implies a finite variance 92 of the potential within an arbitrarily
large period L, so that the above results for Gaussian fields apply. A positive exponent H,
which is the case for the Earth’s relief, corresponds to an infinite variance of ¢ for A,, — oo.
Nevertheless, this kind of profile may be treated locally using the delta-variance A(p), which

is the subject of the next subsection.

B. Brownian and fractional Brownian reliefs

The Brownian motion of a particle due to the thermal agitation of molecules in ambient
medium is the simplest natural example of a random process. The velocity of the Brownian
motion, dB(t)/dt = v(t), can be approximated on a macroscopic time scale ¢ as a “white

noise,” that is, a Gaussian random function with zero mean and the covariance
(v,-(t)vj(t')) = 2D 5ij5(t - tl) s (329)

where D is a molecular diffusion coefficient. Then the coordinate of the Brownian par-
ticle, B(z) = [ v(t)dt, is also Gaussian with the average (B(t)) = 0 and the covariance
(B;(t)B;(t")) = 2D 6;; min(t,t"). Notice that B(t) is not a stationary random process because
its correlator is not a function of (¢ —#'). The delta-variance (3.2), however, is a funcfion of
(t —t') and hence can serve a better characteristic of this process.

The Brownian motion is a convenient starting point in generating various random fields.
A Brownian (line-to-line) function B(z) is, by definition, a random function whose incre-

ments are Gaussian with zero mean and the variance
([B(z1) = B(za)]?) = ¥ |21 — 22 - (3.30)

) is a fractal with the fractal dimension D = F 12b

—

The Brownian graph {z, B(z)} (see Fig. 12(b
5
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3/2. Indeed, a parcel of this graph corresponding to the abscissa interval [zq, ] is covered

by N, boxes with the size A, where

g T2 — T [B(z + A) — B(2)]rm
My=—=3 )

S x A A< (3.31)

The inequality displayed in Eq. (8.31) requires that the root-mean square increment B(z +
A) — B(z) be larger than A in order to accommodate many covering squares. At larger
scales, A >> b%, the second factorjin (3.31) must be substituted by unity leading to the
fractal dimension D =1 (see table I).

One can similarly define a Brownian surface, which is the graph of a Brownian. plane-
to-line function B(z,y) being a Brownian line-to-line function of each of its argg;nents
(Fig. 13(b)). In a straightforward analogy to the above calculation, the fractal dimgg%ign of
the 2D Brownian relief can be shown to be D = 5/2, which, of course, complieS'-v&;itlzir-:‘-t‘he
cross-section rule (1.13), as a Brownian graph is a vertical (e.g., y =const) cross—secti:én of a
Brownian surface. Another cross-section of the Brownian surface can be done by a hoxii’zontal
pla;ne B(z,y) = h = const, with the same result for the fractal dimension, D = 3/2, of the
iso-set B(z,y) = h (Fig. 14(b)).

As the value D = 3 /2 appreciably overestimated the measured fractal dimensions of
natural coastlines, the Brownian surfabe model of the Earth’s relief was rejected, and a
 generalization of the Brownian random function was introduced — a fractional Brownian
line-to-line function By(z) (Mandelbrot and Van Ness, 1968). The fractional Brownian line-

to-line function By(z) is, by definition, a Gaussian random process with zero mean and the

delta-variance
(Bu(z1) - Bu(e)l?) = Plor — 2P, 0<H<1. (3.32)

According to Eq. (3.16), this function has a A-spectrum (Bg)x &< A¥ in an infinite scaling

range (Ao = 0, Ay, = 00). A fractional Brownian surface, or a plane-to-line function Br(z,y)
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is defined substituting z; and z, by corresponding vectors in definition (3.32). The ordinary
Brownian function B(z) is a particular case (H = 1/2) of its fractional generalization:
B(z) = Bys(z). The fractional Brownian graph (H # 1/2; see Fig. 12(a,c)) and the
standard Brownian graph (H = 1/2; Fig. 12(b)) look qualitatively similar differing only by
the degree of irregularity, which decreases for increasing H. A measure of this irregularity can
serve the graph fractal dimension D. Similarly to calculation (3.31), one finds D =2~ H, in
the scalinig range A < b/(~H), The same fractal dimension, but in an infinite scaling range,
refers to the horizontal cross-section (iso-set) of fractional Brownian surface z = By(z,y),
whose own fractal dimension is clearly a unity greater, D = 3 — H (A < b*/C~H))_ For
a random potential with the delta-variance given by Eq. (3.32) and H < 0, the graph
{z, By(z)} attains the maximum allowed fractal dimension D = d = 2, meaning the dense
filling of the (z,y) plane by the short-scale oscillations of the potential (Fig. 12(d)). Still,
the fractal dimension of a connected contour piece of such function (Fig. 14(d)) is nontrivial
(see Sec. E).

Another object associated with the function By is a fractz'on‘al Brownian trailx = By(t),
where each component of Bg(¢) is an independent fractional Brownian function of time.
The fractal dimension of the trail imbedded in a d-dimensional space is given by the formula
(Mandelbrot, 1983)

D =min(1/H,d) . (3.33)
For H = 1/2 (standard Brownian motion) D = 2, which well explains the finite probability
of the return of a random walker to the starting point in two dimensions and the zero return
probability in three dimensions (cf. Rammal, 1984).

The fractional Brownian function Bg(z) can be generated by its Fourier spectrum (as
done in Figs. 12-14), or can be obtained directly from B(z) with the help of a fractional
differentiation (for the “antipersistent” case H < 1/2) or fractional integration (for the “per-

sistent” case H > 1/2): Bpy(z) = JH-1/ ?B(z). The Riemann-Liouville fractional integral of

54

F 1%ac

F12b

F12d

F1jd

F12-
14



the order a is given by the operator (Ross, 1975)

7 f(z) = f(lOT) [T e fle—aNde’, 0<a<1. (3.34)

Substituting f by df /dz in the integrand yields the fractional differentiation of the order
1—a.

The model of a fractional Brownian surface z = By(z,y) was used to model the Earth
relief (Mandelbrot, 1975b; Berry and Hannay, 1978). The fractal dimension D = 2 — H. of
the iso-set By(z,y) = h predicts the distribution of islands, that is, their number with the

size of the order of a, which is essentially the covering number:
N, xa™?. ::(3.35)

This distribution fits the empirical number-area rule, or the Kor¢ak (1938) law, which states
the numbers of islands with the area above A to scale as A~*, at k = 2D = 2(2 -H) '].:'he
Earth average value k ~ 0.65 corresponds to a fractional Brownian relief with H = 0:7.
Thus, the fractional Brownian approach makes it possible to link the relief spectrum with
the fractal dimension of the whole iso-set By(z,y) = h and with the distribution of islands.
However, the fractal dimension of a separate (connected) coastline, a measurable quantity,
remains beyond this a’.pproach'(Mandelbrot, 1983, p. 272). The distrigiition function of var-
ious contours (regardless of the level k) over size remains also unpredicted. These and other
issues have to be addressed with the. help of a less phenomenological (more “microscopic”)

approach, and therefore we return to percolation theory.

C. Topography of a monoscale relief

In Sec. ILE we have seen that the iso-set 1)(x) = h of a random potential behaves like the
system of both external and internal perimeters of percolation clusters on a lattice generated
by the stationary points (minima, maxima, and saddles) of the potential 3. Since any

physically reasonable random function has finite correlations, the bond probability (2.33)
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on the equivalent lattice cannot be considered independent one bond from another, even
though the potential 1(x) has a single characteristic length Ao. Therefore, the percolation
network corresponding to the iso-potentials ¥(x) = h should be suspected of being long-
range correlated, in the sense as described in Sec. IL.D. Let us designate by “monoscale
uncorrelated,” or simply “monoscale,” such a potential that generates clusters falling into
the universality class of random percolation.

To establish the criterion for a potential ¥(x) to be monoscale, let us calculate the
correlation function (2.25) of the bond-probabilities (2.34). To do so, we use the two-point
potential probability distribution function P(1;,%2|x1,X.), and analogously to Eq. (2.34)
write

h

aWpa()) = [ don [ by P, i ) (3:30)

Let us suppose that ¥(x) is Gaussian so that the two-point probability distribution function
is given by Eq. (3.21). In the long-range limit, p = |x; — X2| 3> Ao, substituting expression
(3.22b) into Eq. (3.36) yields the bond-probability correlation function,

o(p) = (p1(h)pa(h)) — p*(h) = P*(R)C(p) , (3.37)

which scales directly proportional to the potential covariance C(p) = (¥(x) % (x + p)). No-
tice that for this particular result the Gaussianity of (x) is not essential. According to
criterion (2.27), the correlations are irrelevant for sufficiently fast decay of the probability

covariance, ¢(p) = O(p~/*). In terms of the potential correlator C(p), this criterion reads
p p P P

Clp)=0(p""), p>. (3.38)

So we infer that the potential 1(x) with the power spectrum 1 o M X > ), can be con-
sidered as monoscale uncorrelated, if H < —1/v. In two dimensions, this inequality yields
H < —3/4, whereas for d = 3 the upper H limit of uncorrelated behavior is —1/v ~ —1.1.

The contours of such potentials behave like the hulls of uncorrelated percolation clusters.
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Accordingly, the topography of a monoscale correlated potential, that'is, a function with
spectrum (3.9) where —1/v < H < 0 and X,, — o0, is related to the correlated percola-
tion problem. This criterion is valid in any dimension. Other details are dimensionality-

dependent.

1. Two dimensions

Known the scaling properties of percolation clusters, the topography of a monoscale un-
correlated potential can be described in a similar manner using the scaling properties of
percolation perimeters. At this point, however, one must recall the fickle nature of the 2D
cluster perimeter, whose fractal dimension is subject to change between the natural valﬁe

dp, = 7/4 and the unscreened value d, = 4/3 under a moderate change of the perimeter

he

definition (Grossman and Aharony, 1986). In the “flooding” terms, the perimeters
first (natural) kind correspond to the coastlines of islands with gulfs whose width may:}ge less
than Ag. The second kind of perimeter arises when one dams all narrow straits, i.e.:?_iathose
with the width less than Ag. Since nothing prevents a contour line from coming arbitrarily
close to itself (this is the case near a saddle point, when the contour lies close enough to the
corresponding separatrix), we conclude that the natural hull (not unscreened perimeter) is
the proper image of a contour line.

Let us formulate the basic topographic properties of a monoscale (Ao) relief ¥(z,y) with

the variance 2, using the statistics of 2D percolation clusters (Sec. II).
(i) Each level line 9(z,y) = h is closed with the probability one.

(ii) There exists exactly one unclosed isoline (corresponding, to the external perimeter of
an incipient infinite cluster), which lies at a critical level A = h.. Specifically, for
a sign-symmetric (e.g., Gaussian with () = 0) potential, the critical level is zero:

h.=0.
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(iii)

The number of connected contours t(z,y) = h with diameter in the octave [a,2a] per

unit area is given by

_ fconsta=?, do L a <L,
Na = {exponentia,lly small, a> &, (3-39)

where the correlation length equals

& = o ('h ;0}“')_ : (3.40)

The correlation length exponent v = 4/3.

A separate contour piece of 1 with the diameter a >> Aq is a fractal curve with the
scaling range [)o, a] and the fractal dimension (hull exponent) d, = 7/4, so that the

length of the line scales as
a

L(a) ~ Xo (X;)dh . (3.41)

A continuum cluster (connected region where ¥(z,y) < k) of a large linear size a has
the fractal dimension d, = d — 8/v = 91/48 in the scaling range [Ag,a] ( [Xo,&n] for
an infinite cluster). For |h — k.| < %o, the infinite continuum cluster occupies the area

fraction
—h,

0

h 8
P, = const ( ) 6(h —h.) , (3.42)

where 3 = 5/36.

For the completeness of the topography of a 2D monoscale random relief, we derive the

expression for the distribution function F(a) of all contours of #(z,y) over their size a. Let

us define F(a) as the fraction of area covered by the contour lines with diameters in the

interval [a,2a], whatever be their level h.!

1The dimensionless distribution function F(a), which relates the area fraction to the octave of scales,
is here more convenient than a standard distribution function f(a) ~ F(a)/a yielding the infinitesimal
probability f(a)da to find a contour of a linear size in the interval [a,a + da].
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First, consider a wider set of contours with diameters [a, co]. This region may be con-
structed starting with the contours of the diameter ¢ and adding to them the embracing con-
tours as shown in Fig. 15. This “dressing procedure” begun with an arbitrary initial contour
will ultimately lead to the infinite isoline, which is unique. Therefore, the set of contours big-
ger than a is a connected web-like region with holes of the size ¢ and smaller (Fig. 16). Let us
call this region the “a-web.” Since, according to (iii), the contours with diameter greater than
a should have the levei sufficiently close to the critical level, |k — hc| S h(a) = 1ho(a/ro) ™",

the width of the a-web is estimated as

a \~l/v l
w(a) ~ Ao (;\;) , a>A. +%(3.43)

The a-web is a fractal set in a scaling range of [, @] with the fractal dimension d =7 /4.
Indeed, in the limit @ — oo, the web degenerates into the single unclosed isoline of ¥(z;y),

whose fractal dimension is d), and the scaling range is [Ag, 0o].

The fraction of area occupied by the a-web can be calculated as

: 2—dp+1/v R
@(a) ~ M ~ (-/\—0) i , a> o - o (3.44-)

The distribution function F(a) = ®(a) — ®(2a) is clearly of the same order of magnitude.
Using the numerical values of the exponents, we obtain the level-a;\?era.ged distribution of

contour sizes (Gruzinov et al., 1990)
Ao ‘
F((Z) ~ ? ,  a> Ao . (345)

To imagine what the set of contours of diameters [a, 2a] looks like, subtract the 2a-web from
the a-web. The result will be a disconnected set consisting of connected “a-cells” with both

the cells’ width and the gaps between the cells given by the characteristic quantity w(a) (see

Fig. 17).
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2. Three dimensions

The monoscale topography of a three-dimensional potential differs from the 2D case in
that there exist two different critical levels, k. and hg, whose difference is of the order of
the potential amplitude, hey — ke o o (see Sec. ILE). If the level h satisfies b < hey or
h > hey, the isosurfaces of ¥(z,y, 2) are all closed but may be multiconnected (that is, have
“handles”). The iso-set ¢(z,y,2) = k at hyy < b < hep consists of many closed parts and only
one (because of the unicity of an infinite cluster) open surface.' According to Eq. (2.15), the
number of isosurfaces with linear size between a and 2a per unit volume scales as N, =~ a3,
for Mg < a < ¢, and is exponentially small for finite a > £,. The correlation length is given

by expression

A
€n = E% max (Ih — ha|™, |k — hc2|_y) ) (3.46)

where v ~ 0.9. If h is close to one of the critical levels, the correlation length is large,
£, > Ao, and there arises a scaling range of self-similarity. The fractal dimension d; of
an isosurface is equal to the cluster fractal dimension, d, = d, = 3 — B/v ~ 2.50, whose
scaling range is [\o, a) for the closed isosurface, and [Ao,¢s] for the open one. Specifically,

the isosurface area S(a) scales with the diameter a lying in the scaling range as
S(a) = X2(a/Xo)? . (3.47)

Regarding the distribution function F(a) of isosurfaces over size, it can be concluded
that a finite fraction of space is covered by open surfaces (ke < h < hgp). This fraction of
volume can be accounted for by “F(co0),” which is (roughly) of the order of one half. The

distribution of finite-size isosurfaces can be found similarly to Eq. (3.44),

B+l
Ao

- <_..) C A . (3.48)

a a a

F(a) ~ M ~ (1\2) 3—dp+1/v

Substituting the numerical value of the exponents, » =~ 0.9, # =~ 0.4, we find that F(a)

scales approximately as a~1.

60



Topographic properties of monoscale potentials also apply to monoscale correlated po-
tentials (—=1/v < H < 0 and A, = oo) if exponents v, di, (3, etc., are substituted by
corresponding H-dependent exponents (2.27)-(2.30) of the correlated percolation problem.

This issue is addressed in more detail in Sec. E.

D. Monoscale relief on a gentle slope

In the previous subsection we discussed the level lines and surfaces of random potentials
with finite variance. One may also be interested in the topography of a “tilted relief,” that
is to say, of a random fﬁﬁction with an average gradient, which is too small to destr(;y local
hills and valleys but clearly dominates the long-range topographic behavior.

This problem can be relevant, for example, for the quantized Hall effect characterized by

extremely low dissipative components of the conductivity tensor (Trugman, 1983). In-a two-

diménsiona.l electron gas imbedded in the magnetic field B directed parallel to the zax1s,the
electrons are localized near the lines of constant electric potential ¢(z,y), or, in other*words,
drift in crossed electric and magnetic fields with the velocity v = cE X B/ B? (L.’:ﬂighlin,
1981). The radius of electron localization near the iso-potentials is | = (fc/ eB)'/?; which
is the electron gyroradius corresponding to the energy hwp/2 of the lowest Landau level,
where wp = ¢B / me is the gyrofrequency. If the background electric field Eg = —Vo(z,y) is
created by a statistically uﬁiform impurity distribution, the iso-potentials of g are closed: an
average electric current is absent. When the system is embedded into an external uniform
electric field By, E; < E,, an average (Hall) electric current emerges, which is carried along
the open isolines of the perturbed potential ¢(z,y) = wo(z,y) — E1x. This highly simplified
model assumes essentially individual electron motion. A similar topographic problem of a
tilted relief arises in the essentially collective classical Hall effect in high-temperature pulsed
plasmas (Chukbar and Yankov, 1988; Kingsep et al., 1990), where the electric current must

flow along the level lines of a two-dimensional plasma density.
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In this section, we discuss the topography of a monoscale uncorrelated relief on a gentle
slope in some detail, also because this problem also serves as an auxiliary one in the approach
of “separated scales” (Sec. E).

Following the model of E x B electron drifts along random equipotentials, it is conve-
nient to represent the isolines of a potential ¥(z,y) as the streamlines of a two-dimensional

incompressible flow,

v(z,y) = Vi(z,y) X Z . (3.49)

where Z denotes a unit vector in the z-direction. In this representation, ¥(z,y) = —cp(z,y)/B
is the stream-function of the flow.
Let v(z,y) be the sum of a monoscale (Ag) flow vo(z,y) = Viho(z,y) x 2 and a small

uniform component, v; = v;X:

v(z,y) = vo(z,y) +v1 . (3.50)

This corresponds to the stream-function
P(z,y) = Yo(z,y) + v1y . (3.51)

Since the potential ¥o(z,y) is bounded, vo(z,y) has zero mean: (almost) any streamline
is closed and there is no long-range fluid flux. When a uniform component v; is imposed,
an average flux arises in the z-direction. Therefore, some fraction of streamlines must open
to produce channels carrying this flux (Fig. 18(a)). For very small € = v;/vy € 1, vo =
[vo(2,Y)]ms, the perturbation cannot clearly affect the absolute value of the velocity in the
channels. Hence, the smallness of v; is only manifested in that the channels are narrow
(the width 6. < Ao) and well separated (the characteristic distance between them A, >> Ao)
(Zeldovich, 1983; Trugman, 1983). Given the characteristic velocity vo in the channels, the

average flux v; can be estimated as vg 6./ A¢, hence

—=c. (3.52)
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The transverse (with respect to v1) walk A, of an open streamline lying in the channels
can be found from the argument of “graded percolation” (Trugman, 1983; Sapoval et al.,
1985; Bunde and Gouyet, 1985). The idea of this argument is that local behavior of clusters
¥(z,y) < h is the same as for the unperturbed potential ¥o(z,y), however, the local critical

level k., becomes slowly dependent on y together with the average value of the potential:
he(y) = he(0) + v1y . (3.53)

Let us consider an open level line of potential (3.51) and put the origin on this line. On
relatively small scales, namely, for |y| < A., the line does not “feel” the average gradient
of ¥(z,y) and behaves like an open isoline of the unperturbed function o(z,y). According
to properties (i) and (iii) of monoscale level contours (Sec. C), the level & of the considered
isoline is close to the local critical level: h ~ h.(0). Walking in this unperturbed manner,
the isoline explores different regions where the critical level (3.53) becomes differentfrom
h. According to (iii), this makes the line try to close, in other words, to return back to the
region y ~ 0. So the unclosed level line of the tilted relief (3.51) is restrained to walk in a
strip parallel to the z-axis (Fig. 18(b)). The characteristic width of such wandering A, is

determined as the self-consistent correlation length ¢ (3.40):

T

F18b

Ae=/\0(|h°(0)"hc(As)l)"”. .

| Yo
Substituting Eq. (3.53) into Eq. (3.54), we find the slope-generated correlation scale

A, = doe /) = ™7 d=2. (3.55)

This scale determines the maximum diameter of closed contours on the tilted relief. The
width of the channels is then found from Eq. (3.52):

§e = Ao e/ = N %7, (3.56)

So we conclude that the contours of a monoscale uncorrelated relief on a gentle slope

behave in a nonperturbed manner on scales below A.. In other words, the contours of 4o(z,y)
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with diameter a < A, are “robust” with respect to the perturbation, whereas the “fragile”
contours with a > A, open to form a network of percolating channels. So this network
is topologically similar to the A.-web shown in Fig. 17. (Unless an individual percolating
line is plotted, it is hard to tell the direction of the mean flow from the appearance of the
channel network.) As expected, the channel width (3.56) is consistent with the A.-web width
(3.43): 6. = w(A,).

Results (3.55)—(3.56) can be extended to level lines of a 2D monoscale correlated relief
(=1/v < H <0, M, = co) on a gentle slope. To do so, we substitute the uncorrelated

percolation exponent v = 4/3 by its correlated counterpart 7(H) = —1/H, so that
Ar=XgeVHD | _3/4<H<O0; (3.57)
§e=NoeH-Y | _3/4<H<O. (3.58)

Now we consider the three-dimensional case. Due to the openness of a finite fraction of
the isosurfaces vo(z, ¥, 2) = h, which takes place at hey < b < hea  (hea—her =2 ¢y), the efect
of a small average slope is not so pronounced as in two dimensions. The topology of open
surfaces is, nevertheless, changed. Consider a surface ¥o(z,y,2)+viz =k, € = v Ao/t K 1.

This surface can span only in a layer parallel to the (z,y) plane with the width
A, = Xfe, d=3, (3.59)
where the local level ho(z) = h —v1z of ¥o(z, y, 2) lies between the critical levels k. and fco.

E. Multiscale statistical topography

The standard rercolation theory seems to be inapplicable to describe the statistical to-
pography of “scaleless” random fields, such as those characterized by a power spectrum
¥ o M. The applicability of percolation theory, nevertheless, is recovered by the observa-

tion that “scaleless” is virtually the same as “multiscale.” The idea of the separation of scales
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(Isichenko and Kalda, 1991b) is to decompose a multiscale field into a series of monoscale

fields. Namely, we consider the potential
P(x) =D (X)), (3.60)
Ai

where t),(x) are monoscale (};) functions with the amplitudes
b\ H .
b= =0 () (3.61)
and the sum in Eq. (3.60) is taken over a geometrical progression of scales
X = Do, Ao, B0seens A 1> 1. (3.62)

To be more exact, the components in series (3.60) must be written as

ha(x) = (%)H Yo (%x) , e (3:63)

where t)o(x) is a monoscale (Ag) random potential with 12 variance, whose new realizations
are taken for each A in formula (3.63). In the Gaussian case with independent Fourier
harmonics, ¥,(x) is given by Eq. (3.7).

The statistical topography of potential (3.60)—(3.62) with strongly separated scales is

analytically tractable in terms of a recursive percolation analysis, where each subsequent =

term in series (3.60) is considered locally a “gentle slope” imposed on the previous term. The
final results f01: the “correct” potential (3.6) (that is, with u = 2) is obtained extrapolating
the results for the “incorrect” potential with 4 >> 1 to the marginally applicable limit p = 2.
This method shares a common spirit with the renormalization group technique (Wilson,
1975) but is technically different. It is emphasized that the method of separated scales is
poorly based, especially regarding the limit p — 2. A partial excuse is given by fact that
all predictions of the theory of fractional Brownian functions are recovered by the method
of separated scales, which -also yields new results inaccessible by the fractional Brownian

approach. These new results may have to be checked numerically and/or experimentally.
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1. Two dimensions

For a two-dimensional potential 1(z,y), we introduce an incompressible flow v = Vi (z,y) x

Z, whose multiscale features can be described similarly to Eq. (3.60):
vix) =Y va(x) . (3.64)
A

Then the stream-function spectrum (3.61) corresponds to the velocity spectrum

A H-1
vy = Vg (3‘;) . (3.65)

For H > 1, the long-scale components of the flow are more intensive than the short scales,
therefore, the streamline behavior is dominated by the largest scale A,,. Thus the topography
of the power-spectrum random function with H > 1 is essentially the same, as for the
monoscale uncorrelated A,,-potential ¥, _(z,y). This remains clearly true in the limit u = 2.

The case H < 1 is more interesting. Here, the flow component vy, (x) dominates the
absolute value of the velocity field, and v, (x) may be considered a weak (e = vy, /vy, =
(A1/X0)~0-H) &« 1) and quasihomogeneous (because A; 3> Xo) perturbation of vy,(x). Ac-
cording to the results of Sec. D, this perturbation leaves most streamlines of v,(x) nearly

intact but “quasi-opens” some of them, that is, makes them walk around the direction of

vy, (X) in the strips of width (3.55):

(3.66)

For H < —1/v, the expression for Ag; becomes formally larger than A; = Aopr. This means
that the assumption of the local homogeneity of the perturbation v, (x) is wrong. In other
words, the perturbation turns out to be too small to appreciably affect the patfern of the
streamlines. Thus in this case the topography of the relief ¥(z,y) is essentially the same
as for the monoscale potential ty,(x). Notice that the same inequality (2.26) (see also
Eq. (3.38) is the criterion for the irrelevance of correlations and hence for the membership

of the potential ¥(x) in the universality class of random percolation.
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In this way, we arrive at the “essentially multiscale” case

_
-><H<I, (3.67)

where a nontrivial interaction of scales must take place implying an essential dependence of
the topographic properties on all scales, that is, on the form of the potential spectrum.

In terms of separated scales, inequality (3.67) implies Ap € Ag < Ay, justifying the
assumptions of both the weakness and the quasi-homogeneity of the perturbation vy, (x). In
this limit, the fraction of area covered by the streamlines with diameter of the order of A; is

given by Eq. (3.44) with a = Agy:

AO 2—-dp+1/v Al

Indeed, once a streamline has reached the displacement Ag;, it becomes quasi- open, that

—(1-H) 2dn)
) i (3.68)

is, walks in the Ag;-strip whose axis follows a streamline of vy, (x). The latter is typlcally
closed on the diameter A;.

~ The fractal properties of an open isoline depend on the length scale. In the :‘inertial
range [Ao, An], the effect of the slope is unessential and the fractal dimension of tl.ie curve
is dj, = 7/4. On scales between A¢ and );, the strip is almost straight, meaning the fractal
dimension unity in the corresponding scaling range. So the length of the streamline within

the displacement ), is given by

A \ 0\ e v
L(%) 2o ( A‘;l) A—(ln ~ Ao (/G) . (3.69)

Now, consider the next-order perturbation of the velocity field, vy,(x). It has the same
effect on the streamlines of vy, (x) as that of the Aj-component of the flow on the lines
of vy, (x). So we find that the lines of vy, (x), which are already the guidelines for the
Ag;-strips, become, in their turn, constrained (if long enough) into Aj,-strips following the

streamlines of vy,(x) (see Fig. 19). The expressions for Az, F(Az), and L();) differ from
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those in Eqs. (3.66), (3.68), and (3.69) by only a replacement of A; by A;. This argument
can be repeated for longer scales, up to A,,. Generally, we obtain the following expressions

for the distribution function of the multiscale level lines over the diameter A,

\\ B R 4=
F) ~|— =|— y A <A< An, (3.70)
Ao /\0
and for the length of a contour exercising the displacement A,
A\ P
L()\) ~ Ao (3\—) , <A< An, (371)
0
where the fractal dimension of a separate contour line is
v 10 —-3H
= - - = . a2
Dy(H)=14+(1—-H)(dx l)y_.}_1 - (3.72)

The transition to a smooth spectrum limit (¢ = 2) implies simply the omission of subscripts
of A in Egs. (3.70) and (3.71) and X treatment as a continuum variable. Notice that, in the
region of its applicability determined by inequalities (3.67), the fractal dimension (3.72) of

a multiscale isoline satisfies the inequality
1 <Dh<dh=7/4 , (3.73)

where the maximum value is attained in the monoscale uncorrelated limit H = —1/v = —3/4.
In the super-long-scale limit, A > A, the topography is again governed by the monoscale
features of the A,,-component of the potential ¢(x) (see Eq. (3.45)), hence the distribution

function falls off somewhat more rapidly than (3.70):

o )4(1—;1)/7 A

A contour with the diameter a > A,, has fractal dimension (3.72) in the scaling range

[Ao, \n] and the fractal dimension dj = 7/4 in the range [An,a]. It follows that the length

of such contour is determined by

Dy, d
L(a) ~ X (%’;—1—) (_)\a_) ' , a> Ay (3.75)



Analogously to Eq. (3.44), the distribution function F()) may be represented in the
general form

LA)w(})

F(’\) = )2 )

(3.76)

where w()) is the characteristic width of the connected set of contours with diameters A to

2) (the A-cell). Using Egs. (3.70), (3.71), (3.72), and (3.75), we obtain the width of the cell,

H
Ao (i) , Ao <A< Am, (3.77a)
o= XEQ) )]\ -
CE=TTON T ANE £\

The behavior of the isoline fractal dimension (3.72) and the contour distribution fination -
(3.74) does ﬁét depend qualitatively on the sign of the spectral exponent H, provideé;n'tha;t
inequality (3.67) takes place. However, the appearance of the vertical (Fig. 12) and the F 12
horizontal (Fig. 14) cross-sections of multiscale surfaces suggests a qualitative difference F 1/
in the topography of the reliefs with H> 0 and H < 0. This difference lies in the fractal
dimension D of the whole iso-set ¥(z,y) = A (Fig. 14). According to Eq. (3.16), for 0 < H < F14

1 the random function ¢(z,y) in the scaling range [Ao, Ar] may be considered a fractional

Brownian plane-to-line function and hence,
D=2—-H, 0<H<I1. (3.78)

The same result can be obtained using the method of separated scales (Isichenko and Kalda,
1991b). For H = 0, the iso-set ¥(z,y) ‘_= h becomes dense in the plane (z,y): D = 2. For

H < 0, D cannot exceed the ambient space dimension d = 2, hence
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Result (3.79) agrees with the finite measure (3.28) of the iso-set of a Gaussian random
function with finite variance. For H > 0, such measure would tend to zero at A, — oo
because D < 2.

Thus there is a qualitative difference between the case of a fractional Brownian relief
(0 < H < 1) and the case of the correlated percolation (—1/v < H < 0). However,
expression (3.72) for the fractal dimension D), holds in both limits. On the one hand, D
is the fractal dimension of a connected contour piece on a fractional Brownian relief, where
1 < Dy < 10/7. On the other hand, Dy = d,, is identified with the hull exponent of a 2D
correlated percolation cluster, where 10/7 < D), < 7/4.

It is interesting to note that the appearance of formula (3.72) implies a corollary for
the correlated percolation exponent 7(H). The arguments used in deriving (3.72) can be
repeated for the case when one starts with the correlated percolation problem corresponding
to an exponent H' such that —1/v < H' < H <0, and adds stronger correlations (H) using
the proéedure of the separation of scales. In this way, we arrive at result (3.72), where dj,
and v are substituted by the correlated exponents dy(H') = D(H') and ¥(H), respectively:

v(H')

A S _ H' . .
SE T 1/v<H <H<0 (3.80)

Du(H) =1+ (1 - H)[Dw(H') - 1]

Putting in Eq. (3.80) H' = H, we recover the formula 7(H) = —1/H as a necessary consis-

tency condition.

2. Three dimensions

We wish to repeat the saparation-scale argument for a three-dimensional random potential
(z,y,z). For this purpose we use expression (3.59) for the “walk” width of an isosurface

subject to a small average potential gradient. Then instead of Eq (3.66) we have

At .
AOl = /\0 ()\—;) 3 /\0 < /\1 . (381)
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For the method to work, we must have Ag; < A, which is the case only for 0 < H < 1.
In this case we can calculate the area S(A1) of the isosurface contained in a A;-sized box
similarly to Eq. (3.69). The difference, however, is that in the scaliné range [Ao, Aoy the
isosurface fractal dimension is D = 3, because its level is far from the critical levels of
¥y (2,9, 2). In the scaling range [Ag1, A1] we have D = 2 as the isosurface of ), (x) + 9, (x)

follows a smooth isosurface of ¥, (x). Hence we have

A 3 A 2 A 3-H
S() ~ A2 (TT) (Z:_l) ~ Jo (ﬁ) . (3.82)

Thus the fractal dimension of a connected contour piece,

Du(H)=3-H, d=3,  (3.83)

.....

turns out to be the same as of the whole fractional Brownian iso-set ¥(z,y, z) =*h#(The
iso-set of a two-dimensional fractional Brownian function with the fractal dimension (3:78) is
a plane cross-section of a three-dirﬁensi'ona,‘l iso-set.) This means a fairly good connectedness
of 3D contour surfaces: a connected contour piece of the size A comprises a finite fraction
of all the iso-set (with the séme level %) in the A-sized box, for each A € [Ao;, Am].

The case —1/v < H < 0, corresponding to the long-range correlated percolation, requires
a different approach. To obtain the cluster scaling one has to know the'¢orrelated percolation
exponents 7(H) and B(H). The first one is given by Eq. (2.28). Here we show that the
method of separated scales predicts the beta exponent to be insensitive to correlations and
is the same as in thé uncorrelated perco'lation> problem (Isichenko and Kalda, 1991b). The
following argument refers to any dimensionality d.

Consider the infinite continuum cluster ¢(x) < h = h. + 8, where h, = hgy.is the lower
critical level of ¥(x) ‘and positive § satisfies ¥y, < § < 1y, Let us separate scales in
the form of Eq. (3.60). Denote \s the solution of the equation 1, = § and, for brevity,

As—1, As—2,..., Ao the shorter separated scales. Since the monoscale potentials Pa(x) differ

71



only by rescaling, their own critical levels are given by the same formula
rN =Ky, (3.84)

with a numerical coefficient K depending on the properties of the ensemble. For example,
K = 0 for a 2D sign-symmetric potential, but K < 0 for d = 3. First, consider the infinite

connected region (the “As-cluster”) where
as(x) < Kby, + 6. (3.85)
This cluster is fairly supercritical, hence it occupies the volume fraction
OO~ 1. (3.86)
Now consider the A\s_;-cluster defined by the inequality
Pases (X) < K ths—1 + [K s, + 6 —hx,(x)] - (3.87)

The second term on the right-hand side of Eq. (3.87) is a slowly varying function which is

positive in the As-cluster. As the local correlation length of the As_;-cluster,

-y A -vH
Gomt) o 2y, [ P20 = A5 ( 5 ) 3.88
13 5—1 (%5_1) =1\ %, ) (3.88)

is much less than As (because —1/v < H < 0), the infinite As_;-cluster lies entirely in the

As-cluster and occupies the volume fraction

8
po(é\m) ~ Pg\a) (ﬂ) , (3.89)
¢/\6—1

where f is the infinite-cluster-density exponent of uncorrelated percolation. Similarly, we can
consider the \s_o-cluster where 95,_, (%) < K s_a+[K ¥a,_, + K ¥a,+6—1hx,_, (%) —x, (X)),
and so on up to the scale Ag. This procedure corresponds to a successive increase in the
resolution as we view the cluster of ¥(x) < h = h.+§6, with h, = K(thr, +.. . +9»,) =2 K tho.

Finally we obtain the expression for the density of the correlated infinite cluster,

8 B
P.o(6) = P o~ PO) (%) ~ (:f;) , (3.90)
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which means the universality of 8 for both random and correlated percolation: 3 (H) = 6.
Notice that the above construction automatically implies 7(H) = —1/H, because the

scale A\s = Ag(6/ 1/)0)1/ H is the correlation length &5 of the cluster.

| The fractal dimension Dy (H) of a connected isosurface 1(z,y,z) can be calculated as

the correlated hull dimension, which is the same as that of correlated percolation cluster,
Dy=dy(H)=d,(H)y=d—-B(H)/o(H)=3+BH, d=3, -1/v<H<O0. (3.91)

Similarly to the uncorrelated monoscale case, the distribution function of isosurfaces
over size a includes a finite F'(c0), with a finite-size component given by a formula similar

to (3.48):

(B+1)/v -(B+1)H
F(a):Mz (ﬁ) = (—/\-9-) y d<a<An, =1/v<H<O.

a a
(392) ‘

3. An example

To demonstrate ban ‘a,pplication of the multiscale topography, let us recall the example ::)f ran-
dom isopotentials in the quantized Hall conductance or elsewhere; Consider the electrostatic
field created by charged impurities randomly distributed in the (z,y) plane (d = 2) or-in the .
space (d = 3). It might seem tha,t., due to the well-defined scale of the separation of disor-
dered impurities, Ao = n 1/d (where n; is the average density of _impurities), the monoscale
continuum percolation model is appropriate (Trugman, 1983)-. This, however, depends.

The variation py of the impurity charge density p(x) over scale A > Ag can be estimated
using the “4/N” rule, where N - n;\?¢ is the expected number of impurities in the volume
2%

Moy o (n A2 | (3.93)

hence the charge density A-spectrum is |

A > ). (3.94)
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Taking into account the effect of Debye screening we describe the electric potential ®(x) by

the Poisson equation

_ir 6() pla,y), d =

2 _ )2 — ’
Vi®(z,y,2) — A\p®(z,y,2) {—47rp(:v,y,z), d (3.95)

where Ap > Ao is the Debye length. For two-dimensional impurities, the solution of (3.95)
can be found using the Fourier transformation in the (z,y) plane:

Ou(2) = grmgoon exp(—H) (3.96)

So the electric potential in the plane, ¢(z,y) = ®(z,y,0), has the A-spectrum

A {const , M <KLAKLAp, (3.97)

RPN, A ap.

The ¢(z,y) spectrum exponent H = 0 (for the scaling range [Mo, Ap]) falls into the
multiscale regime (3.67). Specifically, the fractal dimension (3.72) of an iso-potential line
is Dy, = 10/7. When a small uniform electric field E; is applied, the percolating current
channels are formed, whose characteristic transverse walk A, and the width §, are given by

formulas (3.57) and (3.58) in the limit H — 0:
A€=)\0/€, 6€=/\0, €EE1/E0<<1 . (398)

In the scaling range above the Debye length, the isopotentials behave in a monoscale manner
(H = -3 < —1/v = =3/4).

In the case of statistically uniform three-dimensional impurities, we similarly obtain

2 1/2
5, A {A Do €A Ap, (3.99)

TR A, A Ap .

The unscreened behavior of ®(x) with H = 1/2 corresponds to a Brownian function, whose
3D isopotentials have the fractal dimension of 5/2, whereas the connected pieces of their
planar cross-section have D = 17/14 and are not subject to any qualitative change when a

small constant electric field is applied.
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4. Difficulties of the method of separated scales

The method of the separation of scales is a surrégate for an exact solution which is unknown
and one should be cautious applying this technique. The calculation of multiscale topo-
graphic exponents, such as Dy, (H) and B(H), involved the estimation of a product of a large
number, up to m = m(p) ~ log A/logp (A = An/Ao >> 1, ,u‘= Ai+1/Ai), of terms known
only by the order of magnitude. To be more exact, Eq. (3.71) at A = },, should read

) Ai D;;OO)
0w =k B (1) . (3.100)
=1 Lned

where all E;(p) ~ 1, and D™ is gi;\fen by formula (3.72). If there is a systematic error in
the evaluation of the factors in Eq. (3.100), characterized by the geometric mean E(y) # 1
of E;(u), then expression (3.100) can be written as :

Dg")

L) = Ao (ﬁ) , (3.101)
Ao o
where :
W) (F) = D) log E(u) (3102
DY(H) = DITH) + = (3.102)

While giving a correct value for the fractal dimension of an isoline of a separated-scale
potential (g > 1), D™ - (10 — 3H)/7 may be wrong in the limit x4 = 2, if E(Q) 2 1.

On the other hand, being applied to the evaluation of the fractal dimension of the frac-
tional Brownian iso-set ¥(x) = h, 0 < H < ‘1, the separated scales predict a correct
result, D = d — H, confirmed by a direct box-counting calculation and th‘e'cross-section
rule (Sec. B). The correlation-length exponent of the correlated percolaion problem given
in the framework of the method of separated scales, 7(H) = —1/H, also agrees with an
independent calculation (Weinrib, 1984). |

More confusion is added by the comparison of the correlated beta exponent calculated

by the method of separated scales (8(d, H) = f(d) for any dimension d and H < 0) and the
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renormalization-group (RG) technique. Weinrib (1984) has developed the RG expansion of
the exponent 7(d, H) = 2 — d + 28(d, H)/7(d, H) in a series in (6 —d) > 0 and (H +2) > 0
up to linear terms. The n exponent describes the behavior of a cluster correlation function
(Shklovskii and Efros, 1984). At d = 6 and higher, the uncorrelated percolation exponents
take on their effective-medium values v = 1/2, 8 = 1, 5 = 0 (Stauffer, 1979), hence
the correlated behavior for d = 6 takes place at H < —1/v = —2. The Weinrib result
i(d, H) = (2/11)(H + 2) — (1/11)(6 — d) + ... corresponds, in terms of the beta exponent,
to B(6,H) =1+ (6/11)(H +2) +..., whereas the scale-separation prediction is 3(6, H) = 1.
Still, the RG expansion method is far from a rigorous calculation, as well as the separation
of scales.

So an independent approach is strongly desired to evaluating the exponents of multiscale
statistical topography/correlated percolation or, at least, a specially designed numerical

code.

F. Statistics of separatrices

To show the existence of arbitrarily large contours we have used two types of argument:
“flood-in-the-hills” and the correspondence of the contour problem to a lattice percolation
problem. Another approach to generating large-scale contour lines and surfaces is based on
a topological construction of “dressing.”

Consider a level line of v(z,y) or a level surface of ¥(z,y,z). Move outwards from it
and explore neighboring level sets which enclose the initial one. The topology of the nested
contours will not change until we encounter a separatrix coming through a saddle point of
¢ (Fig. 15). For a nondegenerate potential ¥(x), every saddle (hyperbolic) point lies on a
different level, therefore, every separatrix looks like figure eight (perhaps, self-enclosed), in
two dimensions, or a dumbell, in three dimensions. After encountering a separatrix, we go

further and construct a nested set of separatrices similar to Russian Matreshkas. Nothing in
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this construction prevents from inflating the contours up to infinity.

For a power-spectrum random function with H < 1, the density of stationary points
(where Vi(x) = 0) per unit volume is governed by the /\o;component of the potential
because this component dominates the potential gradient. If follows, in particular, that
the average density of saddles points per unit volume is of the order of A;?. As on each
step of the dressing procedure the closest to the given separatrix saddle point is caught,
the gap s(a) between two nearest-neighbor separatrices of the size a is determined from the
requirement that the volume between the separatrices be approximately constant (\¢). Thus
s(a) decreases with growing size a inversely proportional to the separatrix measure '(length

or area):

s(a) ca™Pr . | (3.103)

Although telling nothing about critical levels, the topological argument can bersedsto ».
develop the statistics of separatrices (Gruzinov et al.,, 1990). Each nondegenerate closed
separatrix divides the space into three parts: two bounded and one unbounded (Flg 15). F15
Each bounded part contains at least one extremum of . Introduce the index (z,]) of a
saddle point as the number of extrema in the two bounded parts of its separatrix. (We can
distinguish the order of i Iand j, assuming, for example, that the first index corresponds to
the part located lower.) Let P(z,7) be the number, per unit volume, of saddle points with
the corresponding indices. These numbers are related by certain topological constraints.
Indeed, each closed separatrix with the index (¢,j) is necessarily surrounded by a nearest
-separatrix with the index (¢ + 7, k) or (k,¢ + j), so that

-1 o
ZP 1 —1) =Z P(l,k) + P(k,1)] + P(1, oo)+P(oo,l) . (3104)
i=1 k=1 ‘
In Eq. (3.104), the possibility is taken into account of the presence of finite number of open

separatrices (corresponding to the infinite indices), which is the case in three dimensions.

In two dimensions, there exists only one unclosed level line, hence P(l,00) = P(o0,l) =
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P(oc0,00) = 0.

A corolary of Eq. (3.104) is the well-known sum rule for a two-dimensional potential

Y(z,y) (Longuet-Higgins, 1960b),
Nsadd.le = Nmax + Nm.m ) : (3105)

for the number of the saddles, maxima, and minima of . Indeed, there are exactly as many
extrema (minima plus maxima) as the number of saddles, one of whose indices is unity (that
is, whose separatrix is the closest one to the given extremum). Relating the number of

stationary points to unit volume, we write

Neste = Nowas + Noim = 3 [P(L,3) + P(5, 1)] + P(L, 00) + P(00, 1) . (3.106)

=1

On the other hand, the total number of saddles is

Nuatie = 323 P(ir) + 32 [Pli, ) + P(oo, ] + Plos,00) . (3107)

i=1 j=1 i=1

Summing Eq. (3.104) over ! and using expressions (3.106)-(3.107), we finally infer
Nsaddle = Nextr + P(OO, 00) . (3108)

In two dimension, Eq. (3.108) reduces to the sum rule (3.105). The usual proof of this result
(Longuet-Higgins, 1960b) uses the correspondence of the saddles, minima, and maxima of a
function defined on a torus to the edges, vertices, and faces, respectively, of a polyhedron,
and the Euler theorem (Coxeter, 1973), Nedge = Nyertex + Niace-

We continue discussing the two-dimensional case. The toplogical restraint (3.104) can be

rewritten in terms of a generating function

Gl(2,y) = (1/Nuwaa) 33 PG, j)a'y . (3.109)

i=1j=1

Multiplying Eq. (3.104) by 2’ and summing over I, we obtain the functional equation,

G(z,z) = 2G(z,1) — z , (3.110)
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where the normalization condition G(1,1) = 1 was taken into account.

Sure enough, being exact for any nondegenerate potential, relation (3.110) is insufficient
to determine G(z,y) and thereby P(3, 7). If we assume, vaguely referring to a “randomness,”
that two closed parts of each separatrix are independent, P(z,5) = P(¢)P(j), then G is also
factorized: G(z,y) = G(2)G(y). Under this assumption, Eq. (3.110) immediately yields

2% — 3\ ;
Gz)=1-(1-2)/% = Z( (22)”) z, (3.111)
i=1
hence
.. 2t — 3N (25 —3)! 1 5. ..
)= (2i§1!§2j')!! : LS IR T b S (3.112)

It was established (Gruzinqv et al., 1990) that such distribution of separatrices is consistent
with the long-range behavior of a monoscale uncorrelated potential ¥(z,y). In all other

cases, the two parts of a separatrix are not independent.
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IV. TRANSPORT IN RANDOM MEDIA

In this section, two wide classes of transport phenomena are discussed: the diffusion of
a tracer (impurity, temperature, etc.) in an incompressible flow and the conductivity of
a medium with spatially fluctuating properties. Physically, the most interesting are the
cases involving large parameters such as Péclet number (the ratio of convective term to
molecular diffusion term) or the strength of the fluctuations in microscopic characteristics
of the medium. We will try to demonstrate that, in many cases, percolation theory and/or
statistical topography provide helpful tools in theoretical studies of such transport processes.

In Sec. A the advective-diffusive transport of a passive tracer is reviewed. In two dimen-
sions, incompressible streamlines are represented by the contour lines of a stream-function,
hence the geometry of a random flow is described in terms of the statistical topography. For
a bounded stream-function, the passive transport is asymptotically diffusive, and is char-
acterized by a finite effective (turbulent) diffusion coefficient Deg (Tatarinova et al., 1991;
Avellaneda and Majda, 1991). When the strea,m-fuﬁction (velocity vector potential in 3D)
is not bounded, or is characterized by many scales of length, the passive transport may be
superdiffusive meaning that the average square displacement grows faster than linear with
time. For special initial conditions and on limited time-scales, a more exotic subdiffusive
tracer behavior is also possible.

In Sec. B selected problems of transport in randomly inhomogeneous media are discussed.
The simplest example of such system is a random mixture of conducting and insulating phases
(random resistor network) described in the framework of standard percolation problem. Two-
dimensional systems at the percolation threshold have a remarkable symmetry (Keller, 1964;
Dykhne, 1970a), which allows to exactly calculate the effective conductivity for arbitrary
conductivities of two phases. Other examples include the plasma heat conduction in a

stochastic magnetic field and the electrical conductivity of randomly-inhomogeneous media
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with the Hall effect.

A. Advective-diffusive transport

Everyone will acknowledge the striking effect a teaspoon stirring exerts on the sugar disso-
lution in a cup of coffee. A vast variety of processes, ranging from everyday propagation
of smell to heat transport in fusion plasmas, can be cast into the simplest form of the

advective-diffusive equation

on

o +v(x,t)Vn = Dy V?n , ' (4.1)

where n is the density of a passively advected agent (concentrafion of an impurity, temper-
ature, etc.), v is a velocity field, and Dy is the molecular diffusion coefficient or thermal
conductivity. In most practically applicable cases, velocity v(x,t) can be considered incom-
pressible: V.v =0, or v = V x 9(x,t), where 1 is a vector potential. Along with Eq.(4.1),
the problem can be equivalently formulated in terms of a random t;ajectory of tracer particle

described by
dx

= =vx1) +vo(t) C (42

where vp(t) is a Gaussian random noise corresponding to the molecular‘ diffusion, so that
(vp(¥)) =0, (vpi(t)vp;(t)) =2Doé(t —1") 6 . (4.3)

Then the probability distribution function n(x,t) of the particle position evolves according
to Eq. (4.1). )
In 1921, G. Taylor put forward the hypothesis of “diffusion by continuous movements.”
According to this hypothesis, the solution of Eq. (4.2), for a turbulent, zero—rn,taari ‘velocity
field v(x,t), behaves diffusively in the long-time limit, so that
i {060 = %(0)) Gii(8) = %,0)) _ o

t=rc0 2 1y

(4.4)
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where D} is the effective, or turbulent diffusivity tensor. Taylor (1921) related the effective

diffusivity, to the Lagrangian velocity correlator Cj;(t) = (vi(x(t),t) v;(x(0),0)) as follows:
D§=L Ci;(1)dt . (4.5)

This well-known result, however, is almost a tautology, because in order to obtain Cj;(%)
one has first to solve the equation of motion (4.2). The Taylor hypothesis of the turbulent
diffusion behavior corresponds to a sufficiently fast decay of Lagrangian correlations so that
integral (4.5) converges.

Richardson (1926) analyzed then-available experimental data on diffusion in air. Those
data varied by twelve orders of magnitude indicating that there is something wrong with the
Taylor hypothesis. Richardson phenomenologicallly conjectured that the diffusion coefficient
D, in turbulent air depended on the scale length A of the measurement. The Richardson

law,

Dy o« M3 (4.6)

was related to the Kolmogorov-Obukhov turbulence spectrum, vy « A!/3, by Batchelor
(1952). So the effective-diffusion limit (4.4) does not necessarily exist. It is emphasized that
the Richardson law (4.6) describes the relative diffusivity of suspended particles, that is,
the rate of growth of the mean square distance between two fluid elements in the turbulent
medium. The absolute diffusion in Kolmogorov turbulence is not universal because the
boundary-condition-dependent long-scale velocity pulsations govern the absolute motion of
a fluid element and make integral (4.5) diverge (Moffatt, 1981).

There exists, however, an important class of incompressible flows, which lead to a finite
absolute turbulent diffusion coefficient (4.4); namely, the flows with a bounded velocity
vector potential %(x,t). In Sec. 1 recent rigorous results are reviewed concerning such flows.
In Sec. 2 certain regular flows are listed, for which the effective diffusivity D* is known

exactly or can be easily estimated by the order of magnitude. Section 3 is devoted to the
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problem of turbulent diffusion in random, steady 2D flows, which are described using the
statistical topography theory. In Sec. 4 transport properties of time-varying random flows
are discussed. The applications of this theory are primarily concerned with the anomalous
transport in turbulent plasmas.

Even when the effective diffusivity D* governs the asymptotic tracer behavior in an
advective-diffusive system, this behavior has finite set-in (mixing) time and length scales.
On time- and space-scales below the mixing time 7, and the mixing scale {m, the passive

scalar transport can be “anomalous,” meaning the propagation rate
1/2
(et = x(@)) " o€, @

with ¢ 5 1/2, instead of the behavior of Eq. (4.4). For flows with unbounded vector potential
¥(x) the mixing time 7,, may be infinite, with the anomalous diffusion (4.7) ifeaturing :
the long-time behavior. The mechanisms of the anomalous diffusion, including both the

superdiffusion ({ > 1/2) and the subdiffusion ({ < 1/2) are discussed in Sec. 5.

1. When is the effective transport diffusive, and what are the bounds on the

effective diffusivity?

This question was addressed in many works, beginning from Zeldovich (1937), who showed
that the lower bound for the effective diffusivity D* is simply the molecular diffusivity Do. To
be more exact, his result was that arbitrary incompressible convection in a fluid necessarily
increases (with respect to the absence of convection) the.a,verage impurity flux J between
two surfaces where the two constant impurity densities, n; and ng, are maintained. The idea
of the proof is based on a simple variation principle: Integrate the quantity (nv—DoVn)Vn

over the volume outside the two closed surfaces. Then the result is

J(ny —n3) = Dy / (Vn)2dx . - (4.8)
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The right-hand side of Eq. (4.8) is minimized by a harmonic function, V?n = 0, which
corresponds to the zero velocity field in time-independent (or time-averaged) Eq. (4.1).
Effective transport in a convective-diffusive system is governed by a dimensionless pa-

rameter,

) (4.9)

known as the Péclet number, where vy is some characteristic (for example, root-mean-square)
value of the vector potential #(x,?). According to the Zeldovich variation principle, the

effective diffusivity, if exists, must expand in a series of even powers of the Péclet number:
D*=D0(1+02P2+G4P4+...), P<<1, (410)

where a; > 0. In the limit of a large Péclet number, it is natural to expect that the effective

diffusivity greatly exceeds the molecular one:
D¥~DyP*, P>1, (4.11)

where a non-negative exponent « depends on the topology of the flow.

A more difficult question concerns the very realizability of the effective diffusion regime
and the upper bounds for the effective diffusivity. Strictly speaking, condition (4.4) yet does
not imply the effective diffusion of a tracer. A stronger requirement is that the local-average

tracer density (n) evolve according to the effective-diffusion equation

din) 9 . dn) .
ot __a.’l),‘ Dij 8:17_,' ) (4.1“’)

The local average of the density n is taken near the point (x,?) over such length scale ¢ and

time scale 7 that satisfy

bn €ELTY, T ¥, (4.13)

where ¢,, and 7, are the flow-dependent mizing length and mizing time, respectively, and I*

and t* are the characteristic length- and time-scales of (n). As show inequalities (4.13), the
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set-in of the effective diffusion takes finite mixing time 7,,, hence Eq. (4.12) becomes valid
only asymptotically.

Another approach to the effective diffusion problem is to consider the velocity field v(x, )
as a stationary random field and to average the tracer density n over the statistical ensemble
of v. Pioneered by Taylor (1921), this approach remains the most popular. Kraichnan
(1970) undertook the explicit computation of mean square particle displacement in 2D and
3D Gaussian velocity fields averaging over 2000 realizations for each ensemble. There was no
molecular diffusion in this simulation, and both time-dependent and “frozen” velocity fields
were tested. In each case, except for the case of two-dimensional time-independent flows,
Kraichnan observed well-established turbulent diffusivity (4.4).

Another computational approach proposed in Isichenko et al. (1989) used a precribed
random flow. Although not random, the flow has no apparent degeneracies such as periodicity
and looks quite generic. However, one still can visually identify a “trace of periodicity,”
especially for a small number N of harmonics, because the flow pattern is a two-dimensional
‘projection of a N-dimensional periodic structure (In Fig. 10 N = 25). Also, the space-
average correlator C(p) = (¥(x)1(x + p)), does not vanish at large-scales showing:long
correlations that are characteristic for quasicrystals (Levine and Steinhardt, 1984; Kalugin
et al., 1985; Steinhardt and Ostlund, 1987; Arnold, 1988). These correlations were not found

to appreciably affect the advective-diffusive transport for N > 3 (Isichenko et al., 1989).

Analytical results regarding the criterion of the transition to effective diffusion were )

obtained by McLaughlin et al. (1985), who proved the following homogenization property of
time-independent, incompressible, zero-mean, stationary random flow v(x). If the Fourier
transform Cj;(k) of the velocity correlator Ci;(p) = (vi(x)v;(x + p)) is continuous at the
origin k = 0, then the ensemble-average solution of Eq. (4.1), (n) = N¢(x,t), corresponding

to the initial condition n(x,0) = no(ex), becomes very close, as € — 0, to N(x/e,t/e?),
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where N(x,1) is the solution of the initial-value problem

BN___ 0 D*aN

75 Dy N0 =l an

and the effective diffusivity in any direction n exceeds the molecular diffusivity:
D*(n) = |n|'2 D:; nin; Z .Do . (415)

Battacharya et al. (1989) obtained a similar result for arbitrary periodic incompressible
flow, without ensemble averaging. Kalugin et al. (1990) proved a homogenization theorem
for periodic flows using the analytical continuation of D:-';(P), considered as a function of
Péclet number P = tbms/ Do, to the complex plane of P. Such an approach led to an efficient
algorithm of the computation of D,-"J‘- for any periodic flow using continuous fractions.

Avellaneda and Majda (1989, 1991) generalized the McLaughlin et al. (1985) result and
showed that the finiteness of the Péclet number (4.9) (with 1 understood as the ensemble
root-mean-square vector potential) is an essential necessary and sufficient condition to guar-
antee the homogenization property for time-independent random flows v(x) = V x #(x).
They also developed a theory of Padé approximants using a Stieltjes measure representation
formula for the effective diffusivity. This theory led to a sequence of rigorous bounds on D*,

of which the simplest one is

Dy < D*< D, (1 + %P2) : (4.16)

where d is the dimension of the problem. Generally, the first two terms in the low- P expansion
(4.10) turn out to be an upper bound for D* at any P.

Independently, Tatarinova et al. (1991) considered the most general case of an arbitrary
incompressible 3D time-dependent flow. They gave an elegant proof of the following theo-
rem: If the vector potential ¥ (x,t) of a given flow is bounded, |1(x,%)| < ¥max, then the

solution of the initial-value problem (4.1) with n(x,0) = 6(x — xo) behaves as follows. The
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mean square displacement,
R¥(t,%0) = / (x — xo)2n(x, t)dx , (4.17)

grows with progressing time not slower and not faster than linearly in the sense that

R2(t, 2
( ( xo))xo <.D0+ max

< _,
Do < 2td = Do

(4.18)

Most likely, the averaging of R? over the initial position X is not essential for this result. The
comparison of the Tatarinova et al. theorem with the Avellaneda-Majda theorem suggests
that the boundedness of the vector potential % (x,t) is also sufficient for the global transport
homogenization, that is, the asymptotic transition from Eq. (4.1) to Eq. (4.12). In such

general form, however, the homogenization theorem has not yet been proved.

Thus one may conclude that, in the presence of finite molecular diffusivity, theffinite : :

vector potential is sufficient, and “almost necessary” condition for the effective diffusion to

be established, with the effective diffusivity satisfying the inequality

2 i
Do < D* < Do + Ymex . (4.19)
) -DO .
In terms of the scaling exponent « entering expression (4.11), this implies 0 < @ < 2.
For the case of anisotropic molecular diffusivity tensor Do and a possible anisotropy of

the flow, following the lines of Tatarinova et al. (1991), inequality (4.19) can be generalized

| [m x n - 9(x,8))2

4.20
mP [ Dom (4.20)

*
Don <Dy, < Dgn + max max

where Dy = D;jn;n;/|n|*> denotes the diffusivity in the n direction. Apparently, inequality
(4.19) is a particular case of (4.20). Result (4.20) will be used in Sec. B.3 to establish bounds °

on the effective conductivity of heterogeneous media.
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2. Effective diffusivity: Simple scalings

There exist several classes of flow, whose transport properties can be calculated exactly. As
we will see, the rigorous bounds on the effective diffusivity (4.19) are attainable.

The simplest example of a shear flow in a tube was considered by Taylor (1953, 1954),
who noticed that the axial dispersion of a solute advected by the Poiseuille flow v(r) =
vo(1 — r2/a?) (where v(r) is the axial velocity in a tube of the radius a) is described, in
a mean velocity frame of reference, by a diffusive law. For avy > Dy, Taylor found the
following expression for the “virtual coefficient of the diffusivity”: D* = a?v2/(192D,). He
proposed to use this result for the investigation of the propagation of salts in blood streams.
Aris (1956) has generalized Taylor results to the case of arbitrary Péclet number P = avo/ Do
and different tube cross-sections, where all possibilities are covered by one exact formula

2,,2
a® vg

*=
D" =D+ K De

(4.21)

with different values of the numerical constant K.

Zeldovich (1982) considered the periodic time-dependent flow in the (z,y) plane,
v = vpX cos kycoswt , (4.22)

and found the effective diffusivity in the z-direction:

* 2 1 k2 ‘Ug o
D,.=Do(l1+ Z m . (4...,3)

In the case of a general time-independent shear flow v = X dy(y)/dy, (¥(y)), = 0, one
has (Avellaneda and Majda, 1990; Isichenko and Kalda, 1991a) D;y = Dy,

DF = Do+ (—‘%%)ﬁ : (4.24)

The above results are obtained separating the tracer density n into an oscillating and a
smoothed component, a method similar to the technique of multiple-scale expansion (cf. Ben-

der and Orszag, 1978). The physical meaning of result (4.24) is quite simple: Due to the
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molecular diffusion in the y-direction, a tracer particle resides in a channel with the same
direction of velocity for a characteristic correlation time 7., = A2/D,, where Ao is the char-
acteristic scale of the flow. The advective displacement experienced by the particle during
this time is §,, = vo 7. The effective diffusivity in the z-direction is then estimated as
D* =~ €2 /1, = A*v%/Dy, in accordance with (4.24). Quantities &, and 7, represent the
mixing length in the z-direction and the mixing time, respectively.

In terms of the scaling exponent « (see Eq. (4.11)), result (4.24) corresponds to the max-
imum possible value oo = 2. This is quite sensible because open (e.g., straight) streamlines
promote the best imaginable mixing along their direction. By the way, the exact maxi-
mum of D:z, given by expression (4.19) is also attained by a shear flow with a step-like

stream-function

\

corresponding to vanishingly narrow velocity jets located at the zero lines of f (y). According

to formula (4.24), we have DX = Dy + 42/Dy = Dy + 92,/ Do.
" The second class of flow with a simple effective diffusion scaling is a periodic a;;ray of

convection rolls, such as modelled by the stream-function
Y(z,y) = Yosin kyz sink,y - (4.26)

 (see Fig. 20). For this, and topologically similar flows, and its simplest generalizations, it
was noticed (Dykhne, 1981; Moffatt, 1983) that the large-Péclet-number asymptotics of D*

corrésponds to the exponent a = 1/2:
D* =Cy/Dothy, P =1h/Do>1. - (427)

It was later in 1987 that flow (4.22) drew much attention (Osipenko et al., 1987; Rosenbluth
et al., 1987; Shraiman, 1987; Perkins and Zweibel, 1987; Soward, 1987). Using asymptotic

expansion for periodic fields (Bensoussan et al., 1978; Brenner, 1980) or similar in spirit
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methods, the problem was reduced to the effectively one-dimensional cross-stream diffusion
within one convection cell making it possible to calculate the numerical constant C' in expres-
sion (4.27). Formula (4.27) was confirmed in a specially designed experiment (Solomon and
Gollub, 1988), where passive tracer transport was studied in a periodic system of controlled
Rayleigh-Bénard convection rolls.

The /Dy scaling is due to the formation, in the large Péclet number limit, of diffusive
boundary layers near the separatrices (Fig. 20) where the tracer density gradients turn out
to be concentrated. Being of major significance for effective transport, the boundary layer
width wy 1s determined as the characteristic diffusive displacement a tracer particle undergoes

in the course of the advective rotation period:

Wp = VDO /\0/’00 ) (428)

where Ao is the cell size and vg = /Ao the characteristic velocity. Then the effective
diffusivity is estimated in terms of a usual random walk expression A%/(\o/vo) multiplied by

the fraction of “active” particles wy/Ao lying in the boundary layer. This leads to the result
D¥* ~ vowy , (4.29)

revealing expression (4.27).

It is interesting to note that, while the periodic flow (4.26) was generally invoked to model
steady Rayleigh-Bénard convection (Chandrasekhar, 1961; Busse, 1978; Haken, 1977), the
effective diffusivity in the Rayleigh-Bénard system may behave quite differently from the
prediction of formula (4.27) (Dykhne, 1981). There are two principle patterns of steady
convection in a fluid heated from below; namely, rolls (Fig. 21(a)) and hexagons (Fig. 21(b);
Busse, 1978). The transport properties of rolls are properly modelled by flow (4.26) for the
case of “free-slip” boundaries at the bottom of the vessel. In the case of “no-slip” boundary

condition, the effective diffusivity D* scales proportional to Dg/ 8 (Rosenbluth et al., 1987).
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Unlike the roll-convection pattern, the separatrices of Rayleigh-Bénard hexagons include
not only the interfaces between the cells but also the cells’ axes (Fig. 21(b)). Due to the
incompressibility of the flow, a near-axis boundary layer is much wider (W > w) than a
corresponding near-interface boundary layer (w). Assuming the same order of magnitude in

velocity, the fluid flux conservation yields voAow = vo W2, hence

W(w) = ow , (4.30)

where Ay is the horizontal size of the hexagonal cells. For the effective diffusion to be
established, the tracer particle has to diffuse all way through the near-axis layer: until then
it will just walk between two neighboring cells (Fig. 21(b)). The widths of the diffusive

boundary layers are estimated from W?2(w;)/Do = Ao/vo, hence

Wy = _'D_C_’, ) I/Vb = \/Do /\o/’vo . (4:31)

Vo
The simplest evaluation (4.29) would then give D* = Dy, which is, however, somewhat un-
derestimated. In fact, one must sum the contributions of approximately log(A\o/ws) different
layers, w = wy, 2w, 4wy, . . ., Ao, each contribution being D*(w). = (w/Xo) A2/ (W?(w)/Do) =
Dy. As a result, for the steady Rayleigh-Bénard convection pattern, the effective diffusivity
scales as (Dykhne, 1981)

D* ~ Dy log P, P=’\D_”§>>1, | (4.32)

showing an anomalously weak transport enhancement.

Smaller yet enhancement, up to the lower bound in Eq. (4.19), is realized for flows with
localized, non-overlapped domains of nonvanishing velocity, for sufficiently small fraction
of volume occupied by these domains. This becomes quite obvious if one substitutes the
advective domains by infinite-diffusivity domains. Well below the percolation threshold,

this will not significantly increase the transport properties of the medium, compared to the
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background diffusivity Dy. Approaching the percolation threshold for the advective domains,
one can in principle construct flows with an arbitrary transport scaling exponent « € [0,2].
One such example, with o = 1/2, was given in Avellaneda and Majda (1991).

The next exactly solvable example is the 2D isotropic system of narrow velocity jets:

’l/)(:t, y) = ¢0 Sign f(may) ’ (d’(wa y)) =0 ’ (433)

where the isotropicity of the effective diffusivity D* is assumed. The function f(z,y) may be
a checkerboard pattern, f = sin kz sin ky, or a realization of a random field, such as the one
shown in Fig. 10. Using the correspondence between the advective-diffusive problem and the
effective conductivity of an inhomogeneous medium with Hall-effect (Dreizin and Dykhne,
1972) and the solution of the conductivity problem for a 2D, two-phase system (Dykhne,
1970b; see Sec. IV.B.2), D* can be calculated exactly. The result is the “Pithagor formula”
(Dykhne, 1981; Tatarinova, 1990)

D*= /D3 + 42, (4.34)

corresponding to the scaling exponent @ = 1. Result (4.34) is valid for arbitrary Péclet
number. The mixing length and time are less universal and depend on the details of ¥(z, y).

Regarding time-dependent advecting flows, it is generally believed that, while being of im-
portance for smoothing small-scale tracer density structure (Moffatt, 1981), weak molecuiar
diffusion does not significantly affect the long-range passive transport. In the limit of van-
ishing molecular diffusivity Dy, the effective diffusivity remains finite, D* ~ ¢ (Kraichnan,
1970; Pettini et al., 1988; Horton, 1989), that is, @ = 1. The Zeldovich (1982) result (4.22)-
(4.23) is exceptional in this respect, due to the special kind of the flow time-dependence,
which preserves the topology of the streamlines. Another special case of preserved topology
is the system of localized travelling vortices, which can arise in course of the evolution of

two-dimensional turbulence in atmosphere, ocean, or plasmas (Larichev and Reznik, 1976;
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Flierl et al., 1980; Hésegawa et al., 1979; Kraichnan and Montgomery, 1980; Petviashvili
and Yankov, 1989). The dominant feature of a localized travelling vortex is the presence of
a separatrix, inside which the fluid is carried by the vortex (Fig. 22) moving at a constant
speed u. This feature makes vortices efficient mixing agents, so that the scaling exponent
a in Eq. (4.11) attains its maximum value, @ = 2, for a flow presented as a “vortex gas,”

that is, an ensemble of large number of travelling vortices, whose interaction is unessential.

The effective diffusivity of the vortex gas for the large Péclet number limit was calculated

in Isichenko et al. (1989):
D:-k- =0 (sTm u; u;) + Do &;; , (4.35)

where 7 is the number of vortices per unit area, s ~ A3 is the area enclosed by the separatrlx

of a vortex, 7, ~ A%/D, is a diffusion time inside the vortex, and the averaging in (4 35)

"42 '(.}

taken over the vortices. The estimate of the exact result (4.35) can be obtained as follows.

A tracer particle is trapped and carried by a vortex for the diffusion time 7, = A2/ Do and

then released the distance ¢, = ury, apart from the point of trapping. The effective diffu-

sivity is then obtained as ¢Z /7, multiplied by the fraction of area, )2, where the trapping

processes take place. The resulting expression, D* ~ n\4 u?/D,, agrees with formula '(4 35)
for sufficiently high Péclet numBer P = Xu/Dy > (p)3)~V? > 1. The effects of vortex col-
lisions (Horton, 1989) and of the 1nhornogene1ty of the Vortex-supportmg medium (Zabusky
and McWilliams, 1982; Nycander and Isichenko, 1990) lead to various regimes of effective

diffusion, including those, for which the molecular diffusivity Dy is unessential.

3. Effective diffusivity in two-dimensional random, steady flows

As we have seen, the behavior of effective diffusivity in the large-Péclet-number limit depends
on the topology of flow streamlines. The best mixing properties exhibit flows with extended
streamlines, such as a shear flow, where the mixing length ¢,, tends to infinity as Dy — 0.

The geometry of 2D random flows assumes the presence of arbitrarily extended streamlines,
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though their share falls out with increasing size. To estimate the effective diffusivity in such a
flow, statistical topography must be used for the description of streamlines (Isichenko et al.,
1989; Gruzinov et al., 1990; Isichenko and Kalda, 1991c).

It is difficult to imagine a time-independent, or slowly time-dependent, 2D random flow
in such traditional 2D objects as atmosphere or ocean, where the characteristic frequency
w is typically of the order of the inverse eddy rotation time, w =~ wg/A. The practical
implications of “frozen” 2D random flows involve primarily condense-matter objects, such as
quantum diffusion (Kravtsov et al., 1986), quantum Hall effect (Prange and Girvin, 1990),
or inhomogeneously doped semiconductors (Dreizin and Dykhne, 1972; Isichenko and Kalda,
1991a).

The first percolation-theory analysis of the effective diffusion in a 2D, random, incom-
pressible, steady flow (Isichenko et al., 1989) was motivated by the observation that the
periodic flow pattern (4.26) is structurally unstable: A vanishingly small perturbation of
the stream-function will destroy the regular system of elementary convective cells, gather
them into various conglomerates, and thereby produce arbitrary length scales in the isolines
of ¥(z,y) (see Fig. 11). Although there is no doubt in the existence of a well-defined effec- F 11
tive diffusivity D* for a bounded random stream-function ¥(z,y), there has been developed
no formal theory involving the rigorous calculation of D* for a large Péclet number. The
small Péclet number expansion for random flows was developed in Derrida and Luck (1983),
Fisher (1984), Kravtsov et al. (1986), and Bouchard et al. (1987) using path integrals and
the renormalization group theory.

For a monoscale stream-function ¥(z, y) (Fig. 10) heuristic arguments were used (Isichenko F 10

et al., 1989) to derive the oo = 10/13 scaling

'¢' 10/13
D* = -DO ('1)—2) 9 ¢0 = ";brms > DO ’ (436)
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“where the exponent was expressed through the 2D percolation indices, v = 4/3 and dj, = 7/4:

a_l/dh-I-l__l_O_
_th+2—13 '

(4.37)

Due to the role of extended streamlines of a random flow, effective diffusivity (4.36) greatly
exceeds expression (4.27), valid for finite-size convection cells, at the same Péclet number.
The derivation of result (4.36) employs a hypothesis of broken coherence. This hypothesis
assumes that the particle displacements governed by Eq. (4.2) may be considered uncorre-
lated if the strearhlines, on which these displacements are experienced, differ twice or more in
size. In this way, one naturally comes to the concept of convection cells being the conglom-
erates of streamlines with diameter between ¢ and 2a (“a-cells” — see Fig. 17). The mixing
length &, is then determined as the size of convection cells producing the most efficient
coherent contribution to transport. The calculation is quite similar to that based:on:the
boundary layer arguﬁent for a periodic array of vortices (Fig. 20). The difference, however,
is that the convection cells of a random flow are diverse, and their size a, width w(a), and
perimeter L{a) are coupled in a fashion determined by the statistics of the random field
¥(z,y). For example, for a monoscale (Ag) flow the relations given by Egs. (3.41) and (3.43)
should be used. Using the standard boundary layer argument, we find the mixing length &,,

as the cell size where the convection time equals the transverse diffusion time, |

L(ém) _ wz(frn) (4.38)

Vo Dy ’

- where vy = 19/ Ag is the characteristic velocity. Substituting expressions (3.41) and (3.43)

for the length L(a) and the width w(a) of the convection cell, we find

{m = Ao P77 ) = Yo >1. (4.39)
Do
The effective diffusivity is then estimated as
. ) : |
D ~ F(lp) —=—— =vow(én) , (4.40)

w2(ém)/ Do
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where F(a) = L(a)w(a)/a? is the distribution function (area fraction) of the convection cells
over their size. Substituting expression (4.39) into (4.40) we arrive at the result (4.36). The

mixing time in a monoscale Ag-flow is given by the formula

_ X

= (4.41)

Tm

corresponding to the time of diffusive sampling of all “undermixing” (that is, with a < ¢,,)
convection cells.

Expression (4.40) describes the effective diffusion contribution of mixing (¢,,) convection
cells only. Nevertheless, this contribution constitutes of order one half the effective diffusivity
thereby yielding a correct estimate of D*. The contribution of more numerous “undermixing”

cells with A < £, can be written similarly to (4.40):

LN 10
m_po__ do <A< b (4.42)

Dy ~F(\
The hypothesis of broken coherence implies that the effective diffusivity can be estimated as
the sum of partial diffusivities Dy, for X = A, 2X04 Mg, ... €m, that is, 1

€m
Dy &

("D, (4.43)

D* ~

The partial diffusivity Dy o< A% *1/¥ increases with the increasing scale A making expression
(4.43) peak near the upper integration limit.

The percolation scaling of the effective diffusivity involving the exponent a = 10/13
appears to be as universal as the static exponents of continuum percolation (see Sec. ILE).
This implies that the randomness (in the sense of the ensemble averaging) of the velocity
field is not really necessary for the result (4.36) to be valid, the genericity (absence of
exceptional features like periodicity, etc.) of the flow will suffice. The computation of effective
diffusion for quasi-periodic flows having extended streamlines showed a fair agreement with

the “10/13” scaling (Isichenko et al., 1989).

1The contribution of “overmixing” convection cells with diameter A >> &, is negligible due to both the
scarcity of such cells and the particle diffusive decorrelation from them well before sampling their extent.
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A similar approach was used to calculate the effective diffusivity in a multiscale random
flow, with the stream-function spectrum ¥, o A, Ay < A < A, (Isichenko and Kalda,
1991c). Due to a more sophisticated dependence of L(a) and w(a) (see Egs. (3.71)), (3.75),
and (3.77)), there are several regimes of effective diffusion in this flow. The regimes are
depicted in Fig. 23, where the parameter space (H, log(Am/Xo)/ log(¥o/Do)) is shown. One
of these regimes corresponding to the monoscale correlated stream-function (regime B in
Fig. 23) is recovered by simple substitution of the random-percolation exponents by their

correlated counterparts (see Sec. IL.D),

1 1
—_— d — < H . . (4.44
v = Dy, > < <0 ; (4.44)

In this case we have from Eq. (4.37)

P

_ —Dp/H+1 1001 - H) 3
“TTD./H+z T0-11H’ g <H<0. (4.45)

For H tending to zero, o tends to unity and the effective diffusivity D* becomes indegﬁ_endent
of Dg. Such independence extends to regime C. Regime A, which is characterized by the
monoscale-like scaling D* o DS/ 13, is obtained by substituting the partial diffusivity D,
(4.42) into the monoscale flow ¥, (z,y) and using formula (4.36). In this representation,

D, is the “renormalized molecular diffusivity,” which accounts for the transport effect of

the flow spectral components with A < A,.

4. Diffusion in time-dependent random flows

Thus far, we were concerned with “frozen” random flows, or an “unessential” time-dependence
preserving the topology of streamlines. In the case of an “essential” time-dependenée, where
the topology is changed, effective diffusion can set in even at zero molecular diffusivity.

The general reason for the decay of orbit correlations in (4.5), and hence the transition

to the effective diffusion, is Hamiltonian chaos (Lichtenberg and Lieberman, 1983; Sagdeev
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et al., 1988). Suppose Dy = 0. Then the equations of fluid element motion,

i-'f — a¢($’yat) _(_lg — _a¢($vy,t) (4.46)

dt Oy Todt oz

correspond to the Hamiltonian 1 defined in the phase space (z,y). The Liouville theorem
is equivalent to the incompressibility of the flow v = V1 X Z. The one-degree-of-freedom
tirﬁe—dependent Hamiltonian (z,y,?) is equivalent to a two-degree-of-freedom autonomous
Hamiltonian in a four-dimensional phase space (Lichtenberg and Lieberman, 1983). Sub-
tracting one dimension for the autonomous Hamiltonian conservation, we get an essen-
tially three-dimensional iso-energetic manyfold, which is the lower critical dimension for the
stochastic phase orbits. Indeed, a self-avoiding smooth Hamiltonian orbit can behave chaot-
ically in a 3D space, densely filling whole domains, which is impossible in two dimensions.
In fact, the stochastic behavior is a structurally stable property of Hamiltonian systems far
from (degenerate) integrable cases, that is, chaos is not eliminated by a small change in the
Hamiltonian (Arnold, 1978). The manifestation of the stochasticity is the extreme sensitivity
of phase orbits to the initial conditions. Two close trajectories diverge in time exponentially

fast. The quantitative characteristic of this exponentiation is the Kolmogorov entropy,

F 1o ((8x(8)])
K=lm  Jm, 7 le 16x(0)] (4.47)

where 6x(t) designates the distance between two neighboring fluid elements, and average
over the initial condition is taken. The case of positive K is usually referred to as chaotic
advection (Aref, 1984), or Lagrangian chaos (Dombre et al., 1986).

For a generic 2D fluid motion characterized by the velocity amplitude vy and length-scale
Ao, velocity field evolves at the characteristic frequency w = vp/X. In this case the turbulent
diffusivity D* and the Kolmogorov entropy are estimated from the simplest dimensional
consideration: D¥ ~ A\gvo, K =~ v /o, because there are no other independent parameters.

In thecase of plasma turbulence w can be independent of A\ and vo. For example, the
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drift wave frequency wx is determined from a linear dispersion relation, whereas the drift
turbulence amplitude is governed by various nonlinear effects (Horton, 1990). The guiding
center motion of a charged particle in crossed electric (E = —V¢(x,t)) and magnetic (B =

By Z) fields is described by
dx . ExB

E=UHZ+C 5T

which corresponds to incompressible motion across the magnetic field with the stream-

(4.48)

function
t
¢($,y,t) = _B;OSD (w,y, 20 +/0 ’U”(t')dt',t> . (4'49)

The characteristic frequency, w = max(wsx, kj v) (where k)| ~ |0log ¢/0z|), is thus decoupled
from the amplitude of . This leads to the possibility of both the high-frequency regime

(w > vo/ Ao, also known as the quasilinear limit) and the low-frequency (w <« vo/ )\0), or

S L

percolation regime of turbulent diffusion (Isichenko and Horton, 1991).
Another example is the plasma heat conduction in a magnetic field with a small fandom
component, B = Byz + 6B, (x), 6BL = V Aj(x) X 2. The equation of a magnetic field line
in the form | |
dx, 6B]

is equivalent to Eq. (4.46) with the stream-function %(xy,z) = 4)(x1,#)/Bo and the co-

ordinate z standing for time. The turbulent diffusivity stemming from Eq. (4.50) is known
as the magnetic field line diffusivity D,, (Rosenbluth et al., 1966). This quantity has the
dimensionality of length. In a collisionless plasma, the diffusive walk of magneﬂic lines causes
an enhanced electron thermal conductivity across the background magnetié field (Rechester

and Rosenbluth, 1978; Kadomtsev and Pogutse, 1979; Krommes, 1978)
. .
X| ~Dpve , (4.51)

where v, is the thermal velocity of electrons. Particle transport coefficients are also propor-

tional to D,, (Finn et al., 1991). The processes of heat conduction in a collisional plasma
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are more complicated, the expression for X* involving both the magnetic line diffusivity D,
and the Kolmogorov entropy K (see Sec. B.2).

Gruzinov et al. (1990) studied turbulent diffusion in two dimensions, with the character-
istic flow frequency w considered a free parameter. In the high-frequency limit, w > vp/ Ao,
the effective diffusivity is insensitive to the topology of the streamlines because the flow is
changed in the correlation time w=2, that is, well before a tracer particle is displaced to the
distance Ao. This leads to the following guasilinear expression for the diffusivity (Kadomtsev
and Pogutse, 1979):

D*z%g-, w> =, (4.52)

In the low-frequency (percolation) limit, w < vo/Ao, a tracer particle can traverse along
an almost steady streamline to a large distance before the flow pattern has appreciably
changed. The mixing length £, is defined as the maximum coherent particle displacement,

which occurs in the life-time 7(¢,,) of the convection cell:

L(ém) = vo7(ém) (4.53)

(compare with (4.38)). The life-time 7(a) of an a-cell is the time of unrecognizable change
(for example, twice in diameter) in the contour ¥(z,y,t) = h with the initial diameter
a. Such a change is undergone through the contour reconnection process (Fig. 24). The
reconnection takes place when the saddles corresponding to neighboring separatrices come
through the same level. An essential change in the shape of the convection cell occurs when
the saddles pass the level difference 63 = ¥Pow(a)/Ao corresponding to the width of the cell.
Since the level of a saddle point changes at the characteristic rate ¥ow, one finds the life-time

of the convection cell,

S _wle) (4.54)

(@)= Ge = Row
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Substituting Eq. (4.54) into (4.53); we find the mixing scale

én = o (/\ow>ud;:+1 ) - (4.55)

The turbulent diffusivity is then estimated similarly to (4.40),

~ F(én = vow(€n) . 4.56
So the percolation scaling of the turbulent diffusivity is given by
—L 3/10 :
vdp +1
D* = b (._w_?‘_o) M o (ﬂ) , w< b . (4.57)
Vo Vo /\0

Ottaviani (1991) studied the effective diffusion in a slowly varying 2D flow numerically.
He used a quasiperiodic stream-function with N = 64 standing waves modulated by random

Gaussian amplitudes with a long correlation time w™!. The observed scaling of the t_ bulent

d11°fu31v1ty, D* « ¢3® was close to the one predicted by formula (4.57) (D* o ¢7/ 10)’_.‘..,
The Kolmogorov entropy in a fast-oscillating random flow was calculated by Kadomtsev
and Pogutse (1978):

2

v . .
QI 4.58
o vl (458)

The quasilinear result (4.58) can be obtained by averaging the second-order moments of
linearized Eq. (4.46) (Kro.mmesv et al., 1983; Isichenko, 1991a).

This method does not Work in the percolation limit w < vo/Xo, again implying the
necessity of using geometrical tricks. Berry et al. (1979) proposed to study mappings of
curves rather than points. They described two principal types of convolution of a “liquid
curve:” “whorls” and “tendrils” (Fig. 25). The advantage of the liquid curve representation F 25
lies in that at any time the curve eonsists of close points, hence the rate of the curve elon-
gation provides a natural measﬁre of the average stochastic exponentiation of neighboring
orbits. Gruzinov et al. (1990) studied the exponentiating tendrils in a monoscale 2D random

flow that occur due to the elementary reconnections of the separatrices (Fig. 26). The most F 26
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efficient contribution to the liquid curve elongation is done by convection cells where the con-
vective revolution time is balanced by the reconnection time of two neighboring separatrices.
Consider a monoscale random flow changing with the characteristic frequency w < vo/Ag. As
the distance s(a) between two neighboring separatrices is inversely proportional to the length
L(a) of the streamline (see Eq. (3.103)), the reconnection occurs in the characteristic time
7s(a) = wls(a)/A¢ = w™l A/ L(a) corresponding to the level difference Pos(a) /Ao passed by
a saddle at the velocity 1ow. The rate of exponentiation is dominated by such streamlines
(diameter ax) that reconnect in the advective revolution time: 7,(ax) = L(ak)/vo). Hence
we find L(ax) = (Aovo/w)¥?, and the Kolmogorov entropy is estimated as K o vo/L(ak)-
The multiplicity of separatrices inside one ak-cell leads to a logarithmic correction in K, so
that

w Vg

1/2 Vo Vo
I{_(—S\:) 10g~/\0—w, w<<-/\—;.

The low-frequency/large Péclet number turbulent diffusion theory, which employs the

(4.59)

statistical topography analysis, was extended in several directions. Kalda (1991) studied the
general case of multiscale, time-dependent, incompressible 2D flow, including the effect of
molecular diffusion, where numerous effective diffusion regimes have been identified.

Gruzinov (1991) considered the effective diffusion in a weakly compressible random flow
v = Vi(z,y,t) X Z+eVip(z,y,t) . (4.60)

The last term in (4.60), which models a non-Hamiltonian friction experienced by a drifting
guiding center, makes particles move at a small angle ¢ € 1 with respect to the contours
of 1. Random walk in fields with finite divergence was also discussed in respect of random-
hopping models in disordered solids (Derrida and Luck, 1983; Fisher, 1984; Kravtsov et al.,
1986). The compressibility of advecting flow results in the occurrence of limit cycles and
stable foci, which attract and trap tracer particles (Fig. 27) until they are released due to

molecular diffusion or flow time-dependence destroying the traps. So the diffusion process
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results from the particle flights from one trap to another. In the low-frequency limit, these
flights are approximately along the contours of ¥(z,y,t) and may be long enough (Lévy
flights, cf. Shlesinger et al., 1987). For the monoscale compressible flow (4.60), the effective

diffusivity scales as

S )
D* o~ A2we™ T —;‘:—‘3 <e<l. (4.61)
: 0

For smaller ¢, the effect of compreséibility is unimportant and D* is given by formula (4.57).
In the case of time-independent compressible flow with finite molecular diffusivity Dy, the
effect of traps can result in an exponentially small effective diffusivity D*.

Yushmanov (1991) studied the neoclassical diffusion in a turbulent plasma. Mathemati-
cally, this problem was reduced to the chaotic advection in a random 2D flow with a tempo-
rally varying average component. The average velocity component in an equation similar to
(4.48) results from bounce oscillations of particle guiding center due to the toroidal’ggometry
of a tokamak. Causing alternating opening and closing of random streamlines, such effect

leads to the onset of effective diffusion at zero molecular diffusivity.

5. Anomalous diffusion

Effective diffusion in an advective-diffusive system results from asymptotically decaying cor-
relations in the particle trajectory. This “loss of memory,” which is due to the moleculér
diffusion, or the Lagrangian chaos, or both, occurs in a finite mixing time 7,,. On time-scale
t < T, the advective-diffusive transport can exhibit more sophisticated, “anomalous” behav-
ior. In particular, the root-mean-square particle displacement can scale differently from thé

standard square root of time,

1/2

M) = ((x(t) - x(0))2)" s (462)

where ( # 1/2 is the exponent of anomalous diffusion.
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Anomalous diffusion can also take place in nonintegrable Hamiltonian systems where the
velocity field is the phase-space flux (Swagerl and Krug, 1991).

One might suppose that the coordinates x(t) of a particle undergoing an anomalous
diffusion (4.62) can be modelled by a fractional Brownian function B¢(¢). In general case,
however, this is not true as the increments of x(t) may not be Gaussian (Bouchard et al.,
1990). The probability distribution function n(x,t) of x, for n(x,0) = §(x), is given by the
solution of the complete advective-diffusive equation. In the long-time limit, one can expect

a self-similar behavior in the form
n(x,t) = Ct~¢ f(|x|/¥) , (4.63)
where an isotropic transport is assumed. In the Fisher (1966) model of a random self-avoiding
walk (which may not be the case for the advective-diffusive transport),
f(u) o exp(—u/(=9)) | (4.64)

which becomes Gaussian only in the case of a standard Brownian motion ({ = 1/2). Still, for
a sufficiently fast decresing f(u), distribution (4.63) is qualitatively similar to the Gaussian
probability distribution function, so that a fractional Brownian motion can serve a reasonable
model for anomalous diffusion. Specifically, the fractal dimension D of the particle trail is

given by formula (3.33), whose derivation is not hinged on the Gaussianity of x(t):
D =min(1/(,d) , (4.65)

where d is the corresponding space-dimension.
Two physically different regimes of anomalous diffusion should be distinguished: the

superdiffusion ({ > 1/2) and the subdiffusion ({ < 1/2).

a. Superdiffusion

One can imagine flows with long-range velocity correlations resulting in a “persistent” par-

ticle orbit, whose at least partial memory of the previous history lasts forever: 7, = oo.

104



According to the Tatarinova et al. (1991) and the Avellaneda and Majda (1991) theorems,
in the presence of finite molecular diffusivity such flows should have an unbounded vector
potential %(x,t). The simplest example of superdiffusion was described by Dreizin and
Dykhne (1972). Consider a shear flow with the velocity taking at random two constant
values, v = v,(y) = vy, in the strips of the width Ay (Fig. 28). The average velocity for
almost each realization of this flow is zero, while the stream-function ¥ (y) = f¥ vz(g)' Ydy' is
unbounded at y — oo. By time ¢, a tracer particle gets quasi-uniformly dispersed in the
y-direction over the distance A, = (Dgt)'/? covering approximately N = ),/), flow strips.
Given the random distribution of velocity directions, one can expect approximately N/2, say,
left-directed strips in excess of right-directed ones. The fraction of time the partlcle spends
in  these excesswe (left-directed) strips is of order NY/2/N = N~1/2, Hence the expected

(rms) particle displacement in the z-direction is given by

2\ 1/4
Ao 2 gt N71/2 = o (1—’\)9-> 34 _(4.66)

0
a superdiffusive behavior ({ = 3/4 > 1/2).

A continuum generalization of this step-like flow is one-dimensional random stream-
function ¥ = ¥(y), with the spectrum % = ¥o(A/Ao)?, A > Ao, 0 < H < 1. (The example
of Dreizin and Dykhne, 1972, corresponds to H = 1/2.) The velocity spectrum of such flow,
vy = vo(A/ o)1, also implies zero mean velocity: (v) = vy=eo = 0. The superdiffusion law

is similarly obtained as

. et , 22
Ay(8) = /Dot As(t) = va it = vo <D0> t'jéﬁ , 1> _D_o : (4.67)

The averaged transpoft equation describing superdiffusion (4.67) cannot be cast into a local
form, however, the average tracer density (n) may be asymptotically represented as the

ensemble averagé of solution of the simple equation

On/0t = Rt¥6%n )0z , (4.68)

105

F 28



where R is a random coefficient with known distribution (Avellaneda and Majda, 1990).
Bouchard et al. (1990) considered an isotropic 2D generalization of the random-directional

shear flow — the “Manhattan system”

P(z,y) = Pi(z) + p2(y) (4.69)

(see Fig. 29). Suppose each component of the stream-function (4.69) has a power spectrum
with the exponent H > 0: ) o A¥. Anomalous diffusion in such flow can be obtained
similarly to Eq. (4.67). Due to the statistical isotropicity of the system, the rms displacement

A(t) is self-consistently coupled to the result:

/\(t) =yt - (4.70)
It follows,
_ _vo_t>_ﬁ A
M0~%(% , 1> (4.71)

At H = 1/2 one has the superdiffusion exponent ( = 1/(2 — H) = 2/3 (Bouchard et al.,
1990).

The way result (4.71) has been derived, one can expect its wider generality. In fact,
superdiffusive law (4.71) is valid not only for a Manhattan flow, but also for an arbitrary
random stream-function with the isotropic power spectrum % o A¥ (Isichenko and Kalda,
1991c). The validity of (4.71) for a two-dimensional random flow, however, is restricted
by the inequality 0 < H < 10/17 (region C in Fig. 23). Formula (4.71) also extends
to three—dimensional random time-independent flows. Koch and Brady (1989; see also
Brady, 1990) considered random 3D flows with algebraically decaying velocity covariance
(vi(x)vj(x + p)) o &;|lp|™" and found the superdiffusive tracer dispersion (4.62) with the

exponent

0<y<2. (4.72)
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The velocity covariance ox |p|™ corresponds to the spectrum vy o< A™"/2 (see Egs. (3.9)-
(3.13)) and hence to the vector potential ¥(x) A-spectrum exponent H = 1 — /2. Then
Eq. (4.72) is equivalent to { = 1/(2 — H), in accordance with Eq. (4.71).

The superdiffusive law (4.71) does not exhaust all anomalous regimes in 2D, random,
power-spectrum flows. Another superdiffusive regime in a multiscale flow corresponds to the

random walk with the self-consistently determined partial diffusivity (4.42):
)\z(t) = D)‘(t)t . (4.73)

Substituting formulas (3.71) and (3.77a) into the expression Dy = Do L(A)/w(A), we obtain
Dy oc \P»—H hence (Isichenko and Kalda, 1991c)
S
t 24+H-D
At) = Xo (1?\—02) ’ y Ao < A(t) < min(¢, An) , (4.74)
0
where ¢ is the solution of Eq. (4.38). For H < 1 we have

1 7

C=5TH_D, " T0H<4"

1 L d
5 . (4{5)

This superdiffusive regime is possible for H > —2. It is interesting to note that, for -2 <

H<

=%, Eq. (4.57) predicts the root-mean-square particle displacement faster than linear

with time (¢ > 1), that is, with an acceleration.

Perhaps, mbre important implications of the anomalous diffusion concern real turbulent
(time-dependent) flows. The Richardson law (4.6) means, by definition of D), that the
root-mean-square relative displacement of advected particles behaves as A(t) = (Dyg) )2,
hence

At) o 832 (4.76)
The Richardson superdiffusion (4.76) is naturally obtained from the Kolmogorov-Obukhov
spectrum? (Kolmogorov, 1941; Monin and Yaglom, 1971, 1975; Rose and Sulem, 1978; Batch-

elor, 1982) vy o A3 using the relation A(t) = vy t. Indeed, vy is the characteristic velocity

2The standard form for this spectrum is usually given in terms of the energy spectral density, E(k) o
k~5/2, The relation between E(k) and Ej o< v3 is given by Ej = fll//()‘zx) E(k)dk o« X273,
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difference in two points, which are the distance ) apart from each other. Superdiffusion law
(4.76) was derived by Obukhov (1941) from a dimensional analysis similar to the one that
led Kolmogorov (1941) to the AY3 (H = 4/3) velocity spectrum. A detailed discussion of
the relation between the Kolmogorov spectrum and the Richardson dispersion was given by
Batchelor (1952).

In the case of a decreasing velocity spectrum, vy o« A¥~1, H < 1, a nontrivial abso-
lute superdiffusion is also possible. Time-dependence can be introduced in the form of the

characteristic frequency wj, at which the A-component v (x, t) of the velocity field is evolved:

A ~G
Wy =Wy (j\;) , <A< Am - (477)

In a pure fluid turbulence one would have wy = vy/A, that is, G = 2 — H. For the turbulence
of Rossby waves in a rotating fluid and drift waves in plasmas (Hasegawa and Mima, 1978;
Hasegawa et al., 1979), or other systems having a characteristic velocity V' such as the phase
velocity of linear waves, regimes with wy = V/\ are possible, that is, G = 1. The superdif-
fusive law for arbitrary G > 0 and H < 1 can be obtained as follows. The displacement of a
tracer particle, released in the flow at ¢t = 0, is governed, by time ¢, by the flow component
with A = A*(¢) determined from the equation Wikt = 1. Indeed, at H < 1 longer scales
(A > X*(¢)) have smaller velocity, whereas shorter scales (A < A*(t)) have fast-oscillation
velocity components: wyt > 1. In the absence of other scales, these oscillations would
lead to the turbulent diffusivity given by formula (4.52): D) = vi/wy « AG+2H=2 If D,
increases with growing A, that is, G > 2 — 2H, then the A*(t) velocity scale dominates the
tracer motion. In this case, we can write the root-mean-square displacement A(%) in two

1/2

equivalent forms, A(t) = Vykeyt = (D,\*(t) t) . Thus we obtain

A(t):Z—Z(wot)gg__l, G>2-2H>0. (4.78)

In the opposite case, G < 2 — 2H, the small-scale velocity pulsation dominates the particle

motion leading to the turbulent diffusivity D* =~ vZ/wo. The validity of result (4.78) in two
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dimensions is further restricted by the inequality G < 2 — H to ensure the absence of an
additional integral of motion -— the adiabatic invariant of the stream-function ¥ (z(2), y(¢),1t),
which is approximately conserved at wy < vy/A. The low-frequency transport in a two-
dimensional multiscale time-dependent flow is more complicated and requires the statistical-
topography analysis of particle orbits (Kalda, 1991).

Osborne and Caponio (1990) studied passive transport in a 2D time-dependent random
flow with spectral exponents G = 1, 1/2 < H < 1. They found numerically that in this
interval of H the superdiffusion exponent ¢ behaves as { = H, in accordance with Eq. (4.78).

Notice that in the case of a turbulence with the eddy-revolution characteristic frequency
wy = v/}, that is, G = 2—H, Eq. (4.78) leads to the superdiffusive exponent { = 1/(2—H),
the same as in Eq. (4.71) describing the superdiffusion in steady flows. o

Avellaneda and Majda (1990) considered anomalous diffusion in random unstea@iy ':shear
flows, v = v(y,t). They identified several regimes of the tracer behavior and establisiggd the
equations describing the average density (n).
| The anomalous diffusion scalings, such as in Egs. (4.71), (4.74), and (4.78), can be used

| to recover turbulent spectra from the observed tracer motion, such as satellite-trackedubuoys
deployed in the ocean (Osborne et al., 1986; Brown and Smith, 1991). To do so, one can use
either compléte time-coordinate records {¢;,z;,¥:} or only the trail {:t,-,y,-}, whose fractal
dimension D is related to the anomalous diffusion exponent { by formula (4.65). Howevér,
for deciphering turbulence spectra %, o A with H > 1, the information stored in the
relative particle dispersion has to be used.

Another manifestation of a self-similar (power-épectrum) turbulence is the fractal struc-
ture of the isoscalar surfaces, that is, the surfaces where the density of a passive scalar
takes constant value. Constantin et al. (1991) give theoretical expressions for the fractal
dimension of isoscalar surfaces, D;, = 2 + H/2, in the internal region of a turbulent spot,

and D, = 1+ H, near the boundary of a turbulent jet, where vy o A¥~1 is the velocity
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spectrum. These predictions agree with experimental data (Sreenivasan and Prasad, 1989;
Sreenivasan et al., 1989; Constantin et al., 1991). Recent experiments on turbulent diffusion,
superdiffusion, and fractal behavior also include Swinney and Tam (1987), Ramshankar et al.
(1990), and Ramshankar and Gollub (1991). Some other fractal and multifractal properties
of passive scalars are discussed in Mandelbrot (1975b), Hentschel and Procaccia (1983a), Ott
and Antonsen (1988), Voss (1989), Vulpiani (1989), Fung and Vassilicos (1991), and Vérosi
et al. (1991).

b. Subdiffusion

The superdiffusive (“persistent”) random walk does not exhaust the variety of anomalous
diffusion regimes in incompressible flows. The subdiffusive (“antipersistent”) tracer motion
with ¢ < 1/2 is also possible (Young, 1988; Pomeau et al., 1988; Young et al., 1989). In
a time-independent flow, such behavior arises from the tracer particles resting in closed
pockets of recirculation. Getting to such a region of closed streamlines, the particle resides
there for some (random) time before proceeding with its further propagation. The resulting
retarded ({ < 1/2) dispersion is quite similar to the diffusion on loopless structures (Havlin
and Ben-Avraham, 1987), such as a “comb” (Fig. 30). The system of regular convection rolls
(Fig. 20) is equivalent to a comb, whose base represents the diffusive boundary layers, and
the teeth correspond to the inner area of the convection cells. To complete this analogy, one
should position the teeth, Ao long, the distance wy = Ag P~/2 (P = 19/ Do > 1) apart from
each other and to ascribe the diffusion coefficient of the order of the molecular diffusivity
D, to the whole structure. Such a representation of the transport properties of flow (4.22)
is valid on time-scale ¢t 3> Ao/vo, when (a) the boundary layer structure of transport is set

in and (b) the tracer dispersion inside the convection rolls can be described by averaged
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one-dimensional cross-stream diffusion equation

ot 0 . on(,1)
ot —ar P 5>

(4.79)
instead of the full 2D advective-diffusive equation (4.1). In Eq. (4.79), n(J,t) designates the
tracer density averaged over a streamline 9(z,y) = const. with the area J inside it. The
idea of such averaging stems from the perturbation theory of nearly integrable Hamiltonian
systems (Arnold, 1978), where one switches from the phase space variables (z,y) to the

action-angle variables (J, ¢#) of the unperturbed (integrable) motion. The action-diffusion

coefficient D(J) is given by
D(J)=Do § |Vylie § VoI 7ae, (480

| where integfals are taken around the streamline (Young et al., 1989; Isichenko et al; 1989).

Suppose a small spot of dye (passive tracer) is deposited at t = 0 close to the separatrix
mesh of a periodic array of vortices (Fig. 20) corresponding to the base of the comb (Flg 30).
Consider time-scales Ao/vg < t < A2/Do. Then the dye invades the distance (Do t)l/ 2 along
the teeth. The fraction F(t) of “active” particles, that is, those residing on the base and

determining the long-range tracer dispersion, decreases with time as

Wy

F(t)=m-/—2.

(4.81)

In terms of the random walk of a single particle, expression (4.81) yields the fraction of time

spent on the comb base. Then the propagation rate along the base coordinate b is given by
b*(t) = F(t) Dot = wy(Do t)*? . (4.82)

This corresponds to the root-mean-square displacement in real space (Havlin and Ben-

Avraham, 1987; Pomeau et al., 1988; Young et al., 1989)

Ao

A(t) = b(t) = = (A2 Do t)/* - (4.83)
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a subdiffusive law ({ = 1/4) sometimes referred to as “double diffusion” (Krommes et al.,
1983). Such tracer behavior is valid for nonvanishing velocity on the separatrix mesh (“free
slip” boundary condition). For “no slip” (rigid) boundary, where the velocity turns linearly
to zero, one has { = 1/3 (Pomeau et al., 1988; Young et al., 1989).

Not only the rms displacement scaling can be established for periodic flows but also the
governing equation for the tracer envelope. The general form of this equation was derived

by Young et al. (1989):
o rt N
- /0 K(t —7)f(x,7)dr = D* V*f(x,1) , (4.84)

where f is the tracer density on a separatrix considered as a function of “slow” coordinate x,

D* is the effective diffusivity, and K (7) is an integral kernel satisfying the matching relation
/0 K(rydr=1. (4.85)

The sense of Eq. (4.84) is that the tracer flux is determined solely by the density f in the
diffusive boundary layers and the effective diffusivity D* (rhs), while lhs specifies the change
in the average tracer density (n) = [ K(t —7)f(x,7)dr. The latter is obtained from f via a
linear integral operator describing the tracer invasion in a convection cell. In the limiting case
t > T, where the mixing time 7, =~ /\3/ Dy is the characteristic time of the convergence of
integral (4.85), the kernel K can be substituted by a delta-function, hence (n) = f, and the
efféctive—diffusion equation is recovered from (4.84). In the opposite case, Ao/vo € t K T,
the kernel behaves as a power, K(7) = (7,, 7)~'/2, and the operator on the left-hand side of

Eq. (4.84) becomes the operator of fractional differentiation (see Eq. (3.34)):
T_.__fzﬂ*vzf. (4.86)

As the nonlocal time-operator /8/8% is commutant with the space-operator V2, one can

write a consequence of Eq. (4.86) in a local differential form,

8f _ twD¥’
ot o«

ViF, (4.87)
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which emﬁhasizes the term “double diffusion.” The simplicity of (4.87) is, nevertheless,
deceptive: while including all solutions of the nonlocal equation (4.86), the local double-
diffusion equation (4.87) has many (much, to be more correct) extraneous solutions, > which
well rﬁanifests itself in a strongly unstable behavior of Eq. (4.87): A monochromatic so-
lution f o exp(—iwt + tkx) grows with time exponentially, w = ik* 7, D¥ /7, whereas
our intuitive conception of (sub)diffusion suggests a behavior.of f that smoothes out initial
inhomogeneities.

Subdiffusive behavior is also possible in random flows (Isichenko and Kalda, 1991c).
Like in regular convection cells, this behavior is transient (¢ < 7,,) and takes place for
special initial conditions, namely, for the initial tracer spot deposited in a mixing convection
cell. (Remember that the mixing convection cells of the size &, play the role of boundary
layers.) The diﬁ'erence.bet;ween random flows and regular flows lies in the appearance of their
equivalent loopless structures. Due to the presence of numerous separatrices in a random
flow, tracer fills up the holes in a ¢,,-cell topologically nontrivially as on each separeffrix the
converging diffusion front breaks into two (in a nondegenerate case — see Fig. 31): Hence
the equivalent “diffusion comb” of a random flow has branching teeth (Fig. 32). ’l;he rate
of filling up the branches of these trees can be found using the topographic properties of
random flows.

Introduce the “action distance” z; across the streamlines according to dJ = +L(z,)dz,,
where L(z7) is the léhgth of a closed strean:'lline and J the area inside this line. The action-
diffusion coefficient (4.80) being estimated as D(J) o~ Dy L%(z;), one can rewrite Eq. (4.79)

in terms of the action distance z;:

on_ 1 o
ot ~ £($]) Ozs

(Do L(zy) g—;) . (4.88)

F31

F32

Hence the segments of the “diffusion tree” (Fig. 31) can be measured in the action-distance F 31

3Those of Eq. (4.86) with D* substituted by —D*.
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‘units, with the diffusivity along the branches of order D,.

Consider a monoscale uncorrela,tea, random, steady flow with the characteristic scale Aq.
The action distance between the external boundary of an a-cell and the innermost point of
a hole in the cell can be calculated as the sum of the widths (3.43) of the nested cells of
diameter Ag, 2Xg, ..., a. For any a > ), this sum is estimated as Ag. It follows, in particular,
that the action distance between two arbitrary points on the (z,y) plane is bounded by a
constant of the order of Ag. Hence the mixing time in the monoscale flow equals

A3

=5 (4.89)

Tm

Consider time-scales w?({y,)/Do < t < 7. Then diffusion front invades the action distance
z;(t) = /Dot along each branch of the diffusion tree. To calculate the total area S(z;) (in
physical space) covered by the invaded region inside one ¢,,-cell, introduce a new topographic
exponent §, which can be called “dimension of the diffusion tree”: S(z;) « z¥%. Using the
matching conditions S(w(€,)) = L(én)w(én) (where L(€,) is the perimeter (3.41) of the
£m-cell) and S(Ao) = &2, (all the holes are filled up by t = 7,,, when z; = Ao) we find

5=1+w2_@)=§. (4.90)

The fractional value of the tree dimension é between 1 and 2 indicates that, while complete
2D description (4.1) is redundant, purely one-dimensional action-diffusion oversimplifies the
transport in topologically complex flows.

The rest of the calculation essentially repeats that for the simplest nonbranching diffusion
comb, whose dimension § is unity. The fraction of active particles lying on the base of the

comb is

F(t) = g((:;—g%’"% x t~%% | (4.91)

The tracer propagation along the comb base is given by b*(t) = F(t) Do t, and as the distance -

w(é,) between the tree-like teeth of the comb corresponds to the physical distance &, we
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obtaln

Em ( DOt )( w2(€m) ’
A = b(t) ——= =¢n , <t<Th, 4.92
=gy () o (4.9
where the subdiffusion exponent for 2D monoscale random flow equals
1 § 1

The “triple diffusion” (4.92)-(4.93) can also be described by a nonlocal integro-differential
equation involving the operator (8/0t) 3.

The generalization of the above result to the case of multiscale flows is easily done for the
“monoscale cbrrelated” spectrum with the exponent —1/v < H < 0. In this case one simply
substitutes the percolation exponents v and dj in expression (4.90) by their correlated-

percolation counterparts (4.44). As a result, we have the dimension of the diffusion tree

-9 T
S R '(as
and the subdiffusion exponent
1 4 H-D 2 .
' s b 24 (4.95)

(=5~ 1= 2 - u=m

The subdiffusion law (4.92)-(4.95) is valid for —3/4 < H < —2/5, where 0< ¢ <1/86.
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B. Conductivity of inhomogeneous media

The problem of average characteristics of spatially fluctuating dielectrics and conductors is
as old as the electrodynamics itself (Maxwell, 1873). The review of early work by Clausius,
Mossotti, Lorentz, and others on polarizability of geterogeneous media was given by Lan-
dauer (1978). Up to now, there is no general solution of this classical problem, which is
mathematically formulated as follows. Denote e(x) the microscopic electric field and j(x)

the microscopic current density in a medium with a nonuniform conductivity tensor &(x):
Jj(x) = 7(x) e(x) . (4.96)

To satisfy time-independent Maxwell’s equations, the electric field should be irrotational and

the current density solenoidal:
Vxe=0, V.j=0. (4.97)

Given a deterministic (or statistical) description of fluctuating conductivity &(x), what is the
space (or ensemble) average conductivity %7 By definition, the effective conductivity is the
proportionality coeflicient (in general, tensor) between the average electric field E = (e(x))

and the average current density J = (j(x)):
J=G6%E. (4.98)

Similarly to the advective-diffusive problem, one can introduce the mixing length &,, char-
acterizing the minimum scale of the effective-conduction behavior (4.98).

Not only the problem of electrical conductivity is described by Egs. (4.96)—(4.98). Math-
ematically equivalent are the problems of averaging of dielectric constant £ (where j is sub-
stituted by the electric induction D), diffusivity D (where E is substituted by the density
gradient of a diffusing substance and j is its flux), and thermal conduction tensor X (with E

standing for the temperature gradient and j for the thermal flux). Among versatile transport
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processes occurring in heterogeneous media, we discuss primarily those involving a large pa-
raineter, such as the strength of fluctuations of &(x), or the strength of its anisotropy. It
is believed that a qualitative analysis of scaling relations for the effective conductivity o* is
most important for the physical understanding of the problem. Nevertheless, not numerous
available examples of nontrivial exact solution will be also reviewed.

The extreme case of binary mixture of an ideal insulator with a conducting phase was
discussed in Sec. II in the framework of the percolation theory. The behavior of such a
mixture involves a sharp transition from an insulator to a conductor. However, due to
the reasons discussed in Sec. IL.E, the behavior of three-dimensional effective conductivity
o* near the continuum percolation threshold may not be quite universal. In Sec. 1 we
discuss the special case of a two-dimensional, two-phase system, which is ezactly at the
percolation threshold. For an arbitrary ratio of the phase conductivities, it turns out to
be possible to calculate the effective éonductivity using a recii:rocity relation discovered by
Keiler (1964) and Dykhne (1970a; Sec. 1). This method is also applicable to polycrystals and
heat conduction in anisotropic plasmas (Sec. 2). In Sec. 3 the anomalous magnetofggistance

taking place in inhomogeneous conductors with the Hall effect is discussed.

1. Keller-Dykhne reciprocity relations

One of very few exact results on the conductivity of composite materials was obtained for
‘a two-dimensional binary mixture. Once again we notice the remarkable (and exceptional)
feature of two dimensions faQoring successful analytical advance. In the long run, the avail-
ability of exact percolation exponents, as well as of 'results discussed below, stems from the
highly nontrivial fact of the existence of complex numbers and resulting conformal maps.
(Indeed, it is nof easy to expect that a vector algebra can be introduced, including the op-
eration of division, similar to the algebra of real numbers. And such an algebra cannot be

naturally introduced in three diménsions.)
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Originally, Keller (1964, see also 1987) considered a composite medium consisting of a
rectangular lattice of identical parallel cylinders of any cross-section, having electrical con-
ductivity o;, embedded in a medium of conductivity ¢;. Using the theory of harmonic
functions, Keller proved the following relation for the principal values of the effective con-

ductivity tensor *(oy, o3):
0:2(01,02)‘7;3,(02,01) = 0102, (4.99)

where the z and y axes lie along the axes of the lattice. The second factor on the left-hand
side of Eq. (4.99) refers to the conductivity of a reciprocal medium, that is, the medium of
the same geometry but with interchanged phases oy and o5.

Independently, Dykhne (1970a) derived formula (4.99) under more general assumptions

using an elegant reciprocity transformation. Following his work, consider new vector fields
. 5 1 5.,
j'(x) = ox Re(x) , e'(x) = ;——R_](X) , (4.100)
*

where oy is a constant and B =% x ... is the operator of rotation in the plane (z,y) at the

angle of 90°. The choice of j’ and €’ is designed to satisfy the relations
V.i=0, Vxe=0, (4.101)

following from (4.97). Comparing the Ohm’s law (4.96) with Egs. (4.100), one easily finds

the relation between the “primed” vector fields:
flz)=Fx)e'(x), &(x)=0lR5 (x)R™. (4.102)

For the case of an isotropic tensor o;;(x) = o(x) é;;, and o(x) taking on only two values, oy
and o, in the regions I and II, respectively, it is convenient to choose o% = det & = 0,03, so

that of; = o'(x) 6;;, and

o3, inl,
o'(x) = 222 { (4.103)

oy, inll.



Thus the system of equations (4.101)-(4.102) becomes quite similar to (4.96)-(4.97) and
describes the current flow in a new two-dimensional system differing from the old one by the
interchange of the conductivities o7 and o;. Once, by assumption, from (4.96) and (4.97)
follows relation (4.98) for the average current and electric field, with the effective conductivity
6%(01,0;) being a definite function of oy and o3, then we conclude on the existence of an

effective conductivity, *’, of the “primed” system:
J =5%E", (4.104)
where
% = 5%(0y,0) . (4.105)
In Eq. (4.104), J' and E’ denote the average values of j’'(x) and €’(x), respectively. According
to (4.100), we have G
JI = (0’10’2)1/2EE ) E’ = (0102)—1/2RJ . (4106)
The final result comes from the comparison of Eq. (4.98) with Eq. (4.104). With constraint
(4.106), they are compatible for any E only if the tensor operator (0102)‘1]§‘18*'ﬁ a*
is identity. In terms of the principal values, o (o1,0,) and az‘y(al,ag), of the effective
conductivity *(o1, 02), this results in the reciprocity relation (4.99).

Now consider a composite medium, which is macroscopically isotropic: oX.(o1,03) =

o¥,(01,02) = 0*(01,05). Then Eq. (4.99) reads
* * _
(o) (0'1,0'2) (o2 (0'2, 0'1) = 0109 . (4107)

In the case of sfa,tistically equivalent distributions of two phases, which implies, however
not reduces to, a split 50/50 area occupation, the function o*(oy, ;) becomes a symmetric

function of oy and ;. Then it follows (Dykhne, 1970a),

o* = (0105)"2 . (4.108)
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This exact result is valid for arbitrary values of oy and 0. Specifically, if o7 tends to infinity
and o, to zero, the effective ‘conductivity o* still may remain finite. Such a behavior is
possible only exactly at the percolation threshold. (Here we mean the continuum percolation
through the high-conducting phase o1.) Indeed, below the threshold, o* should tend to
zero at oy — 0, whatever be oy, while above the threshold, c* should tend to infinity even
at oo = 0. Thus, for isotropic random mixtures in two .dimensions, the critical fraction of
volume (percolation threshold) equals one half, the same value as in the potential continuum
percolation with a sign-symmetric potential (see Sec. ILE).

It is noteworthy that, for any o; and o3, the symmetry leading to Eq. (4.108) extends to

the equipartition of Ohmic dissipation in phases I and II (Dykhne, 1970a):
2

= (#0), = = (P60, = 3% - (4.109)
There exist no universal formula for the effective conductivity of a material with unequal
amount of randomly distributed phases, or with more than two phases, because the informa-
tion about the volume fractions and the conductivities of phases is not enough to determine
the effective conductivity. The result will also depend on the spatial distribution of phases.
Specifically, the conductivity behavior near the percolation threshold may crucially depend
on the presence of long-range correlations in the distribution. In addition, the percolation
conductivity exponent p (see Eq. (2.10)) is not exactly known even for the uncorrelated lat-
tice model. Schulgasser (1976) showed the nonexistence of a Keller-Dykhne-type theorem in
three dimensions. Instead, using the classical variation principle (cf. Dylkhne, 1967), that the
electric current distribution minimize the integral Ohmic heat under appropriate constraints,

Schulgasser established the inequality
o3 (01,02) o (03,01) = 0102, (4.110)
which is valid for arbitrary 3D two-phase composite. Some other inequalities were obtained in

120



Bergman (1978), Milton (1982), and Golden and Papanicolaou (1983), where the analytical

continuation of 5*/ay, considered as a function of o /03, was used.

2. Systems with inhomogeneous anisotropy
a. Polycrystals

Another classical exampie of a heterogeneous medium is a polycrystal consisting of multiple
grains (crystallites) of an identical anisotropic material with random orientations (Fig. 33).
The importance of the problem of electrical and heat conduction in such media is emphasized
by the fact that all metals are typically polycrystals.

In two dimensions, the effective conductivity of a macroscopically isotropic polycrystal is
aléo amenable to the Keller-Dykime approach. Let o7 and o be the principal values of the

microscopic conductivity tensor
R - oqg 0 ~_ BN
F(x) = 0(x) 0~ (%), (4.111)

and g(x) be the rotation matrix at the angle 6(x), which varies from one crystallite to
another. Again inti‘oducing primed fields (4.100), we obtain the reciprocal Ohm’s law with
a new conductivity as shown in Eq. (4.102). Using formula (4.111) and taking into account

the commutity of the rotation matrices R and 4, we find

“ 1~ (0‘2 0 )A_
F'(x) = ;5-6(}:) 671 (x) . (4.112)

0 oy
Under the choice of 0 = 0102, 3'(x) becomes identically equal to 5(x). Hence, for the effec-
tive conductivity 5%(01,02) of the considered system, instead-of Eq. (4.99), the reciprocity
relation reads
U:z(01,0'2) a;y(al,ag) = 0109, (4.113)
- where z and y are the principal axes of &*. Thus, for a macroscopically isotropic 2D poly-

crystal, formula (4.13) yields an exact result (Dykhne, 1970a). Unlike the case of a two-phase

121

F 33



system, the polycrystal result does not require the equipartition of phases (which is quite a
strong limitation on the two-phase result) since both principal axes, o; and o9, are naturally
“equally represented” in each crystallite.

To understand the meaning of the Dykhne formula (4.13), it is instructive to consider the
extreme of a strong anisotropy, o7 > o3 (Dreizin and Dykhne, 1983). Then, in most places,
the current flows along the axes of a high conductivity (o;). These paths, however, terminate
in “traps” in the form of foci (Fig. 34(a)) or limit cycles (Fig. 34(b)). To escape these traps,
the current is forced to flow across the well-conducting lines, where the conductivity is o,.
To make the dissipation smaller, this is better to do close enough to the trap. Denote /; the
characteristic length and /; the characteristic width of the bundle of high-conductivity lines
near a focus where the main resistance r occurs. Then r can be estimated as the sum of the
high-conductivity path (along the bundle) and that of the low-conductivity path (across the

bundle):
1L 11

Expression (4.114) is minimized at l;/l; =~ (oy/03)'/? where it takes on the value rpy, =~
(0102)"12, Thus the conducting properties of the polycrystal can be represented by an
equivalent network of resistors with the characteristic resistivity rmin connected by well-
conducting (oy) wires. This network is similar to the field shown in Fig. 27. Such a network
has the macroscopic conductivity of the order of (0703)'/?, in accordance with exact result
(4.108). The above argument also shows that main Ohmic dissipation is released in the traps
occupying a small fraction of area, of the order of (d;/07)/? <« 1.

For three-dimensional polycrystals, no exact results are known. A éet of rigorous in-
equalities on the effective conductivity &* was obtained in Hashin and Shtrikman (1963),
Schulgasser (1982), and Avellaneda et al. (1988). The scaling behavior of o* for the case of
a strong anisotropy can be predicted by a qualitative theory (Dreizin and Dykhne, 1983).

Let oy > 02 > 03 be the principal values of the microscopic conductivity tensor. Then
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the high-conductivity (o;) lines terminate in several type of traps. In addition to foci and
limit cycles, a generic 3D compressible vector field (the paths along o; axes) can form
“strange attractors” (Lorenz, 1963). Such a name received the fractal attracting sets of low-
dimensional non-Hamiltonian dynamical systems that exhibit exponentiation of close orbits
and are characterized by finite size but zero volume in the configuration space. Along with
foci, saddles, and lir.nit cycles, strange attractors represent a typical invariant set of a 3D
vector field. The fractal dimension of an attractor given by formula (1.16) is not universal as
the Lyapunov exponents A; and Az change from one attractor to another being everywhere
of order Ay' (reciprocal crystallite size) thus introducing a peculiar “multifractality” of the
problem.
One can estimate the resistance of a trap formed by a strange attractor of high-conductivity

lines. Similar to the calculation in Eq. (4.114), we can write
()= = o + = oo (4.115)

where [ is the distance along the high-conductiwty (01) axes, the subscripts of [;(I) =~
Ao exp(A;l) correspond to the Lyapunov exponents ordering, and the fact was used that,
generically, the projection of the o, conductivity axis onto the shrinking direction (I3) is not

zero. Expression (4.115) is minimized by ! ~ (1/|2A3]) log(o1/o3), which results in

oy A o
o = (Aormm)”! ~ oy (;) s log™? (a_:) . (4.116)

Using formula (1.16) for the fractal dimension D of the attractor, expression (4.116) can be

rewritten as

o o PV GB-DI2 165-1 (5, [y (4.117)

So the equivalent network of a 3D polycrystal includes several kinds of resistors with a broad
distribution of resistances. Due to the inequality 2 < D < 3, the conductivity of a strange

attractor (4.117) is much larger than that of a focus or a limit cycle (=~ ooy 2'%). This
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is the play of a number, whether a generic polycrystalline configuration admits percolation
through higher-conductivity (strange attractor) traps or not. Preliminary numerical results
(Dykhne and Marianer, 1991) indicate that the concentration of such traps is well below the
percolation threshold, so that foci seem to govern the asymptotics of the effective conduc-
tivity, which thus scales similarly to the two-dimensional case, c* ~ (0y03)!/2. In both two

and three dimensions, the mixing length ¢, is of the order of the crystallite size \.

b. Plasma heat condution in a stochastic magnetic field

While being somewhat artificial, the problem of conductance in a strongly anisotropic poly-
crystal invokes the geometry of generic (random, in particular) compressible fields in a rather
instructive manner. The approximation of highly anisotropic transport, however, is quite
natural for the heat conduction in a magnetized high-temperature plasma, where the lon-
gitudinal (with respect to the magnetic field B(x)) heat conductivity X) can exceed the
transverse conductivity X, by many orders of magnitude (cf. White, 1989).

The idea of magnetic confinement fusion is to organize such a geometry of the magnetic
field (e.g., nested toroidal magnetic surfaces) that X, controls the heat losses from plasma.
In reality, however, there may arise irregularities of B(x), which, due to the triggering of the
large longitudinal conductivity X, can significantly increase the effective heat conductivity
X* across the unperturbed magnetic field (Rechester and Rosenbluth, 1978; Kadomtsev and
Pogutse, 1979). In the approximation of frequent collisions, the problem of the effective heat
conductivity belongs to the same category as polycrystals. The difference is that the high-
conduction lines in a magnetized plasma are the magnetic field lines, which are incompressible
(V - B(x) = 0) and hence cannot terminate in traps.

In a two-dimensional magnetic field, B(x) = Vi(z, y) xZ, the reciprocity theorem (4.113)
is still valid since in its proof nothing was assumed on the type of th¢ local anisotropy field

B(x). Hence, in the macroscopically isotropic case, the effective heat conductivity is given
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by (Kadomtsev and Pogutse, 1979)
X* = (x)V2. (4.118)

Having the same scaling as the conductivity of a 2D polycrystal, expression (4.118) originates
from quite a different heat conduction pattern (Isichenko, 1991b). Consider the case of a
random 2D magnetic field with the monoscale (Aq) flux potential 1(z,y). Since the magnetic
lines (contours of ¥(z,y)) are not trapped, one can expect a significant role played by
extended magnetic lines, so that the mixing length £, is much greater than the characteristic
scale Ag. To establish the transition to the effective heat conduction, it is more convenient
to argue in terms of the diffusion of “caloric” (the heat substance), whose particles diffuse
at the diffusivity X) along the magnetic lines and at the diffusivity X, across them. The
mixing length £, can be estimated as the size of a cell formed by magnetic lines, such that

a caloric particle is decorrelated from it in the time of the longitudinal diffusion:

_wém) _ LP(ém) | -
e s (4.119)

where w(é,) and L(&,) denote the width and the length of the bundle of ma,gnet;c lines
with diameters of the order of ¢,,. Using formulas (3.41) and (3.43), we find from (4.119)

Xy \ T@HT X\ /5
Em = Ao <%) T = Ao (X—”> > Ao . (4.120)
L

The effective heat conductivity can be estimated in a “diffusive manner” as follows:

x* ~ F(§m);z“— , (4.121)

m

where F(¢n) = L(ém)w(ém)én? is the fraction of area covered by the £n,-cells where most
of the transport takes place. Taking into account Eq. (4.119), formula (4.121) reduces to
Eq. (4.118).

In the case when a strong background magnetic field Bo = By Z is present, result (4.118)

is modified by the substitution X — X) (6B/Bo)?, which is simply a projection of the
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longitudinal conductivity onto the (z,y) plane, where éB = Vi(z,y) x Z is a 2D magnetic

fluctuation (Kadomtsev and Pogutse, 1979):

6B §B\*
x¥ ~ 'EE(X* XM, Xy (79—0) > Xy . (4.122)

In a more realistic model of a general three-dimensional magnetic perturbation, B(x) =
By Z + 6B(z,y, z), the magnetic lines exhibit a stochastic exponentiation. Indeed, the equa-

tion of a magnetic line,
dx_,_ _ 6BJ_(X_L,Z)
dZ - Bo ’

is similar to that of a particle orbit in a nearly incompressible, 2D, time-dependent flow,

(4.123)

if the coordinate z is treated as time. In the quasilinear limit, corresponding to the high-
frequency limit of passive advection, the length Il of the exponentiation can be estimated
as the inverse Kolmogorov entropy in Eq. (4.58). In terms of the magnetic field, this results
in

6B )\

g ~ N -R7%, REFOZ-<<1, (4.124)

where A and A, denote the characteristic scales of §B(x,,z) along and across the back-
ground magnetic field, respectively. The exponentiation of magnetic lines leads to a convo-
luted geometry of magnetic flux tubes (Fig. 35).

To estimate the effective heat conductivity in a stochastic magnetic field, we again argue
in terms of diffusion. A “caloric” particle can be believed to have decorrelated from a given
magnetic line when the particle leaves a magnetic flux tube encompassing this line, with
the initial radius A,. At sufficiently small transverse diffusivity X, this is easier to do by
first longitudinally diffusing to a distance z of several exponentiation lengths I, where the
magnetic tube gets strongly convoluted and then undertaking a short transverse diffusion to

a distance

w(z) = AL exp (--'l-;-') , (4.125)

F 35

which is the characteristic width of the flux tube wall (Fig. 35). The optimum value of F 35
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z = I, (the longitudinal mixing length) is obtained from the comparison of longitudinal and

transverse diffusion times:

2 wi(ly)
= m _ . 4.126
X = X. (4.126)

Tm

Substituting Eq. (4.125) into (4.126), we find

2
I =~ g log (;_—Ii- -/i\%{i) . (4.127)

This result is valid if the expression under logarithm is large.
During the decorrelation time 7,, the transverse particle displacement &,, is given by the

diffusion of magnetic lines, &, > (D, Im)'/?, where

6B\?
Do = (E) (4.128)

is the magnetic line diffusivity (compare with Eq. (4.52)). Finally, the effective cross-field
heat conductivity is given by the formula (Rechester and Rosenbluth, 1978; Kadomtsev and

- Pogutse, 1979)
2 X 2

Tm lm
In the case of stronger magnetic perturbations, R = % /\i_lf_- > 1, magnetic diffusivity is

given by percolation scaling (4.57),

Bo

7/10 ‘ )
Dy~ Ay %12 RV/(vdnt1) (‘5—3) : (4.130)
4]

and there are several regimes of the effective heat conductivity (Isichenko, 1991b), one of

which reduces to the Kadomtsev-Pogutse regime (4.122) in the 2D limit R — oo.

3. Magnetoresistance of inhomogeneous media with the Hall effect

Thus far we were concerned with the conductance in media that were either microscopically

isotropic (Sec. 1) or anisotropic with a symmetric conductivity tensor (Sec. 2). Here we
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consider inhomogeneous anisotropic media with unchanged direction of anisotropy (given,
for example, by an external magnetic field), but with a conductivity tensor having an essential

antisymmetric part &° associated with the Hall effect:
0i5(x) = o3;(x) + of;(x) , (4.131)

where of; = o}, and o; = —of;. This is a noticeable feature of such media that the conduc-
tivity processes are related to the advective-diffusive transport in an incompressible steady
flow, which problem is amenable to a more or less clear qualitative analysis. The correspon-
dence between the two problems (Dreizin and Dykhne, 1972, Dykhne, 1984) follows from
the microscopic Ohm’s law, j(z) = 7(x) e(x), e(x) = Vp(x), and the requirement that the

current density j(x) be divergence-free:

0 Oy

5, T 50 =0 (4.132)

Substituting expression (4.131) into (4.132), we obtain

vV =V(3°Vy), (4.133)
where
_ Oa?j(x)
vi(x) = 9; (4.134)

is an incompressible (V - v = V;V;0f = 0) field. Equation (4.133) can be thought of to
describe the steady distribution of a tracer with the density ¢ advected by the velocity field
v(x) and subject to the molecular diffusion °(x) (perhaps, anisotropic). Notice that the

vector potential 9(x) of the incompressible flow v(x) is given by

1
Y; = §E;jk G;k R a,f‘j = Eijk Yk , (4.135)

where €;; is the Levi-Cevita tensor. For bounded perturbations in the antisymmetric con-

ductivity %(x), the vector potential ¥(x) is also bounded leading to the existence of a finite

128



effective diffusivity D* (see Sec. IV.A.1). In terms of steady tracer distribution, this means

that the average flux is proportional to the average density gradient:
(Vo — 5'Vip) = =D* (V) , (4.136)

where the angular brackets denote spatial average over scale much larger than a mixing scale

¢m. Integrating the left-hand side of Eq. (4.136) by parts one finds
(8Ve) = D* (Vo) + (¥) x (Vo) - - (4137)

Since the left-hand side of Eq. (4.137) is the average current density, we recover the average

Ohm'’s law with the effective conductivity tensor (Dreizin and Dykhne, 1972)
5* =D* + (3°(x)) . (4.138)

Thus, if one is able to determine the effective diffusivity = D* in flow (4.134) with the
molecular diffusivity °, formula (4.138) yields the result for the effective conductivity of the
inhomogeﬁeous medium with Hall effect. »
Another approach, which is restricted to a two-dimensional, two-phase sysfem, is based I
on reciprdcity relations (Dykhne, 1970b; Balagurov, 1978, 1986, Bozhokin and Bykov, 1990).

Consider the microscopic Ohm’s law
j+ixB(x)=oo(x)e, (4.139)

where 3(x) = B(x)Z is the Hall parameter proportional to the external magnetic field B.

The conductivity tensor corresponding to (4.139) is

1 —B(x) 0

~ron __ 00(x) :

F(x) = e B(x) 1 0 . (4.140)
0 0 1+ (%)

This tensor is a good model of conductance in plasmas (Kingsep et al., 1990) and in non-

compensated metals and semiconductors (Lifshitz and Pitaevskii, 1981). Let the parameters
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oo(x) and B(x) fluctuate, each taking on only two values, o1 and o2 (for oo(x)) and §; and
B2 (for B(x)), in the phases I and II, respectively. The idea of the approach (Dykhne, 1970b)
is to use linear transformations from j and e to new fields j’ and e’ such that the macroscopic
properties of the new system are equivalent to those of the original system. In the presence
of the Hall-effect, one such transformation is not sufficient to calculate the effective con-
ductivity tensor; however, there exist two independent linear transformations satisfying the
desired conditions. Of course, the result can be achieved only for a statistically equivalent
and isotropic distribution of the phases I and II. Dykhne (1970b) considered the case when
only oo(x) fluctuates (o7 # 02,51 = B2). Balagurov (1978) generalized the result for the

%

more general case 8y # B2. The effective conductivity tensor ¥ can be written similarly to

expression (4.140) with the substitution oo(x) — o, B(x) — B*, where

' 010 12
* 102
o¥ = , 4.141
0 14+ (6182 — 0281)%/ (01 + 02)? ( )
ﬁ*:a*ﬁl+ﬂ2 . (4.142)

° o1+ 09
In the absence of magnetic field (8; = B, = 0), formula (4.141) reproduces result (4.108).
In the limit of a strong magnetic field (8 = (|81|+|52|)/2 > 1) and strong fluctuations of
the Hall conductance (A = |0182 — 0251|/(01 + 02) > 1) the effective conductivity (4.141)

becomes anomalously low:

oy ~ go(fA)T . © (4.143)

This anomalous resistance is caused by strongly nonuniform flow of electric current in the
presence of the fluctuations. The linear dependence of the transverse magnetoresistance
p*(B) = 1/o3(B) x B on the external magnetic field B (8 « B) is not an exceptional
property of the exact solution (4.141). Such behavior extends to generic 3D sharp inhomo-
geneities of the medium, such as voids or cracks (Herring, 1960; Pippard, 1989). A similar

magnetoresistance behavior can also result from the effect of the sample boundaries (Rendell
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and Girvin, 1981; Chukbar and Yankov, 1988; Isichenko and Kalda, 1992). It is interesting
that in the first measurements of the magnetoresistance in metals in strong magﬁetic fields
(Kapitza, 1928, 1929) a linear dependence p*(B) « B was observed even for monocrystalline
samples. Such a pronounced effect was not reproduced in later experiments (for review see
Pippard, 1989). The polycrystalline structure of metals would lead either to the saturation
of the transverse magnetoresistance p*(B) or to its growth as B%/3, B3, or B?, depending
on the topology of the metal Fermi surface (Dreizin and Dykhne, 1972; Stachowiak, 1978).
The explanation (Isichenko and Kalda, 1992) of the linear Kapitza law p*(B) « B is that in
Kapitza’s experiments (unlike later works) no separate potential leads were used and both
the potential and power leads were (improperly) brought from the same electrodes thus in-
troducing the boundary effect of a sharp interface. In the case of smooth inhomogeneities
the behavior of the magnetoresistance is different (see beiow).

It is interesting to identify the implication of exact result (4.141)-(4.142) in terms of the
advective-diffusive analogy (4.133)—(4.138). To do so, put o1 = 03 = 0y and By = -5, = So.
Then the symmetric part of tensor (4.140) becomes homogéneous, corresponding to the
“molecular diffusivity” in the (z,y) plane |

0o

Dy = ———, 4.144
and flow (4.134) becomes two-dimensional with the stream-function
_¢0‘v in I ’
¥(z,y) = o (4.145)
1/)0 ’ in II ’
where
oofo '
= . 4.146

According to Eq. (4.141), the effective conductivity, or the diffusivity in flow (4.144), is equal

to

o* = D* = oo(1 + B3) 2 = (D§ +43)'/* . (4.147)
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Thus one concludes (Dykhne, 1981; Tatarinova, 1990) that “Pithagor formula” (4.147) ex-
actly describes the effective diffusivity in the isotropic system of narrow jets separating
statistically equivalent regions I and II. For results (4.141), (4.142), and (4.147) to be valid,
the width w of the jets (in the advective-diffusive system), or of the transition layer be-
tween the phases I and II must be small not only in comparison with the characteristic
inhomogeneity scale Ao, but also in comparison with the width of a diffusive boundary layer:
w <K (Doho/ v0)'/2, where vy = o/w is the characteristic velocity in the jets. Hence we
obtain w <« Ao/ Py, where Py = 1/Do = BA > 1 is the Péclet number.

Usually, the advective-diffusive analogy serves in the opposite direction: to calculate the
effective conductivity of a Hall medium using presumably known effective diffusivity in a
corresponding velocity field (Dreizin and Dykhne, 1972; Isichenko and Kalda, 1991a). In the
case of monoscale isotropic 3D fluctuations of the off-diagonal conductivity ¢.,(z,y, z) with

the correlation length Ag, one has the velocity field (4.134),
v(x) = —Vog(z,y,2) X2, (4.148)

representing a two-dimensional incompressible random flow in each plane z = const. , with
the stream-function ¥(z,y,2) = —o,, smoothly varying with z. The characteristic velocity
in the flow is vg = 0oA/(BXo), where oo and B > 1 are the average values of oo(x) and
B(x), respectively, and A is the relative fluctuation amplitude of o, = ogo(x)/B(x). The
“molecular diffusivity” &° in this flow is anisotropic. At 8 > 1, the diffusivity in the (z,y)
plane (0,5 = 0y, = 00~%) is much smaller than that in the z-direction (0., = 0p). If the
fluctuations of o, and o,, are not too large, they may be neglected in comparison with the
effect of the fluctuations in the Hall conductivity o,,. In the considered case the long-range
topography of the stream-function ¥(z,y,2) in a plane z = const. is irrelevant, because the
tracer particle diffuses the correlation length Ao in the 2-direction long before the flow shows

an inhomogeneity in the (z,y) plane: wA3/oo = XoA/B <K Ao. This means that on the
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time-scale! t & A\2/oy, the velocity field can be substituted by a 3D shear flow v = v (z)
with randomly changed (on the correlation scale \o) direction of vi. For this situation,

formula (4.66) predicts a superdiffusive particle displacemént in the (z,y) plane,

2 1/4
z.(t) ~ v (Sf) T (4.149)

while the effect of the transverse molecular diffusivity oo3~2 may be neglécted. Superdiffusion
(4.149) takes place until the transverse displacement z, (t) attains the correlation length Ag;
after that a crossover to effective 'diffusion occurs. Denote t. the crossover, or correlation
time: z,(¢;) = Ao. Then the effective transverse diffusivity, and thereby the effective

. transverse conductivity, is estimated as

* 2 4/3
* - 3 (t) A
.D_L:O'_Lz-ﬂ—%z-ﬁ tc 20’0(? | . (4150)
The effective Hall parameter 5* is calculated using formula (4.138): o} = —of/B* =

(04y(X)) ~ —00/ B3, hence we have (Dreizin and Dykhne, 1972)
oF ~ 0o(BAY)TYE (4.151)
B* ~ gAY, (4.152)

Formula (4.151) describes the anomalous resistance, p*(B) oc B¥3, which is much smaller
than that in Eq. (4.143), p*(B) « B, in the limit of a strong magnetic field B. The differ-

ence between two mechanisms of the anomalous resistance lies in the geometry of the current

streamlines in media with sharp and smooth inhomogeneities. In the case of sharp inter- -

faces main Ohmic dissipation is released in narrow boundary. For isotropic smooth inhomo-
geneities, the anomalous resistance results from a long (£, = (0otc)"/? = Ao(B/A)% > Xo)

walk of current streamlines in the direction of the magnetic field (Fig. 36). In the gen-

INotice that in the employed advective-diffusive analogy the dimensionalities of vg and &g are different
from those of a velocity and a diffusivity. Only final results expressed in terms of the effective conductivity
will be dimensionally correct.
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eral case of anisotropic fluctuations in microscopic conductivity &(x), both mechanisms of
anomalous resistance (contraction in boundary layers and tangled walk of current stream-
lines) can coexist leading to the fractal geometry of both individual current streamlines and
the dissipation-containing region (Isichenko and Kalda, 1991a).

The extreme situation of a very strong anisotropy of fluctuations, corresponding to a two-
dimensional geometry (8/8z = 0) can realize in a magnetized plasma. Here, flow (4.148)
becomes purely two-dimensional, with the molecular diffusivity Doy = 0¢~2. The Péclet

number in this flow is estimated as

P=220_ A (4.153)

For monoscale fluctuations of oo(x)/F(x) with a sufficiently large amplitude, SA > 1, the
effective diffusivity, and thereby conductivity across the magnetic field is given by formula

(4.36),
*

g (of
o¥ = -E,-g; ~ DoP1/13 = ﬂ—‘; (BA)O13 (4.154)

which corresponds to (Isichenko et al., 1989)

oy ~ oo(BA)T113 (4.155)

B* ~ G1BA10/13 (4.156)

The behavior of conductivity (4.155) is an intermediate one between the case of sharp bound-
aries (4.143) and isotropic 3D fluctuations (4.151).

Inequality (4.20) specifying the allowed range of the effective diffusivity in an advective-
diffusive system can be translated into the bounds on the effective conductivity of an inhomo-
geneous medium with the Hall-effect. Using the above notation this results in the following
inequalities:

Ci00/(1 + f*A?) < 05 < Ca00, (4.157)

C3B/(1+B2A%) < B* < CuB, (4.158)
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where parameters C; accounting for moderate variation of the symmetric part of 5(x) are of
the order of unity. The limiting case of the anomalous resistance described by the left-hand
side of inequality (4.157) is attained in the direction across the for layer-shaped inhomo-

geneities, 03y(X) = 0y(z) (Chukbar and Yankov, 1988).
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V. Concluding remarks

Throughout this paper, a general idea was pursued about the usefulness of the geometrical
images of physical phenomena. Geometry unifies and interconnects very different physical
problems enriching methods of their solution. For phenomena involving many scales of length
(usually associated with the presence of a large parameter), the fractal geometry provides
sensible guidelines for qualitative analysis.

The quantitative description of random media in terms of the scaling behavior of effective
transport coefficients involves a set of power exponents, to which the large parameters of
the problem are to be raised. We tried to demonstrate that in many cases these exponents
form certain universality classes, that is, depend on the system parameters in a piecewise
constant manner. The universality class of random percolation covers a variety of lattice and
continuum models including the contour lines and surfaces of a monoscale random potential.
The latter problem is particularly relevant for two-dimensional incompressible flows, which
describe the advective-diffusive transport of a tracer, the guiding center drift in a turbulent
plasma, or the geometry of stochastic magnetic field lines. Some other problems including
the averaging of randomly-inhomogeneous conductance can be related to the percolation
model in more or less direct ways.

In addition to the discrete universality classes, there exists a continuum universality,
whose characteristic exponents continuously depend on a spectral parameter H. An example
of a continuous universality class is the long-range correlated percolation with H being an
exponent of the algebraic decay of lattice correlations. An extension of this problem to
continuum is the statistical topography of potentials with algebraic spectra. I hope that this

classical geometrical problem will see further development and new areas of application.
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Figure captions

1. Sierpinski carpet is produced by removing from a square its central part with the
size one third the square edge. Then the procedure is repeated with each of eight
remaining parts, and so on ad infinitum. At the nth step of the procedure, it takes

N,, = 8" squares of the size A, = 3™ to cover the remaining set, leading to the fractal

dimension D = —log N,/ log A\, = log, 8.

2. Computer-generated trail of a Brownian particle. At any resolution of the trajectory, it

asymptotically covers a finite area on the plane, because the fractal dimension D = 2.

3. Site percolation clusters on a 2D square lattice at p = 045 (a), p = 0.5927 = p, (b),
and p = 0.7 (c).

4. Bond percolation clusters on a 2D triangular lattice at p = 0.25 (a), p = 0.3473 = p,
(b), and p = 0.45 (c). N

5. Pairs of two-dimensional matching lattices, one shown by solid lines (for bonds) and
filled circles (for sites) and the other by dashed lines and empty circles.
(a) Squafe lattice bond problem is self-matching;
(b) Honeycomb and triangular lattices are bond-matching;

(c) Square bonds match triangular sites.

6. Schematic of an infinite bond cluster on a 2D square lattice. The backbone is shown
in heavy, and the dangling ends in light lines. Markers denote a minimum path on the

backbone.

7. Finite cluster (dashed lines), its external hull (heavy curve), and the unscreened perime-

ter (light curve).
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8.

10.

11.

(a) The problem of circular voids in a background 2D transport medium (the “Swiss-
cheese” model). The sites of the equivalent lattice lie in the vertices of the Voronoi
polyhedra (the sets of points, from which a given void center is the closest one). The
edges of the polyhedra represent bonds (solid lines).

(b) A “neck” lying between three spherical voids.
The problem of random sites (overlapping discs).

Potential continuum percolation model in two dimensions.

(a) Undercritical level h < hg;

(b) Critical level 2 =0 = h;

(¢) Overcritical level & > h;

(d) The equivalent lattice of the potential ¥(z,y). Squares and circles denote maxima
and minin;a of 1, respectively. The steepest descent/ascent paths, connecting the
maxima and the minima, cross in the saddle points (shown by +). Bonds on the
equivalent lattice connect adjacent minima and are “conducting” (shown heavy) if the
corresponding saddle point lies below A = A, = 0.

To model a random potential, the quasi-periodic function ¥(x) = =N, sin(k;x + 6;)
was taken, where N = 25, k; = (cosa;,sina;), and a; and §; are random numbers
uniformly distributed in [0,27]. The window size is 100 x 100 (a-c) and 45 x 45
(d). (Notice that this stream-function satisfies time-independent 2D Euler equation

for incompressible ideal fluid: 8(v, V?%)/d(z,y) = 0.)

Level lines 9 (z,y) = h of the potential ¢(z,y) = sinz siny+ ey (z,y), e € 1, |h] <,
where t; takes on independent random values with zero mean and unit variance in
the unperturbed saddle points (where sinz siny = 0). The contours of this potential
represent the external and internal hulls of bond percolation clusters (p(k) = .1 /24h/€)

on a 2D square lattice with the sites {(z,y) : sinz siny = —1}. At A = 0 there exists
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13.

14.

15.

an infinite contour corresponding to the external hull of the critical infinite cluster
(p(0) = 1/2 = p).

The graphs of several realizations of line-to-line fractional Brownian functions (a—c).
(a) H = 0.3 (antipersistent function);

(b) H =0.5 (standard Brownian function);

(c) H

(d) The graph of a stationary Gaussian random process y = ¥(z), ¥y )\H with

= 0.7 (persistent function);

H = -0.2.

The following model function was used in all four cases: ¥(z) = 1% o sin(kz + 0;),

with ¥, = k~(H+/2) and 6, random numbers uniformly distributed in [0, 27]. The

scaling range of these graphs is [1073, 1]. R

Several realizations of fractional Brownian surfaces (a—c).

(a) H=0.3;
(b) H =0.5;
(c) H=0.T,

(d) The graph of a stationary Gaussian random function y = ¥(z,y), ¥ < A with
H = -0.2.

The vertical cross-sections of these surfaces are similar to the corresponding graphs
in Fig. 12. The following model potential was used in all four cases: ¥(z,y) =
Chos1 Thosy Yr sin(kez + kyy + 0k ), with ¢ = (k24 k2)~(#+1), and 6, random numbers

uniformly distributed in [0,27]. The scaling range is [1072,1].
Zero-level contour lines of the surfaces shown in Fig. 13.

The procedure of “contour dressing.” Separatrices (self-intersecting lines) come through

saddle points. Extrema (maxima and minima) are shown by circles.
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16.

17.

18.

19.

22.

23.

The set of contours with linear size larger than a: the a-web.

(a) The set of contours with linear size between a and 2a consists of a-cells.

(b) Typical a-cell.

(a) The set of unclosed contour lines on a tilted relief (3.51) forms a network of
channels. For the simulation to(z,y) was taken the same as in Fig. 10, and v; = 0.1X.
The window size is 40 x 40.

(b) Unclosed contour line of the horizontal size 200.

The interaction of scales in terms of the behavior of a percolating isoline of separated-

scale potential (3.60).

Periodic system of convection rolls described by stream-function (4.26). The hatched
region denotes diffusive boundary layers near the separatrices, where the tracer density

gradients are localized in the high-Péclet-number limit.

. Two types of steady Rayleigh-Bénard convection pattern: Rolls (a) and hexagons (b).

Axes AA’ and BB’ of the hexagons act on streamlines as “free-slip” rigid boundaries.
The hatched region shows the cross-section of a diffusive boundary layer by the plane
AA'BB’. To leave the trap of these two hexagons, a tracer particle has to diffuse

(radially or azimuthally) all the way across the wider (near ax.is) boundary layer (W).

Typical pattern of streamlines in a travelling dipole vortex, shown in the frame of refer-
ence moving together with the vortex. The hatched region surrounded by a separatrix

(heavy line) represents the trapped fluid transported by the vortex.

Regimes of effective diffusion in a multiscale, steady, random 2D flow (Isichenko and
Kalda, 1991c) shown in the parameter space (H,log Po/log A), where Py = vy,/Do

is the short-scale Péclet number and A = A, /)¢ is the width of the flow spectrum.
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26.

27.

28.

Expression D* =~ toPA” for the effective diffusivity includes the following exponents

in regimes (A-D):

(A) o= —1/(l/dh +2) R ¥ = (I/Hdh +Dh)/(l/dh +2) ;
(B) a=H/(Dy-2H), 7y=03 -
(C) a=0, v=H;

(D) a=(2-—Dh/H)/(th+2), ’7=(I/Hdh+Dh)/(th+2).
Regimes (0) and (m) correspond to diffusion in monoscale flows v,,(x) and ¥, (%),

respectively. In the hatched region D* is of the order of Dy. -

The reconnection of separatrices takes place when two saddles, 1 and 2, cross the same

level of the stream-function.

. The principal morphology of an incompressible map is the liquid curve convolution of

two types: “whorls” (a) and “tendrils” (b) (Berry et al., 1979). Whorls are generated
by velocity fields of unchanged topology and lead to asymptotically linear with time
elongation of a passively advected curve. Tendrils are created by essentially:time-
dependent flows and lead to an exponential elongation of a liquid curve.A ‘If“or t;,he
simulation a stream-function was chosen of the kind shown in Fig. 10, with N = 5

frozen (a) or travelling (b) waves.

Liquid curve elongation in a slowly time-varying 2D flow. Dashes denote separaterices,
which are shown for simplicity straight and open (imagine a periodic boundary condi-
tion along the vertical direction). The curve catches slowly moving saddle points 1, 2,
and 3 and is rapidly stretched in the channel between the separatrices. The exponential

behavior results from intersection of separatrices causing multiple folding of the curve.

Streamlines of weakly-compressible flow (4.60) with ¢ = 0.1 and t(z,y) the same as

in Fig. 10.

Randomly-directed shear flow with zero mean velocity.
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30.

31.

33.

34.

35.

36.

Isotropic random flow of the “Manhattan grid” type is the superposition of two mutu-

ally perpendicular random shear flows.
Diffusion comb corresponding to a periodic array of convection rolls.

Diffusion tree (branches shown in heavy lines) corresponding to passive transport in a
topologically complex flow. For a nondegenerate flow each separafrix divides the plane
into two inner regions and one outer region, hence all branching points on the tree are

Y-points.

Diffusion comb of a random flow looks like a “thicket.” The subdiffusive propagation
along the “ground” (network of mixing convection cells) stems from the delay caused

by random walk in the “bushes.”

Schematic of a polycrystal. The hatches indicate main axes of the crystallites’ conduc-

tivity tensors.

Electric current streamlines in a strongly anisotropic polycrystal terminate in two types

of traps: a focus (a) and a limit cycle (b).

Magnetic flux tube in a magnetic field with a 3D random component is convoluted
due to the exponentiation of neighboring magnetic lines. Because of the magnetic flux
conservation within the tube the exponentiation of the lines leads to exponentially

decreasing thickness w of the flux tube wall.

Schematic of a current streamline corresponding to steady flow of electric current across

the magnetic field B in a conducting medium with three-dimensional fluctuations.
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Fig. 10(a)
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Fig. 14(b)
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TABLE I. Fractal dimensions and scaling ranges of some geometrical sets

Object Fractal dimension Scaling rangé Section
Fractional Brownian hypersurface® d+1—-H [0, p1/(1-H)] IIL.B
{x,Bg(x)} in a (d + 1)-space, d [61/(1=H) oo
(Br(x1) = Br(x2)")"* = bl = x|,
0<H<1
Zero-set of the fractional d—H [0, oo] IIL.B
Brownian function: {x: By(x) = 0}

, , (10 — 3H)/7, d =2
Connected piece of the above isoset [0, a] IILE

d-H, d>3
with the diameter a
Fractional Brownian trail {x(t) = BH(t)} min(1/H,d) [0, o] I11.B
in d dimensions
Connected contour piece (diameter a) 7/4 [Xo, @] ITI1.C
of a monoscale (Ag) random potential
. , 9148, d =2

Finite percolation cluster (size a 3> Ag) d-£2= [Xo, a ILA

on a lattice with the period )¢ in d

dimensions

~2.50,d=3




TABLE I (continued)

exponents —Az > A; > A, =0

Object Fractal dimension Scaling range | Section
Infinite cluster near the percolation threshold | d — 3/v [Xo,¢] IL.A
with the correlation length £ > Ao d [, o]
1.6, d=2
Backbone of an infinite cluster ~ [Xo, ¢] IT.A
1.7, d=3

7/4, d=2
External hull of a finite percolation cluster [Ao, @] ILA

d—B/v,d>3
Red bonds of an incipient (§ = oo) 1/v [Ao, 00] ILA
infinite cluster
Unclosed self-avoiding random walk (SAW) 4/3 [Ao, 00] ILA
on a 2D lattice with the period A
Unclosed smart kinetic walk (SKW) 7/4 [Ao, 0] ILA
on the same lattice
Correlated percolation cluster d+ BH [Xo, a] I.D
(=1/v < H < 0) with the diameter a

. (10 -3H)/7,d=2

External hull of a correlated percolation [0, a] IL.D

d+ BH , d>3
cluster (=1/v < H < 0)
_Chaotic attractor (size a) of a three- 2+ A1/|As] [0, q] LB,
dimensional dynamical system with Lyapunov IV.B.2

* Self-affine fractal. The box-counting dimension is shown.

2




TABLE II. Percolation thresholds for some lattices

Body-Centered Cubic
Face-Centered Cubic

Diamond -

0.247 + 0.0052(«)
0.248 4 0.001°C¢)
0.2479 £ 000411(2)
0.2488 4+ 0.000212(®)

0.178 =+ 0.0052(@
0.1795 + 0.000311()
0.18025 + 0.00015!%()

0.119 =+ 0.0022()
0.1190 = 0.00054(2)
0.1198 = 0.000311()

0.388 £ 0.05%)
0.3886 = 0.0005*(*)

d | Lattice Bond Site
2 | Square 0.501(@) 0.590 =+ 0.010%()
1/23() 0.591 = 0.0054(%)
0.499 =+ 0.0044¢) 0.53 4 0.002%(®)
0.4998¢) 0.5927 % 0.000037C)
0.59273(6)%¢)
Triangular 0.331(2) 1/23()
2sin(r/18) = 0.3472963() 0.500 + 0.005%(*)
Honeycomb 0.661(2) 0.70 £ 0.01%()
1 — 2sin(r/18) = 0.6527014%¢) | 0.697 + 0.004*®
0.698 =+ 0.003%(®)
3 | Simple Cubic 0.241() 0.307 £ 0.010%®)

0.320 % 0.0044()
0.318 = 0.00210%)
0.3117 4 0.0003%13()11(@)

0.243 +0.010%()
0.254 + 0.0044®
0.2464 + 0.000711@

0.195 = 0.005%()
0.208 = 0.0035%®)
0.1998 + 0.0006%()

0.425 +0.012%(=)
0.4299 =+ 0.00081%(2)




TABLE II (continued)

b e e e
B W N = O

© 0 N O oW N

Domb and Sykes (1960) (3} From series expansion
Sykes and Essam (1964a) ) Monte Carlo simulation
Sykes and Essam (1963,1964b) () Exact

Dean and Bird (1967)

Sykes et al. (1976a, 1976b, 1976¢)

Fogelholm (1980)

Ziff (1986)

Kertész (1986)

Heermann and Stauffer (1981)

Onizuka (1975)

Gaunt and Sykes (1983)

Adler et al. (1990)

Kertész et al. (1982)

Dunn et al. (1975)



TABLE III. Percolation critical exponents

Exponent d=2 d=3
a=2—vd | —2/3(@e) —0.64 +0.05%
B 5/36 = 0.13888123(4) | 0.39 4 0.075(¢)
0.15 £ 0.035(¢) 0.454 =+ 0.0084(@)
0.138 + 0.0076(@) 0.45 + 0.27(¢)
0.14 + 0.028() 0.43 £ 0.04°®)
0.405 + 0.0251%(2)
y=vd —28 | 43/18 = 2.3888123() | 1.70 £ 0.115()
2.38 £ 0.025(2) 1.73 4 0.034(@
2.43 £ 0.03%(2) 1.63 + 0.27()
2.43 4+ 0.048(9) 1.91 +0.0111©
2.39 4 0.0211() 1.805 =+ 0.0210(2)
1.77 £ 0.02120)
§=vd/B—1]91/5=182(de 4.81 =+ 0.144()
v 4/3123() 0.82 £ 0.05%(@
1.34 4 0.025(@) 0.89 =+ 0.0113®)
1.343 £ 0.01980 0.91 £ 0.0814®)
1.33 £ 0.0715) | 0.88 & 0.02%(¢)
1.35 +0.03140) 0.94 £+ 0.027(9)
1.35 £ 0.066() 0.88 4 0.05°®)
1.3330(7)17() 0.905 + 0.0231°()
i 1.25 £ 0.0518() 1.6 +0.11°¢)
1.10 = 0.0580) 1.725 =+ 0.005200)
1.3021(%) 1.4%2()
1.25 +0.1%() 1.70 & 0.0518(%)
1.28 = 0.0324®) 1.75 £ 0.118¢)
1.27 4+0.04%50) 1.50 £ 0.10%()
1.31 4 0.04260) 1.95 £ 0.127¢)
1.22 + 0.0816() 2.46 £ 0.17)
1.24 £ 0.0527%)
1.32 4+ 0.0527(9)




TABLE IIT (continued)

Exponent

d=2

d=3

T = (2vd - B)/(vd — B)

187/91 = 2.0549(%e)
2.0 £0.18)

2.19 +0.0112¢)

91/48 = 1.89583(%*)
1.88 =+ 0.0228¢)
91/48 £ 1%2°0)

2.484 +0.0124®
2.51 =+ 0.025°0)
2.5 =4 0.0530()
2.529 + 0.01612()
2.4929(b)

7/4 = 1.75%1(@)

11,75 £ 0.05%3¢)

1.74 4 0.0234:35()
1.76 £ 0.0134®)

1.751 & 0.002%6()
1.750 = 0.00237¢)

dy = 3230,12(d)
2.548 4 0.01412()

1.60 =+ 0.053%8(%)
1.62 = 0.0239:28(b)
1.61 £ 0.0140C)

1.77 £ 0.0738()
1.74 + 0.04%°®)

dc =d— ﬂ/l/
dp,

dy

&y = 1/

drb = 3/4(d)
0.75 £ 0.01%8()
0.75 £ 0.0742()

1.18 & 0.0843(%)
1.17 + 0.01542()
1.10 £ 0.05%8()
1.132 £ 0.00345®)
1.021 % 0.00544(®)
1.15 + 0.02400)

1.35 = 0.05%()
1.26 + 0.0644(%)




TABLE III (continued)

1
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den Nijs (1979)

Pearson (1980)

Nienhuis (1982)

Gaunt and Sykes (1983)
Dunn et al. (1975)

Sykes et al. (1976a,1976b,1976c)
Elan et al. (1984)

Gawlinski and Stanley (1977)
Grassberger (1986a)

Adler et al. (1990)

Lee (1990)

Strenski et al (1991)
Heermann and Stauffer (1981)
Kertész et al. (1982)

Vicsek and Kertész (1981)
Mitescu et al. (1982)

Kertész (1986)

Straley (1977)

Kirkpatrick (1973)

Onizuka (1975)

Smith and Lobb (1979)
Webman et al. (1976)

Clerc et al. (1980)

Derrida and Vannimenus (1982)
Li and Strieder (1982)
Fogelholm (1980)

Murat et al. (1986)

Nagatani (1986)

Margolina et al. (1982)
Gouyet et al. (1988)

Saleur and Duplantier (1987)
Stauffer (1979)

MacKay and Jan (1984)

Voss (1984)

Grossman and Aharony (1986)
Ziff (1986)

Grassberger (1986b)
Herrmann et al. (1984)
Herrmann and Stanley (1984)
Laidlaw et al. (1987)
Coniglio (1981)

Pike and Stanley (1981)
Alexandrowicz (1980)
Edwards and Kerstein (1985)
Grassberger (1985)

(a)
(4
(e
(d)
(e)
6]

From series expansion

Monte Carlo lattice simulation
Monte Carlo continuum simulation
Exact

From scaling relations

Experiment



TABLE IV. Exactly known fractal dimensions of 2D objects and their correspondence to

the conformal series

Object Fractal dimension= (100 — 2°)/48 | =
Percolation cluster 91/48(W 3
Hull 7/4® 4
SKW 7/4®) 4
Unscreened perimeter | 4/3(*%5) 6
SAW 4/3) 6
Red bonds 3/4 8

(1) Kapitulnik et al. (1984)

(?)  Saleur and Duplantier (1987)

() Weinrib and Trugman (1985)

(4} Grossman and Aharony (1986,1987)
(5)  Duplantier and Saleur (1987)

(6)  Nienhuis (1982)

(M Coniglio (1981)



TABLE V. Critical exponents of correlated percolation (—1/v < H < 0)

Exponent | d =2 d=3
1B | B=5/36 B~04
v -1/H -1/H

dy (10-3H)/7 | d- B/ =3+ BH




