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~Abstract

A new kinetic integral equation for the study of the ion temperatufe gradient driven
mode in toroidal geometry is developed that includes the ion toroidal (curvature and
magnetic gradient) drift motion wp, the mode coupling from finite k|| due to the toroidal

feature of the sheared magnetic configuration. The integral equation allows the sta-

bility study for arbitrary kjvi/(w —wp) and k1 p;. A sysf_;ematicA parametef study is

~ carried out for the low £ circular flux surface equilibrium. Possible correlations between
the unstable mode characteristics and some experimental results such as fluctuation

spectrum and anomalous ion transport measurements are discussed.
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I. Introduction

The ion temperature gradient driven mode (ITG mode), or n;-mode, has been of great interest
in theoretical studies of plasma confinement physics and nuclear fusion in recent years.
The objectives of these investigations are to understand and to explain some experimental
observations which indicate that the m;-mode turbulence is a plausible candidate for the
anomalous ion energy transport.!~* Some fluctuation studies®® suggest the presence of the
ion-mode feature, but a direct correlation of such turbulence with theory on the anomalous
ion transport has not been obtained.

A comprehensive study’ on the correlation between the n;-mode turbulence and the
density modification experiment on the TFTR tokamak is carried out, recently, with existing
ni-mode theories. It is pointed out” that present theories seem to be insufficient to explain
some experirﬁental observations and a more complete study of 7;-mode is anticipated. Here
an improved formalism for the most general integral equation for low frequency perturbations
such as the n;-mode in toroidal geometry derived in Ref. 8 is developed and applied to obtain
detailed numerical results for tokamak plasma parameters.

Theoretical studies on 7;-mode are numerous. Most of the studies, however, are performed
under some limits or approximations. The slab n;-mode studies®~!! only consider the driving
force due to the coupling of the parallel transit of the particles with the temperature gradient.
The kinetic effects including the arbitrary Larmor radius effect and the full parallel Landau
resonance damping are taken into account while the particle drift motion due to magnetic
curvature and gradient are neglected. In the fluid limit!2~!* these kinetic effects are neglected
where some nonlinear studies are carried out due to the simplicity of the equations used.
Local toroidal n;-mode studies!s® consider the driving force due to the coupling of the
particle curvature and grad-B drift with temperature gradient while neglecting the variation

of the drift motion along the poloidal direction and shear effect. Some expansions'™8 such



as small kyvi/(w — wp) can significantly reduce the complexity of the gyrokinetic equation
in toroidal geometry but are not appropriate when such conditions are broken. An integral
equation including all ion kinetic mechanisms except the trapped particle effect is derived

in Ref. 8 but emphasis is put on the fluid and local kinetic limits and ‘ver'y few results are

available in the general kinetic parameter regime. A comprehensive study of the n;-mode is

carried out in Ref. 19 using a particle simulation approach.

A more complete study of the 7;-mode in toroidal geometry is needed either in order to
more accurately asses the actual relevance of the n;-mode to the experimental observations
or for the completeness of 7;-mode theoretical study. |

- In the present work we derive a new integral equation to study the ion t.ernperature gra-

dient driven mode in toroidal geometry. This equation includes the curvature and magnetlc

gradient drift motion of the ions and the mode coupling due to the spatial mhornogeneltyv

in the toroidal magnetic configuration. The full ion transit kyv; and toroidal drift. effects
wp(v _,_,v||,6) are retained while the ion bouncmg motion is neglected for simplicity. _Elec-
trons are considered to be adiabatic Essentially, the new equation is eqﬁivdlent to the one

derived in Ref. 8. Nevertheless the integral equation given in the present work has some

chara.ctenstlcs which allow the fast computation of the spectrum of eigenvalues with the -

, modest computer time (3 min/eigenvalue on the CRAY-2). By using the mtegral equatlon,
detailed full kinetic results for a number of issues such as the effects of toroidicity, safety

factor, shear, and the ratio of the electron temperature to the ion temperature on the mode

are obtained. At the same time a quasi-toroidal model is considered where the magnetic

curvature and grad-B drift is assumed to be constant over a flux surface (a’. more detailed

explanation is given in Sec. IT). Results from the general toroidal equation, the quasi-teroidal ‘

mpdelaﬁd the familiar local kinetic equation are compared.
The remainder of this work is organized as follows. In Sec. II the new integral equation is

given and its characteristics are discussed. The numerical results are presented and compared



in Sec. III, and the concluding remarks and discussions are given in Sec. IV.

II. Integral Equation in Toroidal Geometry

The dynamics of a low frequency electrostatic perturbation in inhomogeneous plasmas is

described by the quasineutrality condition,
Ne =75 . (1)

Here, in the n; mode study the perturbed electron density 7, is taken to be the adiabatic

response to the electrostatic perturbation 5; ie,

€Noe ~

T ®

-~

Ne =

On the other hand, the perturbed ion density 7; in an axisymmetric toroidal geometry (like
tokamak) is given by

~ €ng;

A= -G+ f Bodo(a)h (3)

where T, and T; are the temperature of the electrons and the ions respectively, and a =
(26)Y%0,, v = v/vg, 2b; = kv /Q2, vy = (2T:/m)/?, and Q; = eB/m;c is the ion

gyrofrequency, Jo(a) the Bessel function of zeroth order. The nonadiabatic response h is

determined by solving the gyro-kinetic equation,

0 b —wp)h = (w0 — enoi 3
7 Rq 90 h+ (w—wp)h = (w — wir)Jo(a) Fir T #(9) (4)
with
2
wp = 27 e,wie(cos 8 + 50 sin 6) (% + vﬁ) , G)
where wir = —7 lwx, [1 + (vf_ + v|2| - %)], Wike = %%ﬂl% is the electron diamagnetic drift

frequency, L, = —(dénn/dr)~! is the density gradient scale length; n; = L,/Ly; with

Lr; being the ion temperature gradient scale ‘ongth; €, = % with R being the major



radius of the torus; r, = %; the magnetic shear § = £ —1 with ¢ being the safety factor;

Far = (m03%)~3/2 exp(—v?). We note that the well-known balloomng mode representation2®

f (7‘ 9 ( Z zm&/ —zme’ e—in(¢—q 9’)—twtf (el)del (6) v

m=-od

where ¢ and 6 are the toroidal and the extended polo1da1 angle, respectively, has been used
in deriving Eq. (4) and the usual cn‘cular flux surface equilibrium model has been used in
Eq. (5).

In solving Eq. (4), for simplicity, we ignore the trapped ion contribution, which is relevant
only for Qery Iow frequency perturbations of w = wy; (ion bounce frequency). In addition for
the passing particles we neglect the v modulation along the unperturbed particle orbit due -
to the equilibrium magnetic field. The following Fredholm homogeneous integral equation

of second kind?! can be obtained from the quasineutrality condition Eq. (1), |
-~ ‘ +o0 , ,' ~ ‘
(L+7)860) = [ d8' K(6,0)3(0") BN
with ' o

”H
where : .
o(6) = / daffifil (w —wp(8")) - ()
‘and the nonadlabatlc response A, the solution of Eq. (4) with the boundary condition h(9) =0
as || — 00,8 has been obtained and substituted into Eq. (3). The v, integration in Eq. (8)

can be performed analytically, and the resulting equation is the Eq. (7) of Ref. 8.
A. Toroidal Kinetic Integral Equation

In contrast to Ref .8 the v integration in Eq. (8) is changed to the integration over 7 by

introducing

- o
L= IR0 -0] | (10)

V||Vt
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It is easy to récognize that 7 is the time interval ¢ — ¢’ with ¢ and ¢’ being the time cor-
responding to the extended poloidal positions & and ¢, respectively, in the present case
that the modulation of v along unperturbed particle orbit is neglected. Now it is the right
time to point out that the kernel of the integral equation is the ensemble average over the
Maxwellian velocity of the two-time ¢ — ¢’ = 7 correlation function required for the nonlocal
plasma susceptibility operator ¥; defined by én;(x,t) = (nge;/T;)X;6(x’,t'). The integra-
tion over vy in Eq. (8) is carried out by taking advantage of the collisionless phase mixing
that occurs from the velocity dispersion in the grad-B drift and the result gives the power
law decay in T of the integral operator. Thus for large wpr, corresponding to small w/wp,
the correlation function decays as 1/(twp)*? (see Eq. (12) below) even for kj = 0, where
the usual transit time phase mixing exp(—kfv372) vanishes. For small 7 the expansion of
Eq. (7) leads to the usual small wp/w fluid regime. We also use the dimensionless variable
k = 8(ro)ksf = 3(ro)m/rof, which is the Fourier transform of the radial variable z = r — g
(ro being defined by ¢(ro) = m/n) in the toroidal model given by Eq. (6). The connec-
tion between k = k.p, and the ballooning variable § is derived by expanding the phase
factor exp(ing(r)@’) in Eq. (6) about the local nearest rational surface. By introducing such

conversion from 6’s to k’s the integral equations (7) and (8) now can be written as

(L4730 = [ G Kk, K)3() (11)

with

0 —twr

Val+a)v/a '

*e
2n; ki + k7 kokl L | nmi(k—F) ' o
¥ (1+a) [1 2(1+a)re  (1+a)r Io 4al Po(ks, k1) , (12)
where
2 -~ 2 . ~ : ot N _ 2 _n ]
v (8 e) wia=1+ %w*,‘r [(5+1)(sinf —sin6') —3(0cosf — @' cos b )4 3)
Ted \ ¢ Te (0 -0
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k¥

— L — ‘
. 0_§k67 0 —§k97 ) (14)
ki k) = (k3 +K72)/27e(1+a) ' : | '
Fo sty D, "
K=k +E,  EP=k+E?, | (16)

and I;(j = 0,1) is the modified Bessel function of order j. Also, the wave numbers kg, k and

k' are normalized to p;! with p, = ,/%/ Q.

B. Quasi-Toroidal Kinetic Integral Equation

‘By looking at the Egs. (5) and (14) it is easy to notice that the nonlocal contribution of
wp(8) in Eq. (5), (cos b +389sinf), appears in the second term of Eq. (14) on the right side as
the average of wp (Eq. (5)) over the region (¢,0). If we choose 6 = 0 in Eq. (5), which“p"vleans
- that the magneti; curvature and grad-B drifts are considered to be constant and equal to

the maximum value at § = 0, then we get the following integral equation for quasi-toroidal

model,?? ‘ - .
n +oo dk’ N Trl A
(L4780 = [ 7= K (e K3E) )
with ' | ' |

\/ie-'-iw‘r —(k—-k')2/4/\ { w 3

_ 0
! _— 4 — .
K(k,k)- z/—oow*edT\/E(l+a)\/Xe Te+1 i

Wake 2

2n; B4k kK, L] me-k2). . |
+ T+a) [1—2(1+G)Te Tran + =5 To(kL, kL), (18)
where
7.2‘ Ln .2 2 » . .
A= (7:?) Wi, (19)
a=1+ 126n WkeT S (20)
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and L, is the scale length of the magnetic shear. All remaining expressions are the same as
in the toroidal kinetic integration case. If we put €, = 0 in Eq. (18) then it reduces to the
sheared slab 7; mode integral equation.® On the other hand, if (k) = const. corresponding
to ¢(z) ~ 8(z — '), then the ¥’ integration can be done and Eq. (18) reduces to the local

kinetic dispersion relation.!®

Essentially, equation (11) is equivalent to Eq. (5) of Ref. 8 (will be referred to as Romanelli
equation hereafter). However, Eq. (11) has some characteristics compared with Romanelli
equation.

First, Eq. (11) shows more clearly the relation between the sheared slab and the toroidal
modes. This is due to the change of the ballooning mode space variable 8 to % which cor-
responds to the Fourier transform of the real space variable z in sheared slab limit. In
addition, in Eq. (11) it is easy to identify the shear effect and ballooning effect which are
both considered to be important in toroidal geometry. In a general toroidal geometry, where
the eigenvalue equation is a complicated 2-dimensional equation in the r, 6 space, we may
consider that k decomposes into & = 'kl(lt) + kl(IS) , where kl(lt) and ki(l’) stand for the balloon-
ing contribution to kj (from the variation of the poloidal modulation in 6 direction of the
equilibrium) and magnetic shear contribution to kj (from the variation of the direction of
the magnetic field with r), respectively. In the well-known ballooning mode formalism for
the toroidal mode, the shear effect kl(la) is obtained from the twisting of the eikonal phase
factor in Eq. (6) which locally varies as ¢™'%¢ for the radial profile of the eigenfunction
to reduce the 2-D problem to 1-D problem. Effectively, with this local expansion the bal-
looning mode formalism emphasizes the exact treatment of the ballooning structure of the
eigenfunction and the toroidal curvature and the magnetic gradient drifts, i.e. the balloo.ning
effect, while admits a poor treatment of the local shear and the global radial structure of
the eigenmode. To treat the local shear effect and the global structure of the mode more

exactly, an alternative approximate method has, recently, been used in the fluid simulation



study by Hong and Horton.?? This method?? assumes that the toroidal driving force is a
constant over a flux surface without variation along the poloidal angle 9 so that k ~ Q.
The toroidal driving force is taken to be the local maximum value at the point 0 =0, so
that wp =~ kyvp = 2€,wx(v? /2 + v“). While this model?? ma,kes.lt possible to do the non-
linear simulation of the toroidal mode, we show here that in the long wavelength regime
kops ~ €,/q it overestimates the growth rate‘by a factor of 2.

In the quasi-toroidal model (Eq. (18)) the same approach as in Ref. 22 is used for the

kinetic study of the n;-mode. In this model the eigenvalue eqﬁation takes the same form

as the sheared slab model, except thé toroida,l'.rnode drivihg forée, which is assumed to be
uniform over a flux surface, has been included. So that this model emphasizes the shear
effect and igndres the ballooning effect while both approaches keep the toroidicity induced
drift effect which is the most important driving force in toroidél geometry.

The second difference of our equation from the ’Romanelli equation is that the numerical
calculation of the eigenvaiue can be performed more efficiently than using the Romanelli
equation. This is because, first, the kernel K (k, k') of Eq. (11) as given in Eq. (12) vanishes as
e~(*=¥)* when (k — k' ) increases while the kernel of Romanelli equation vaﬁishes as e=X -X)

when (X — X') increases, (X in Romanelli equation is the extended poloidal angle as 8 in

Eq. (11)). Second, the kernel of Romanelli equation oscillates very rapidly due to the large'

phase factor in Eq. (8), ¢(8) — o(¢’), when v — 0 and (X =X is small but not zero. The
osc111at10n characteristics of the kernel in Eq. (11) do not change when 7 — 0 and (k — Y )

is small but not zero. Here by changing the v integration to 7 integral the phase mixing

of the oscillation is taken into account analytically leaving the rapid convergent kernel. It

is these differences that make the matrix obtained from Eq (11) a more neérly diagonal

matrix which improves the numerical representation of the integral operator and allows the

eigenvalue problem to éonverge much faster. Our numerical experience has shown that the -

computer time needed to study toroidal 7;-mode with Eq. (11) is about half that required



for the Romanelli equation.

Finally the local kinetic dispersion relation,'®

B —"

can be easily obtained from Eq. (4) by taking —}%—q £ =ik and wp () = wp(0). Eq. (22) also

follows from Eq. (18) by taking $(k) = const. and doing the &’ integral.

ITI. Numerical Results

A computer code is developed to solve Eq. (11) numerically. At k& = &’ the kernel has a
logarithmic singularity which can be easily handled by standard techniques as pointed out
in Ref. 8. The integration over 7 in Eq. (12) is performed with Gaussian rule of even order.
The integration over %’ in Eq. (11) is carried out with rectangle rule except near k' = k
where the Gaussian rule of even order is used.

The computer code is tested in two ways. ’First, it is run in the sheared slab limit
(€, = 0) and tested with the results given in Ref. 10. Second, for ; = 2.5, 8 =¢q=7 =1,
ko ps = 0.45, €, = 0.25 the normalized real frequency Q, = w, Jwxe = —0.607 and growth
rate (0; = y/wx. = 0.258 are obtained for toroidal mode. The growth rate agrees well with
the result given in Ref. 8 while the real frequency is not available there. |

In general the dimensionless complex eigenvalue Q is a function of the six parameters 7;,
€ny T, 8, g, k9. We have recorded and tabulated the ’s from all cases that we have run in a

data base to be made available in a NERSC public domain file.

1. n; and kgp, variation

The normalized growth rate and real frequency as a function of 5; are given in Fig. 1 for
T.]T; = 1, keps = 0.75, L,/L, = 0.1 and ¢, = 0.2. The solid lines are from Eq. (11) of

ballooning formalism and the dotted lines are the results from Eq. (18) of the quasi-toroidal
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model. The parameters § and ¢ for Eq. (11) are chosen such that L, [Ls = Sen[q=10.1, (¢ =
2, §=1). As a’compari-son the results for slab with the same parameters are given in Fig. 1
by the €, = 0 curves. For ¢, = 0.2 and 0.4 we find that there is a good agreement between
full Eq. (11) and the quaéi-toroid'al model in the growth rate and the real frequency. |

In Fig. 2 we show the eigenfunctions in the k space obtained from the three models given
in Fig. 1 &ith n; = 3.0 and T, /T; = 1.0. Fig. 2(a) is the eigenfunction ¢(k) in sheared slab for
L./Ls=0.1, kyps = kop, = 0.75. F1g 2(b) is the eigenfunction in quasi-toroidal model with
€, = 0.2 while the other parameters are the same as that'in the slab case. The eigenfunction
from Eq. ‘(11) is shown in Fig. 2(c) with § = 1.0, ¢ = 2.0 and the same parameters used by
the other models. The solid lines are the real part and the dotted lines the iimavginary part.
Here, we note that the eigenfunct.ions in the quasi-toroidal and sheared slab models are just
the Fourier transform of the real z-space eigenfunction. The eigenfunctions in Figs. 2(b) and
2(c) are very similar tvo'ea,ch oth;er with a half width about 0.6p7" while the méaning-of this
is different in eacil case. The half width of the eigenfunction in the sheared slab case is about
1p7! which means that the slab modeA has shorter Wavelength than the quasi-toroidal mode
in real m-spéce. Sc; that the toroidal effect can significantly increase the transport induced
~ by the n;-mode turbulence when est‘imated with ﬁhe mixing length theory as given in Refs. 7
énd 22. . | | |

The growth rate and real frequency versus ky p, are given in Fig. 3 for different 7; values.
Again the diﬁ'efences between' general toroidal (solid lines) and the qua.;zi‘-toroidal approx-
imation (dotted lines) are limited. Thé maximum growth rates are found at kg p, ~ 0.7
indicating that émall kg ps expansion is not adequate and the full integral formalism is nec-
éséary for these parameters. The growth‘rate and real frequency for different e, "valu.e's are
given in Fig. 4 as function of kyp,. The maximum growth rates appear at ks p, ~ 0.7
just as it does in 'Fig. 3. Note that the real frequency and growth rate are normalized to

wie (ko ps)™ = ¢,/ Ly, in Figs. 3, 4, and 5.
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2. ¢, variation

In Fig. 5 the mode growth rate and real frequency are given as function of ¢, for different
kops values. Here, we consider only the ¢, effect coming from the toroidal curvature drift
term wp, and L,/L, = 3€,/q = 0.1 is fixed. In order to compare with quasi-toroidal model,
q = 1.5 is fixed and 3 varies according to L,/L, = S¢,/q = 0.1 in the general ballooning
model (solid lines). It is easy to see that the mode real frequency increases ‘signiﬁcantly with
the increasing of €,. The maximum growth rates occur around €, =~ 0.2 where the quasi-
toroidal approximation is good for general toroidal dynamics. Fig. 5 can also be viewed as
a normalized frequency and growth rate v sus § ~ é In this way it seems that mode
coupling has a stronger destabilizing effect when the § value is higher as expected. As an
alternative, the results for fixed § = 1.0 and varying q such that L,/L, = 3e,/q = 0.1 are
given (dashed line) when kgp, = 0.5. Such a choice does not change the result very much.
The mode growth rate and real frequency versus €, are given in Fig. 6 for fixed 5= 1.0
and given g values (in Fig. 5 § or ¢ varies when ¢, changes) for general toroidal model.
It is obtained that the mode real frequency increases up to —1.3w¢, with the increasing
€n ~ 0.5 while the mode moves to the electron diamagnetic drift direction for €, < 0.06.
The maximum mode growth rate in this case is m'ch higher than that in Fig. 5. This is
reasonable since in Fig. 5 § increases when ¢, decr¢ s in order to keep L,/L, constant.
From Fig. 6 it is seen that the mode growth rate increases with ¢ when other parameters
are the same. The increase of ¢ separates the favorable and the unfavorable magnetic curva-

ture regions making the localization of the mode to the bad curvature region more complete,

leading to higher mode growth rate and transport.
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3. - SHear variation

- The shear variation effect is shown in Fig. 7. The mode real frequency increases with shear
increasing for § < 1 then keeps constant for § > 1. At the same time the mode growth rate
increases with 3 increasing for 3 < 0.5 then decreases for 3 R 0.5. For the reglon 1 <3§<2

the growth rate decreases as 1 /3.

4. T, variation at fixed T,

The effect of increasirig T; at fixed T is studied in Fig. 8. The real frequency increases
approximately linearly with .T,- increasing. For €, = 0.15 the real frequericy becomes positive
(rotation in the electron direction) when T; is low (T} < 0.25 T, ). The mode growth rate has
‘maximum around T; ~ (0.5 = 1)T.. For T./T; > 2 the mode width A@ R /2 so that the

| mode coupling destabilizing effect seems significant when shear is high enough (low'é, for
fixed g and L,/L,). For T./T; < 0.8, ¢, = 0.15, the mode width Af < 7/3 and the mode
coupling destabilizing effect is weak (Fig. 8(c)). ;I‘his change of the mode width with T, /T:
may explaih the fact that the mo"de growth rate from general toroidal calculation is higher -
than that from the quasi-toroidal approximation for T./T; > 2 while it is lower than that

from the quasi-toroidal for T, /T; < 0.8 when €n = 0.15 in Fig. 8(a).

5. T, variation at fixed T}

The normalized mode frequency and grthh rate (normalized to —ww; = wxT;/T.) are given
in Fig. 9 as functlon of T/T to show the T, effect when T; is fixed. In contrast to Fig. 8
where the mode real frequency decreases when T, /T; increases, the mode frequency increases
when T,/T; increases. The behavior of the‘growth rate is similar to that in Fig. 8 except
that the maximum growth rate shifts to higher 7,/T; and decreases much faster in Fig. 9. It

seems necessary to distinguish T, or T; changing when T, /T; effect is considered. Especially,

13



the behavior of the real frequency may be used to define the n;-mode turbulence from the

others in experiments.

6. Local kinetic model

The comparison between general toroidal model and the local kinetic approximation is given
in Fig. 10. For kgp, ~ 1 the results from these two models are very close while the integral

equation gives much higher growth rates when kyp, S 0.5.

The comparison between the general toroidal model (Eq. (11)) and the quasi-toroidal
model (Eq. (18)) can not be made too precisely because there is one more parameter could
be chosen freely in the former than in the latter. Generally speaking, the quasi-toroidal
approximation overestimates the driving force of curvature and magnetic gradient drifts (by
taking § = 0) and gives higher growth rate. However, mode coupling which is considered only
in the general toroidal model has a strong destabilizing effect when the mode width A9 is
large enough and shear is high (3 R 1.0). In such cases the growth rate given by the toroidal
model is about 10% to 20% higher than that given by the quasi-toroidal approximation.
It has never appeared that the mode growth rate obtained from toroidal equation is much

higher than the growth rate obtained from the quasi-toroidal approximation.

IV. Remarks and Discussions

A new integral equation describing the linear dynamics of low frequency perturbations such
as the 7; mode in toroidal geometry is developed. The integral equation takes into account
the jon drift motion due to the curvature and magnetic gradient, the effect of finite Larmor
radius and the arbitrary r;,tio of kv, /wp. Ion bounce motion is neglected, and the electrons
are taken as adiabatic for simplicity. Under these conditions the integral equation is the

most general equation.® In addition the new formalism of the integral equation has some

14



characteristics which allow the equation to be solved within reasonable computer time (~
3 min/eigenvalue on the Cray-2) . o |

Thé equation is solved for a wide range of tokamak pIasma parameters without further
approximation. It can be concluded from the calculatioﬁs that the real frequency and growth
rate of n;-mode in toroidal geometry are significantly different from the sheared slab in,--
mode. Toroidicity effects must be taken into account in the effort to connect theoretical
results of the n;-mode analysis with experimental observations in tokamaks. The numerical
results presented in this work can be used to check the validity of various apI'Jroximat‘iOnA
approaches and may bé compared with experimental observations. A numerical table of the |
complex eigenvalue over the parameter variatioﬁ considered is being made available on a
- public domain file or on a disk available upon request. |

By using the ballooﬁing mode representation the mode coupling introduced due t.? the
toroidal feature of the equilibrium magnetic configuration is taken into account. It is shown
that the mode couphng has a strong destabilizing effect especially when mode w1dth A0 >
7/2 and magnetic shear § > 1 due to the geodesic curvature effect from 356 sin§ term in
Eq. (5). 4

It is worth mentioning that the real frequency of the mode for €n = 0.4 is about one order
of magnitude higher than the corresponding sheared slab mode frequency (see Fig. 1(b)).
The low theoretical mode frequencies of previous ITG models are claimed to be too low to
explain the ion feature observed on TEXT drift wave fluctuation spectrum.?® The increase.in
the mode frequency from the tofoidal effect is in the right direction at least in this respect.

In addiion it is claimed that ion energy transport coefﬁc1ents obtained from kmetlc n;
mode quasﬂlnear theories are lower than experimental measurements T Tt is shown in thls
work that the n; mode growth rate in toroidal geometry is much higher than in the sheared

slab, for example, the growth rate for €, = 0.4 is about 3 times the value of the sheared

slab mode when 7; = 3.0 (see Fig. 1(a)). At the same time the mode width in z-space for

15



the toroidal geometry is about twice the value of the sheared slab mode width (see Fig. 2).
This increase of y(Ax)? is in the dir ion for solving the discrepancy between the n; mode
theory and the experimental observations éoncerning the anomalous ion energy transport.
The mode growth rate decreases with e, increasing for e, R 0.2. This qualitatively agrees
with the confinement improvement in H-mode discharges which have rather large value of
L,. Detailed calculation using experimental data and comparison with observed results are
underway and will be published separately. It is also straightforward to couple trapped

electron and impurity effects into Eq. (11) and such work is in progress.
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Figure Captions
1. Normalized growth rate v/w«. (a) and real frequency w, /ws.(b) vs. 5; for T, /T; =1,
ko ps = 0.75, L,/L, = 0.1, and €, = 0.2 and 0.4. The solid lines are the general toroidal

with ¢ = 2, and § = L,q/L,e,, the dotted lines are the quasi-toroidal approximation

and sheared slab limit With €, = 0.

2. Eigenfunctions ¢(k) in the k-space for the three cases of Fig. 1 with ; = 3.0, (a)-the
sheared slab mode; (b)-the quasi-toroidal model with ¢, = 0.2; (c)-general toroidal
model with 8§ = 1.0, ¢ = 2.0. The other parameters are the same as used in Fig. 1.

The solid lines are the real part and the dotted lines the imaginary part.

3. Normalized growth rate yL./c, = 7 ksps/ww. (a) and real frequency (b) w,L,/c,
vs. kg ps for 7; = 1.5,2,3 when T,/T; = 1, L,/L, = 0.1, and €, = 0.2. Dotted lines
correspond to quasi-toroidal approximation, and the solid lines the general toroidal

results with ¢ = 2 and 3 = L,q/ Le,.

4. Normalized growth rate yLn/c, = 7 ko ps/ws. (a) and real frequency (b) wyLy/c,
vs. kg ps for €, = 0.2, 0.3, 0.45 when T,/T; = 1, L./L; = 0.1, and n; = 2.5. Dot-
ted lines correspond to quasi-toroidal approximation, and the solid lines the general

toroidal results with ¢ = 1.5 and § = L,q/L,e¢,.

5. Normalized growth rate vL,/c, vs. €, for kop, = 0.3,0.5,0.7 when 5; = 2.5, T./T; =1,
L./L, = 0.1. The dotted lines represent the quasi-toroidal approximation, the solid

lines the general toroidal results with ¢ = 1.5 and the dashed line with 5 = 1.0.

6. Normalized growth rate v/ws. vs. €, for ¢ = 1.1, 1.5, 2, 2.5, 3 when T,/T; = 1,

N = 2.5, kg py = 0.5, 5 = 1.0. These are the general toroidal results.
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10.

Normalized growth rate +y/wx, vs. _3 for ¢ = 1.5,2.0,2.5 when 7; = 2.5, TC/T,-‘ =1,
kgps = 0.5, €, = 0.25. The solid lines represént the general toroidal results and the

dotted lines the quasi-toroidal approximation.

Normalized growth rate 7y/w«. (a) and real frequency w,/wx. (b) vs. T./T; (T. =
constant) for various valués of e, when kgp, = 0.7, L,/L, = 0.1, n; = 2.5.. The
dotted lines represent the quasi-toroidal approximation and the solid lines the general

toroidal results where ¢ = 1.5 and § = L,q/L,e, are used. (c) The eigenfunctions 5(0)

for €, = 0.15.

Normalized growth rate v/|ws]| (a) and mode frequency w; /|wx;| (b) veréus T.)T; (T; =

constant) for n; = 2.5, kg p, = 0.70 and ¢ = 1.5. These are the general toroidal results.

Normalized growth rate vLn/c, = 7 kg ps/wke (a) and real frequency (b) w,L,/c,
vs. kgp, for ¢ = 15, 2.0, 2.5 when T./Ti = 1, ¢, = 0.25, § = 0.6 and 7; = 2.5.
Dotted lines correspond to local kinetic appfoximation where k| = 1/qR is used, and

the solid lines the general toroidal results.
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