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Abstract

A formula relating turbulence levels with arbitrary shear flow is derived. When
the diffusion coefficient is made a functional of the corresponding turbulence level, it is
found that the scaling laws governinvg turbulence suppression are considerably modified.
The results are compared with known formulas in various lfmiting cases, indicating
tha.t; turbulence suppression maiﬁly pertainé jin' the moderat'e shear ﬂow regime. lThe
results also show tha.t a ﬂattenéd (steep) radial equilibrium gradient tends to enhance

(eliminate) turbulence suppression due to the shear flow.




One of the most important problems in current fusion research is to understand the
physics of the H-mode, a state of improved confinement in tokamaks.!~ It is generally be-
lieved that conditions favorable for the existence of H-mode are created by the suppression of
turbulence levels at the plasma edge through the agency of the radial shear in vz, the E x B
poloidal fluids velocity.*~® In the literature there exist formulas relating the suppression of
turbulence levels to the strength of shear flow. By studying the “averaged” orbit equations
of relative motion of two fluid elements, two distinct groups’=® have come to different con-
clusions on the nature of the suppression. Biglari et al. ,® who primarily deal with the “large”
shear regime, obtain the suppression of turbulence that scales as |dvg/dr|~?/3, while Shaing
et al. find that the shear reduces the fluctuation level by a term proportional to |dvg/dr|?.
This latter result is applicable only in the small shear regime.®

In order to find a scaling for arbitrary shear flow, we reinvestigate the orbit equa-
tions by introducing the self-consistent constraint that diffusion coefficient D with (with-
out) shear flow must be a functional of the corresponding turbulence levels with (without)
shear flow. We also take into account the effects of a possible shear induced change in spec-
tral shape. It will be seen that the theory of turbulence suppression can be cast in terms
of only two independent parameters: (1) «, defined by D = D*<]5€|2>7, where <|6E|2> is
the ensemble average of fluid fluctuations normalized to its equilibrium value, and D* is
the part independent of turbulence, which relates D to the strength of the fluctuations;
and (2) W = |dvg/dr|te/c <Ei>1_7, where t. is the decorrelation time without shear flow
(henceforth, we shall use the subscript 0 to denote physical quantities in absence of shear
flow), a measures the anisotropy of the k-spectrum, and <Zi> is the ratio of the averaged
square of the perpendicular wave number with shear flow to that without shear flow. The

analysis presented in this letter follows the methodology adopted by the previous authors.”®



The set of differential equations governing the evolution of the two-point correlations is

0

5 (X2(t)) =2(D1) ,
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where
(D™ / dedwo(bxk)(bxk)” (|6, )2 (X2 t)>+k2 <Y2(t)>+2k by (X_(1)Y- (t))]szw,

' describes the relative diffusion of the two fluid elements, <X3(t)>, <Y_2(t)>, and (X_ ()Y_(2))
are the orbit correlations for the relative distance of the two fluid elements in the radial
and poloidal direction res'pec’cively,10 <|5c,ol]2(w> is the spectrum of the fluctuating field, and

| Gy 1s the one-point Green’s function in the Fourier representation. Defining II(k) =
[ dw <|6<p!fw> G ) introducing an elliptical k-spectrum for II, i.e., II(k) = I(kZ + o®k2),

and carrying out the k integrals, we can write Eq. (1) in the dimensionless form:

(32 - 1) (X2(r)) =3(72() |
<a—i—1> (?2_(})>=3(X3(T))+8o—(x_(+)>(?__(7)>, | @)

(a% + 2) (X_()Y_(1)) “=-80,<X3(T)> .
where 7 = tD (k?), o = (dvg/dr)/4aD (ki), Y_ =Y_/a, Dis theradial diffuéion'qoefﬁcient,
and (k%) E Io° dkEPTI(k)/ [5° dkkSTI(k) is a measure of the decorrelation length for a given
turbulence spectrum. Equation (2) is a well-defined initial Qa.lue pfoblem with the given ini-

tial conditions: <X3(7')> lr=o = X2, <—}73 (1) > lrzo = Y2, and (X_(r)Y_(7)) Jr=0 = X_V_

_ All the three orbit correlations obey the same differential equation
(9707 +2)2(8/07 — 4) — 3(80)?] ¥(r) =0 .
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The corresponding characteristic equation is
1\? 2
(A+§) (A—1)=30%, (3)

yielding three solutions for A = 1/4r., (where 7 is the e-folding inverse dimensionless decor-
relation time) of which only the positive real solution is physically interesting. In order
to determine the influence of the shear flow on turbulence levels, Eq. (3) should be cou-
pled to the equation for the correlation function, which can be written schematically as
¢! < 6] |2> = 2D/L, where L; is the radial equilibrium gradient length. This equation re-
lates A to the turbulence level [A = [2 <|5E|2> LZ (k%)]7], implying that'Eq. (3) could be
solved directly for < |6€ |2> after assuming a model for D[<]6E |2>]

Let us first discuss the relative change of turbulence levels just before and after suppres-
sion [L to H mode transition, for example] assuming an invariant radial gradient length L.
This is plausible for a sudden change of shear flow in a time scale much faster than the
transport time scale. Defining @ = <[5E |2> / < |6§ |2>0 to be the ratio of turbulence levels with
and without shear flow, we obtain an equation for P = [0 (%i>]-1 with <Ef_> = (k2) ] (k2),
describing the change of the decorrelation length due to shear flow (indeed, there is experi-

mental evidence for the change of decorrelation length due to shear flow ¢),
1 2
(P + -2-> (P—1)=3W?pP%, (4)

The solution of Eq. (4) is shown in Fig. 1 where we plot <7‘;i> <|6§|2> / <|5E|2>0 versus W =
|[dvg/drity [ < Ei) for various 7. Since ¥ = 1 is favored by the weak turbulence theory, and
7 = 0.3 is favored by the strong turbulence theory, the most probable range for v is 0.5 to 1.

In the small shear limit the simple analytical solution of Eq. (4),

~2\ A 4 [ |dvg/dr|teo :
KYO=1-- | ——21
< -L> 1 3 (Q<Ei>1—1) (5)

is insensitive to v, and reproduces the scaling given by Shaing et al. in the corresponding
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- for arbitrary shear),

limit. In the large shear limit the solution is

—2
3—2v

2o\ o [ VBldvs/drite | ~
we=Nm— ) ®

“which is consistent with the results of Biglari et al. only for + =0. In particular, for v = 1

the scaling behaves like [dvg/dr|~?, implying a much faster suppression (in the large shear
limit) than predicted by Biglari et al. If ¥ becomes greater than 1.5 there are generally two

solutions for turbulence levels at a given small shear flow, and no solution for W greater

“than 0.57. For the iriteresting_ case of v = 1, we can find a simple interpolated formula (valid

(R 01t =1 4 (onlirlte)” G

which is also shown in Fig. 1 by the dashed line. This interpolated formula is a good

approximation to the numerical solution, and happens to be similar to the formula given by

Shaing® (even. in thellarge shear flow regime), and also to that used in Hinton’s bifurcation
model.!? | “ | |
o It can be readily seen from .Fig. 1 that for 4 greater than 0.5, the turbulence s'ubpreséion
takeé pléce mainly .in the moderate shear ﬂbw regime, e.g. |dvg/dr|to ~ O(1). This trend |
could be even streng_thened by considering that 4 could also change with turbulence le;\/els,
ie., ¥ may evolve to a greater ‘value, when the turbﬁlence d_roﬁs int§ the Wéak turbulence
regime (y = 10) from the strong turbulence regime (v = 0.5), the regime more likely to
pertain before the suppressxon This analysis suggests that the regime of comparatwely large
shear ﬂow may be uninteresting for practical purposes, both for its small contribution to the
improvement of confinement as well as for its possible role in triggering the Kelvin-Helmholtz
instabilities. o

In the remaining part of this lettér, wev consider the solution for <|5§|2> with the shear
flow in a steady state, which will be obtained by solving Eq. (3) with the given pbwer laws

for the diffusion coefficient. Without shear flow the solution is straightforward, <[55|2>0 =
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1/2 (k3% )q LZ. This result is independent of the functional form of the diffusion coefficient. It
is not surprising, therefore, that the formula is consistent with the so-called mixing length

result.® In a similar manner, we can set up an, implicit, interpolated formula for <|5Z |2> with

sty -ty o ]2 ). "

where D is still a function of < ]6€|2> Equation (8) has rather simple forms for ¥ = 1, and

shear flow,

dvE

0.5. Solving these two particular cases, we then construct an explicit interpolated formula

that matches the solution at v =1 and at v = 0.5,

~o\ ~1 |dvE7dr|L

- (168 =2(r) L2+ ( s ((kl> L2) 9)
f——) .

which is consistent with Eq. (7) in the corresponding scenario. This formula approximately

describes the situation as the equilibrium gradient length L¢ evolves due to improved con-
finement; a smaller (greater) L makes the shear suppression less (more) effective, because
the suppression is controlled by the parameter |dvg/ drl‘yL?’"l, and not by |dvg/dr| alone.
This L¢-enhanced shear suppression may be related to the second stage of turbulence sup-
pression, recently discovered on DIII-D,' which is found to occur at the flattened density
region of the H-mode phase on a transport time scale. The second stage of suppression is
important, as pointeci out by Ref. 12, because the turbulence in the L-mode phase is located
in this region, which was affected little by the first stage suppression due to L-H transition
occurring at the steep gradient region of the H-mode phase. At this stage, we would like to
draw the reader’s attention that Eq. (9) does not necessarily mean that a steep equilibrium
gradient would bring the turbulence levels back to its original one. It may be possiblé that
at the steep gradient region the spectrum is simultaneously shifted towards shorter wave
lengths® so that the low turbulence levels may survive even for small L¢. This H-mode phase
could be destroyed only if the long wave length modes are triggered and developed. If this

were to happen, the weakened effective shear strength (for small L) will be unable to stop
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their growth to'.moderate vlalues.‘ The growth of fluctuation would lead to the reemergence
of the L-phase with a large characteristic L¢ switching on once again the effectiveneés §f
shear stabilization. Detailed comparison of the speculation with experiments requires morene.
information on the k; -spectrum localized at the steep gradient region of 5 quiescent H-phase,
which seems to be crucial for acceptance of the present methodology (the local two-point
correlation theory)’=® as the theoretical basis on which the mech&nism of shear suppression, .
on turbulences is engineered. | R ' |

In summary, using the same methodology as the previous authors,”® but iﬁtrodllcing
the self-consistent constraint on the diffusion coefficient to be a functional of appropriate

turbulence levels, we have réinvestigated the turbulence suppression due to shear flow. It is

found that: (1) Shaing et al.’s results follow in the small shear limit, (2) the (—2/3) scaling

found by Biglari et al., is correct only if the diffusion coeficient is independent of turbulence

levels; (3) the turbulence suppression mainly pertains in the moderate shear flow regime;

and (4) the shear flow suppression becomes much more (less) effective for flattened (steep)

equilibrium gradient.
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Figure Caption

‘1. The numericalgsolution of Eq. (4) for P! = <k}_><|5§|2>/<|5512>0 versus W =
]dvE/ drlteo/c <kﬁ_> for various 4’s (shown by the corresponding solid lines). The dashed
line is the interpolated solution, given by Eq. (7) for v =1 only.
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