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© Abstract

This work describes a new approach to plasma transpo‘rf where the toroidal drift
motion is considered as a perturbation to the fluctuating velocity. Percolation theory
is used to determine the scaling of the diffusion coefficient. Several neoclassical phe-
nomena should persist even when diffusion is enhanced from neoclassical predictions.

Numerical simulation results support the theoretical scaling arguments.



I. Introduction

Experimentally observed particle and heat fluxes in toroidal devices exceed their neoclassical
values about 10-100 times for electrons and 1-10 times for ions.? It is commonly agreed that
a reason for these anomalous transport processes is turbulent electromagnetic fields that

are always present in tokamak discharges. For typical levels of fluctuation the oscillatory

velocity of particles due to field perturbations, ¥, exceeds the drift velocity in a toroidal

magnetic field, 7. Therefore deviation of particles from the unperturbed magnetic surfaces
is controlled by ¥, not ug and orbits looks quite different from usual neoclassical banana or
passing trajectories. This modification of orbit size and form can explain the discrepancy
between experimental particle and heat fluxes and neoclassical ones and influence all other
neoclassical effects such as boot-strap current or the correction to longitudinal conductivity
which are known to be close to their neoclassical values.?* It is found that not all neoclassical
effects are destroyed by plasma turbulence, and even if the toroidal drift ug is smaller than ,
it remains an important characteristic of particle behavior in toroidai systems. The a,na,lysis
of the mutual influence of turbulent and neoclassical effects is of great interest especially for
the ion plasma component for which the experimentai discrepancy from neoclassical theory
is not too great.

In this pai)er the following two questions are discussed. How do neoclassical effects (at
least some of them) persist under the condition uq < ¥ and how is neoclassical diffusion
modified in the presence of high amplitude oscillations. For the purpose of analysis a non-
self-consistent approach is used where the electromagnetic field characteristics, including
fluctuation amplitudes and spectra are prescribed and are not influenced by the particles’
motion. For the tokamak plasma turbulence we generally have in mind low frequency drift

oscillations with w ~ wx = k cT/eBy Ly, (L, = n/Vn) strongly elongated along magnetic




field lines: &y ' ~ gR and k7' ~ p; (p; being ion Larmor radius).

Particle trajectories with account of motion due to fluctuations and toroidal drifts are.
considered first. From this analysis it is shown that a small group of particles that move
in the direction of toroidal drift, even if ug < ¥, will still contribute to neoclassical effects.
This small group of particles also plays a major role in anomalous transport processes and

can cause diffusion with coefficients higher than neoclassical ones.

II. Drift Motion Equations in the Presence of
Oscillations

For the low frequency oscillations guiding center equations describe particle motion. In the

toroidal magnetic field of the simplest form
B = (By ¢+ By(r)8)(1 — e cosb) , (1)

where ¢ and 0 are poloidal and toroidal angles, ¢ = r/R is the ratio of minor and major

radii of the torus, the guiding center drift equations can be written as

dz
P ®
dyy e pBoe .

o = RE” R sin @ , | (3)
fl—r—J-‘-=iE><b-l-v”b+ud(§cos49+?sin0). (4)
dt By

where p = v? /2B is magnetic moment, b = (B + B)/By is a unit vector along magnetic
field, E and B are electric and magnetic fields of oscillations, ug = (v} + 2v{)/2wp: R is the
drift velocity in the unperturbed toroidal magnetic field.

Let us estimate the role of each term in equations of motion (2)-(4). To do this we

substitute amplitudes of E and B that can be obtained from the standard mixing-length




rule’

ea 1
T " il (5)

First of all, taking account of typical fluctuation spatial scales kl'l' ! ~ gR and k7' ~ p;, it can

be easily seen that fluctuations in the longitudinal acceleration is much weaker than xV\B

term

(iE ) NBoe - ~ Pi < 1 (6)
m; N qR el, ' |

Therefore the longitudinal particle motion is nearly unaffected by the fluctuating fields and
can be integrated separately without taking the perpendicular drift into account. This is
why the fraction of the banana trapped particles, that are important for the experimental
manifestation of some neoclassical effects (for example, neoclassical correction to longitudinal
conductivity), remain the same in the presence of fluctuations.

As the longitudinal equations (2)-(3) can be integrated separately, there is the possibility
of representing equation (4) in a form where all terms on the right-hand side are functions
of r; and time only. This equation describes the deviation of particle from the unperturbed

magnetic field line and can be written in a Hamiltonian form
H(ry,t) = H(ry,t) + ug(x cos 0(t) — y sin () (7
where H| (ry,t) is the effective fluctuation potential,
H(ry,t) = (cd(rs,t) +vy()A(ry,1))/B (8)

# and A is the electrostatic and longitudinal magnetic potentials of oscillations, respectively,
and y = (04/¢n)rm and z = r — r,, the perpendicular coordinates and r, the reference

magnetic surface.
The fluctuational part of Hamiltonian H (rp,t) is a spatially random function with zero
average value <ﬁ > = 0, with a characteristic amplitude Hy = (<ff 2>)1/ 2 ~ 9/k). and charac-

teristic time scale 7 ~ Aw™! > wx. In addition the total Hamiltonian H(ry,t), given by (7),
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has a time dependence with the frequency w; = v)|/¢R due to the motion of particles along
magnetic field lines. For tokamak drift fluctuation spectra typically Aw < w;. Therefore the
time dependence of the Hamiltonian (7) is generally controlled by the longitudinal motion
of the particles, whereas the spatial scale is determined by fluctuations.

Let us now compare the fluctuation and the toroidal terms for perpendicular motion. The
situation here is quite different from the longitudinal one. The fluctuating particle velocity

- cE B Pi VT v Ln ‘
~S — — N — 1 —_— —
U~ B TUB "L ( T or qR) ©)

is typically higher than the toroidal drift w4 for both electrons and ions as
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The amplitude of the magnetic field fluctuation, B, used in these expressions was estimated
from the condition of high plasma longitudinal conductivity, Ej| = k”a - wﬁ/ c~0:

B _ kLA _]EJ; ky ch L, €¢ 1
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Estimations (5)-(11) are, of course, too rough to describe radial profiles of fluctuations, but
in general they correspond relatively well to fluctuation levels in the main region of the

discharge.?

III. Characteristics of Particles’ Trajectories in
Spatially Random Fields

In this section we proceed to the analysis of particle drift trajectories of the Hamiltonian (7)
which describes the system with one degree of freedom and explicit time dependence that
gives rise to diffusion.® For an understanding of the interaction mechanism between % and
ug in the particle motion one should analyze the equipotentials of the Hamiltonian H(r,) =

const. that describe the integrable motion of particles in the instantaneous Hamiltonian




H(ry). The trajectories in this case approximately corresponds to the limit vk > Aw,w,
that is close to real tokamak conditions.

Let us begin consideration in the limit u4 = 0. In this case particle trajectories coincide
with the equipotential lines H(r ) = const. and constitute a complex structure of convective
cells (Fig. 1).” To describe the distribution of the trajectories with size percolation theory® is
used. One notes that all trajectories are closed and are generally confined to an area of two
dimensional phase space of ~ A2, For small scale orbits, where A ~ X = k™', the length,
L, of the trajectory has a regular form L oc A. However it have been shown that large scale

orbits, where A > ), are fractal curves that have a scaling

L~/\(%)d>>)\ (12)

where d = 1 4 1/v is the fractal dimension of the curve and v = 4/3 is the critical exponent
derived for two dimensional case in.?

Long tra,jectories- are most importént for transport processes as was first mentioned in
connection with the problem of anomalous transport in tokamaks in reference.!® An im-
portant parameter for the formation of a large convective cell is the relative equipotential
altitude h = H/H,. Large orbits appear only for & < 1. The maximal size of an h-level

orbit is”

A ~Ah7Y > ) (13)

and their phase space occupancy fraction is
fo~eh K1, ° (14)

With a small toroidal drift (uq < ¥) present trajectories change considerably. The Hamilto-
nian H(r,) then has an average slope in the direction perpendicular to us: Due to this slope
all long trajectories with size larger than some critical value, A4, become open and head in

the direction of ug (Fig. 2). The condition for the opening of a trajectory is determined by
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" the balance of the fluctuation and drift Hamiltonian contributions!!*?

he Hy ~ ugAg , (15)

where hy is the relative level of an open orbit and Ay is its width. From this equation and

Eq. (13) one can determine parameters for the open orbits

5\ ~1/+D)
hy ~ (——) <1, (16)
Ud
1 v/(v+1)
Ay~ (—) >, (17)
Ud
5\ ~v/+1)
Ug

Condition (15) has a simple physical meaning. It can be rewritten as conservation of

fluid flux in the direction of toroidal drift
fdﬁd=(VH)=<VF>+ud=ud, (19)

where Ty is the average directed velocity along an open trajectory
ﬁdN%NAd%Nﬁthud(u%)m»ud. (20)
One should note that whereas estimation (20) is épproximate, equation (19) is precise.
The picture of trajectories described above allows for the maintenance of neoclassical
effects even at high fluctuation velocities of particles (¥ > uq4). Whereas the main fraction
of particles circulates along closed trajectories, a small fraction fy moves in the direction
of ug with the average velocity 7y (ug < Ty < ¥), so that hydrodynamic flow is the same
as in the absence of fluctuations. In connection with the problem of anomalous transport
in fluctuating fields such an effect was first mentioned in.'®* But the enhancement of the

instantaneous drift flow (T; > u4) has not been previously recognized.




IV. Neoclassical Transport Processes in Fluctuating

Fields

As have been mentioned above, diffusion emerges due to the dependence on time of the
Hamiltonian (7). This time dependence is connected with the finite spectrum width of
the oscillations (7, ~ Aw™! > w;l) and the variation of the uy direction due to collisions
(n) ~ ve/w?) or free streaming of particles along field lines (r; ~ w;*). The effect of the
mutual influence of the toroidal drift and the fluctuations is most pronounced in the case of a
narrow spectrum and weak collisions. This limit will be considered in this section, especially
as in the core of the plasma the Coulomb collisions do not influence longitudinal motion and
the inequality 7, < 7, is typically valid. The role of collisions and broad spectrum width will
be considered in the next section. |

Let as consider a systems having two typles of trajectories: closed, along which particles
oscillate without net displacement, and open, along which particles, though oscillating, move
in the direction of the toroidal drift. A new diffusion mechanism then arises that is connected
with transitions between the two different types of orbits. Due to the time dependence of
the Hamiltonian, orbits in a given topology have finite lifetime. During the lifetime in an
open trajectory, 74, particles move in the direction of toroidal drift for a distance Ar ~ 7y 75.
Afterwards, the topology of the trajectory alters and the particles become circulating in a
quasi-closed orbit. Eventually an inverse process occurs, and a closéd trajectory converts to
an open one and the particles again begin moving along the toroidal drift, but in a random
direction with respect to their initial displacement (Fig. 3). Such a random walk leads to

diffusion with a coefficient

Ar? )
D~ fyg— ~ fa®57a ~uiTa— (21)
Td Ug




The trajectory life time can be estimated from the relation'*

H hq VA -1

NaHIGE T wihgw (22)

Td

Substituting 7, into the formula (21) yields the ion diffusion coefficient in tokamaks with
account of both fluctuation fields and toroidal drifts,
D=Coi3.(£>4/7~ﬁ(£)4/72DP‘3NU_§, (23)
wy \ug wy \Ly Wy
Here only ion parameters are used as we expect neoclassical effects to be more important for
the ion plasma component. It can be seen from this expression that the diffusion coefficient,
in the presence of oscillations with sufficiently high amplitude (T > wug), is larger than
the neoclassical plateau value by about a factor of (¥/ug)"” ~ (R/Ly)"". Moreover this
coeficient does not depend on the collisional frequency and therefore applies even in the
banana regime, whereas the neoclassical diffusion decreases proportionally to the collision
frequency.

The theoretically predicted diffusion coefficient given in Eq. (23) was tested by numerical
simulations. Results of a numerical experiment!® are presented in Fig. 4 and confirm the
dependence of the diffusion coefficient on the fluctuation amplitude D ~ (¥/ug)*7 at ¥ > ugq
within the exponent error bars 4-0.1. The sharp decrease of the diffusion coefficient at v < uqg
corresponds to the vanishing of closed orbits. The simulation also allows the determination
of the numerical constant in Eq. (23) Cp = 0.13.

It is necessary to note that the estimate of the trajectory life time (22) implies a ran-
domness in the time dependence of the Hamiltonian. In the problem under consideration
the type of randomness differs from that used in Ref. 14. As the explicit time dependence
of Hamiltonian is regular (0(t) = w;t), for the decorrelation mechanism one uses that the

particles moves in a spatially random field of oscillations. Hence the displacement term,




r(t), is random in the Hamiltonian time derivative,

%I- = —w; ug(zsinb (¢) — y cos O(t)) . (24)

One should also note that the estimation dH/dt = Agugw; used in Eq. (22) is valid only
when the characteristic decorrelation time, 74, is approximately the time for particles to go
around a characteristic orbit width, Ay/7;. Using Eqs. (17), (20) and (22) this condition
can be rewritten as an equality of neoclassical trajectory size Ar = ugq/w; ~ gp; and the
characteristic spatial scale of fluctuations is A ~ k7'. Taking into account that for typical
drift turbulence the wavelength scale A ~ p;, one can see that condition A ~ Ar is indeed
consistent for ions (A ~ p; ~ Ar ~ gp;) in the plasma column core (g ~ 1).

Consideration of the general case is a considerably more difficult task.'®> In this short
article it is only possible to note that for ¥/A > w; diffusion mechanism is weakly influenced
by the parameter Aw;/ug. The transport coeficient valid in this parameter interval for both

ions and electrons can be written as

o 4/7
.Do = Co )\ud (—) . (25)
Uq

At higher frequencies w;A > ¥ the toroidal drift becomes too fast for a spatially random
Hamiltonian, H(r,), to be the reason for trajectory decorrelation (¥/w; < X). Therefore
if the finite spectrum width of fluctuations is not taken into account, the motion of the

majority of particles at A > ¥/w; is adiabatic,
o .
Ho = ot f{Hdt , (26)

and the diffusion coefficient drops considerably with respect to Eq. (25). Such a dependence
of diffusion coefficient on Aw;/uy is illustrated by the fall-off of the high frequency response

in the numerical results shown in Fig. 5.
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V. Discussion

In this section we discuss the influence of other processes on the modification of neoclassical
effects in tokamaks.

Collisions influence longitudinal motion when 7 = v./w} > w; (neoclassical Pfirsch-
Schliiter regime). In this regime the direction of toroidal drift u, alters in a time scale 7).
Moreover, due to the nature of the collision process, the toroidal drift direction changes
randomly. Therefore the decorrelation time 7 should be substituted in Eq. (21) instead of
trajectory life time 7) to estimate the diffusion coefficient in the Pfirsch-Schliiter regime

D ~ famym ~q* p*ve (i—) " pre (Lﬁn) " (27)
Froﬁ this expression one can see that in the Pfirsch-Schlitter regime, as well as in low col-
lisionality cases, high amplitude fluctuations considerably increase the transport coefficient
with respect to the neoclassical value.

Transport processes, due to the broad spectral width in a two-dimensional system, have
been considered in'# In this case H is randomly dependent on time and one should use in
Eq. (22), dH/dt ~ Ho/Aw, to estimate the additional trajectory lifetime limitation. Under
the conditions all long trajectories are destroyed no matter if they are open or closed and then
diffusion is independent of uy. For convenience of comparison with Eq. (25) the transport

coefficient obtained in'* can be represented in the following form

. ~  7/10 T\ [ AA 3/10
Dy ~ Aw)? ( AZ/\) = ug (5’;) (ud‘”) . (28)

Formally this coefficient exceeds Dy (25) when

~\ =3/7

Aw > ug/A (5’;) g | (29)

However the dependence of D, on Aw is weak and the difference of the ¥/uy dependence

compared with Eq. (25) is extremely small. Hence even for the maximum spectrum width

11




for drift fluctuations in a tokamak Aw ~ w, there is almost no change in diffusion coefficient
with respect to Dy (Fig. 4).

Both effects discussed above only increase diffusion in comparison to Eq. (25). The
question also arises whether there are other mechanisms to inhibit the diffusion caused by the
toroidal drift in the presence of fluctuations. Such processes are needed to describe H-mode
regimes!® as the diffusion estimate in Eq. (25) seems too high to agree with experiment. One
of the candidates for such a process is plasma rotation or, to be more precise, the difference in
poloidal rotation of the plasma and the oscillations. To see this let us transform Hamiltonian
(7) to the frame rotating with the fluctuating fields. As a result an additional term u, z (uyp
being the difference of poloidal rotation speeds of the plasma and oscillations) will appear

in Hamiltonian
H(ry,t) = H(ry,t) 4+ ug(z cos §(t) — ysin0(t)) + up . (30)

This additional term will lead to the shrinkage of all trajectories in the radial direction. It
is evident that at u, > ¥ long trajectories will disappear together with the diffusion that
could be induced. The disappearance of diﬂ'usién at u,/T > 1 is illustrated by the numerical
result in Fig. 6. One should note that velocity difference u, can not be associated with a
constant radial electric field but it may take place due to pressure gradients or high poloidal
rotational shear.

In addition to the mutual influence of ug and ¥ in perpendicular motion there is the
effect of the fluctuations on the longitudinal motion. Although for the majority of particles
turbulent acceleration is not important, there is a group of resonant particles with v = v; =
w/ k) that interact with the fluctuations exchanging toroidal momentum with the resonant
electromagnetic waves. Such an exchange can lead to the additional longitudinal viscosity
and typically increases neoclassical effects.1”1®

We now summarize how neoclassical effects manifest themselves under typical tokamak
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conditions where the fluctuation velocities ¥ are higher than the toroidal drift velocity u,.
Two features should be emphasized: (i) as the longitudinal particle motion is weakly influ-
enced by drift turbulence where & ~ /¢R < ky, the toroidally trapped particle number does
not change; (i) the perpendicular trajectories of the majority of particles is primarily de-
termined by fluctuations, but the overall diffusion is determined by a small particle fraction
that move in the direction of the toroidal drift with sufficiently high velocities to produce
the same hydrodynamical flow as in the absence of fluctuations. The diffusion coefficient
Dy given in Eq. (25) typically considerably exceeds the neoclassical value in all collisionality
regimes. The coefficient Dy is weakly dependent on amplitude and spectrum of oscillations
for typical tokamak conditions ug < ¥ < 10uy and Aw < w;. At the same time some
other neoclassical effects are weakly dependent on this process and can become even more

pronounced if the resonant longitudinal interaction is taken into account.
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Figure Captions

1.

Particle trajectories in the spatially random potential with scale A.

Particle trajectories in the random potential with the addition of the toroidal drift
ug = ¥/30. Spatial potential distribution and initial conditions of trajectories are the

same as in Fig. 1.

An example of the trajectory for the frequency of the toroidal velocity direction vari-

ation w; = ug/A.

The dependence of the diffusion coefficient on fluctuation amplitude for wiA[ug =
1: closed circles — Aw = 0, open circles — Aw = wy, solid line represents percolation

estimate given by Eq. (25).

The dependence of the diffusion coefficient on particles rotation frequency along mag-

netic field lines.

The dependence of diffusion coefficient on the difference of poloidal rotation velocity

of particles and fluctuations.
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