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Abstract

A numerical algorithm has been developed for electrostatic particle simulation of
arbitrarily shaped toroidal plasmas such as axisymmetric tokamaks with non-circular
cross-section. Two-dimensional non-orthogonal flux surface coordinates are generated
from the'numerical solution of the Grad-Shafranov equation. Using a coordinate trans-

~ formation technique, interpolation and smoothing of charge densities and electric fields
are made in the transformed nonorthogonal coordinates. A fast Poisson solvel; has been
developed in Which a finite diﬂ'erence-scheme for the radial direction and an FFT for
toroidal and poloidal directions are employed. A time-decentered Lorentz pusher is
used to integrate the momentum equaf.ion of ions where decentering is effective to
eliminate the ion cyclotron limitation on time stép. The Lorentz pushing is carried
out in transformed local orthogonal coordinates where two of thdse coordinates cor-
respond to poloidal and toroidal directions. The ion motion thus contains all electric
and magnetic drifts including the polarization drift. Electrons are also pushed in the
transformed local orthogonal coordinates using the drift equations. The algorithm is

being incorporated into the Toroidal Particle Code.



I. Introduction

Toroidal configurations are important geometry for plasmas and magnetic fields for confine-
ment of hot fusion plasmas. One of the simplest and most commonly studied configurations
may be an axisymmetric circular tokamak. This configuration resembles a cylinder in a
large aspect ratio (the ratio of the toroidal radius to the poloidal radius). However, in a
high plasma beta (the ratio of the plasma pressure to the magnetic one) there arises the
Shafranov shift! and it deviates from the concentric circular tokamak configuration. There
is considerable interest in tokamaks with a noncircular cross-section, as many people believe
that such configurations may have improved confinement properties. Included are a dou-
blet configuration, a beam-shape tokamak, and a ‘triangular’ tokamak.? In addition active
research is underway for other more complex toroidal geometries® such as the stellarators,
heliac, reversed field pinch, the geomagnetosphere, the Schwartzschild atmosphere. The ki-
netic stability and transport of such plasma configurations are vital questions in present
thermonuclear fusion research.

We have developed a fully self-consistent particle simulation code for toroidal geometry.*
The particle simulation has been effective in studying kinetic instabilities and their associ-
ated transport properties in a self-consistent fashion.®® In the present Note we present an
algorithm for particle simulation of non-circular toroidal plasmas. This is a generalization of
our earlier effort.* In Ref. 4, the coordinate system was orthogonal curvilinear coordinates
for axisymmetric, concentric circular toroidal plasmas. In the present Note we adopt (in

general) non-orthogonal curvilinear coordinate systems.



II. Coordinate Systems
A. Magnetic flux coordinate systems

In order to efficiently and /or accurately treat non-circular toroidal plasmas, it is preferable to
have a reasonable coordinate system which fit to arbitrarily shaped cross-sections. A possible
alternative is to have a brute force 3D cube or 3D cyiinder. The trade-off between the general
" geometry system and the less general ones (cube or cylinder) is the efficacy/accuracy of the
code vs. less mathematical sophistication and complexity necessary. We stress the first
virtue. This method is similar to the boundary-fitted representation” in compitational fluid

dynamics. Advantages of this include:

- (i) Natural control of resolution in the direction of rapidly varying quantities (fadial_,
in this case). Nonuniform mesh may be used to concentrate gridpoints in region of

ey

greatest activity;

(ii) Similarly, a good control of grid spacing along magnetic field (typicaﬂy much larger
than across the field). CFL-type conditions on fast-moving particles may be satisfied

more easily;

(ili) Representation of simulation fairly close to that of theory, facilitating comparisons;

(iv) Simulation boundary may be chosen to correspond to actual physical boundary, reduc-

- ing effects of unphysical boundéry conditions.

Here, we define 3-D coordinate system which is composed By 2-D non-orthogonal mag-
nefic flux éoordinates in the cross-sections and 1-D coordinate in the toroidal direction kept
orthogonal to each cross-section. Using this coordinate system, one can realize accurate nu-
merical calculations especially in particle pushing because magnetic field lines (poloidal and
toroidal field lines) always coincide with coordinate lines. The 2-D non-orthogonal magnetic

flux coordinates are calculated by using a Grad-Shafranov equation?® solver.
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The 3-D non-orthogonal coordinaLte system (£,7,() defined here is shown in Fig. 1. The

magnetic flux is constant along the { = constant coordinate lines in this system.

B. Non-orthogonal versus orthogonal coordinate systems

It is obvious that orthogonal coordinate system has advantages of simplicity and familiarity.
The flux coordinates calculated by Grad-Shafranov solver can be orthogonalized by a variety
of techniques. For example, one can apply orthogonal trajectory methods.® Figure 2 shows
examples of the non-orthogonal and orthogonal grids which we calculated for an elongated
cross-section. Orthogonalization may result in a highly distorted grid. These trajectories
were calculated from outer to inner boundaries. Even if we change the spacing of the grid
at the outer boundary (starting point), it is difficult to avoid grid distortion. Figure 3 shows
examples of the grids for elongated and D-shaped cross sections. We can conclude that it is
difficult to obtain uniform resolution in orthogonal grid for these geometries. Distortion in
grid may substantially reduce timestep in order to satisfy CFL-type condition on fast mc;ving
particlés.

On the other hand, a non-orthogonal coordinate system has much more flexibility. One
can easily control the resolution properties of grid and get reasonably uniform grid spacing
along the magnetic field. Although there are some possible concerns as described in the
following, we believe that the non-orthogonal coordinate system is superior in principle for
non-circular geometry due to its great flexibility. First, extra cross-derivative terms appear
in Laplacian of the field equation. These are small if the grid is not severely skewed and
are handled iteratively in the field solver along with other iterative terms (those; appearing
due to the toroidal effects are treated iteratively in TPC code.?) Second, finite difference
approximation becomes less accurate. However, unless grid is strongly skewed, the accuracy

loss is small. Moreover, orthogonal grids are not free from this defect due to the distortion

of the grid caused by orthogonalization. Third, it affects FFT calculation in the poloidal



direction 7. An FFT in this direction 7 is straightforward if the grid is uniformly spaced
in this coordinate, although the resulting modes are not independent. Coupling between
individual modes reduces but does not eliminate the usefulness of a mode representation. If

desired, one can use a purely finite difference approach in cross-sectional coordinates (¢,7).

III. Interpolation and Filtering
A. Interpolation function

" Interpolation and filtering are carried out in the transformed natural coordinate system
(€,m,¢). The interpolation method adopted in our simulation is that of the area weighting
methods. Although we explain the method here in two dimensions for simplicity, applications
in three dimensions is straightforward. | ’

We construct a grid of convex quadrilaterals in 2-D non-é;rthogonal codrdina,t_es as shown
in Fig. 4. Each quadrilateral cell has 4 vertices at positions Xy. In the coordinate trans-
formation method, we define a natural coordinate system (£,7) and map each quadrﬁateral
onto a unit square in the space of natural coordinates. Then, the natural coordinates become
integer values at the vertices. The p_hysica,l (R, Z) coordinates are ma.pped onto the natural
coordinates at the inside of each cell using bilinear interpolation. The interpolation relation

can be written as

Xp = [E'{(1 = 7")%is15 + ' Xigrjea} + (1 = {1 —0")xi; + 0'%i51}] (1)

where p is the particle position in the cell and
6’=§_i7 77’=77—j,
0<¢,n"<1.

We can define the interpolation function S and write the general equation of interpolation



as
xpzzxus(gp_i)np—j)’ (2)
v
where v indicates the vertices. This function is used for interpolation of field quantities such

as electric E énd magnetic b fields
Ep:ZEvS(fp_i’np_j)’ (3)
Bp:ZBvS(fz’"i’%—j)- (4)

The same function is used to project particle data onto grid points (vertices). The charge

density p is calculated by

Pv = ; J(ZI:]) S(Z - £P,j —'np) (5)

where g, is the charge and J(i,7) is the transformation Jacobian at the (¢, )th grid point.

The interpolation function S satisfies

SE ) =0-Na-m,0<¢n' <1,

S({’., n') = 0 ,otherwise , (6)

in bilinear interpolation. Since S is a function of [¢'| and |n'|, the interpolation operations
from particles to grid points become the same between as that from grid points to particles.

Here, S is a positive, continuous function with range [0,1] and normalized by

//D Sdedy=1. (7)

We can also use quadratic interpolation methods.? The method is second-order accurate
in the grid spacing, as in bilinear interpolation. However, smoother weighting can be ob-
tained in quadratic methods because both the interpolated function and its first derivative

are continuous at the cell boundaries. The additional smoothness results in less error due to



-

undersampling.® This type of interpolation is effective for simulation with large grid spac-
ing (small values of Ap/A). Therefore, we usually adopt quadratic interpolation in the ¢

coordinate (along the toroidal magnetic field).
B. Filt efing

A commonly-used filter in particle simulations is the convolution of the accumulated charge

density with a shape-factor which is performed in k-space of Fourier transformation,
Tom(k) = opr (k) exp(—[k - a]*/2) , (8)

s smbothed, p : projected ,

where o = Jp, k and a are the wave vector and a measure of the particle size respectiv;ely. If
we use finite Fourier transform for discretization, we can simply apply this filtering scheme.
If we use ﬁﬁite difference schemé for discretization, we can use digital filtering method.* An
equivalent way of using digital filtering in general non-orthogonal geometry is to add artificial
diffusions to variables. For example, if we discretize the equation in 2-D non-orthogonal

coordinates using finite difference method, the filtering becomes

U-‘Jm({:’ 77) = Uﬁ"(fan) + afﬂv2ap7‘(€7 77) ) (9)

where ag, : diffusion coefficients. We can apply this digital filtering (smoothing) method for
charge density and electric field if desired. The method is equivalent to the treatment of the

shape of finite sized particles.

IV. Field Solver

A. 3-D Poisson equation
The field equation for the electrostatic model is the Poisson equation
Vi = —4mp . (10)
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In the cylindrical coordinate sjfstem, the Laplacian operator becomes

2 10 1 9% 9

2—_— — Cm— ————— rv— ——
Vi=smtrRor T EE oz (11)

We can derive the Laplacian operator for transformed coordinate system (¢,7, () defined in

Sec. 2. The Poisson equation becomes®

2 2 2 2 52
! <0116¢+2012 o a¢>+P*%+Q*a¢ &a(b"_‘lﬂpa (12)

72\ e a€an T oy T T RmaE T
where
s_p,bu
P*=P+ 25, (13)
¥_py b
QT =Q+ 55 (14)

The coefficients «;;, B;; are coordinate transformation coefficients and J is the Jacobian. P
and @ are coordinate control functions which can be defined using the general 2-D coordinate

transformation method!® as shown in the following.

0% 9%

3R2 + 372 = P, (15)
d* 0?

st =9 (16)

Interchanging the dependent and independent variables, Egs. (15) and (16) becomes

0*R O*R PR , 0R ., OR _
0111—56—2'+2012'8—€57;+0226—772+JP'5§+JQ‘g;“o’ (17)
0*Z *z 8Pz | 2,97 .07 ‘
01118—52-{-204125&77’4-@226—”24'«]Pa—£+JQ‘a"77-0a (18)
where
an = E1 '51 = ﬁ121 + ﬂ221 ) (19)
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