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Abstract

~The ballooning symmetry, referred to a translational invariance in an axisymmetric
toroidal plasma pinch, is shown to be spontaneously broken for non-ideal systéms,
le., the lowest order mode amplitude varies (exponentially) in radia_l direction. The
“ballooning equation has thus to be modified according to the solution of thé sblvability
condition in higher order ballooning theory. Derived in this letter is a new set of
equations suitable for non-ideal systems. It may yield significant modiﬁcat'ioﬁs to

plasma stability described by the conventional ballooning theory for such systems.



In an axisymmetric toroidal pinch, like tokamak, the turbulence composed of various
types of high toroidal number (n) modes is generally considered to be responsible for the
anomalous transport that deteriorates confinement of the system. In order to understand
the origin of the turbulence, one generally starts with investigating linear instabilities of
the high n modes, which very often necessitates solving a two-dimensional (2-D) eigenvalue
problem. However, the solution seems to be unsuccessful unt;] an elaborate scheme is devised,
namely the ballooning transform,!~® which manifestly displays a translational invariance of
the system at the lowest order of an 1//n expansion. It is this translational invariance
which we call the ballooning symmetry that reduces the intrinsic 2-D equation to an one-
dimensional (1-D) form.

The 1-D equation, referred collectively as the ballooning equation, is only associated with
plasma parameters at one specific magnetic surface ro. It approximately yields the eigenvalue
of the 2-D system for a localized central Fourier mode, characterized by the poloidal number
m = ng(ro) (g(r) is the safety factor), coupled to sidebands with the same n, and m +
(1=1,2,3...) due to toroidicity. The typical I should be much smaller than m for the 1/\/n
expansion to be convergent, otherwise the eigenvalue of the 1-D equation would be in error
of O(1), even if n is infinitely large.*® This condition is called the solvability condition of
ballooning theory, which is precisely the condition for determining the specific ro, with which
the ballooning equation is associated. For a given 2-D eigenmode equation it is found that
only at a few o the solvability condition can be satisfied 45 Recent studies on the solvability
condition in a fluid drift wave model indicate that for a non-ideal system the solvability
condition is generally composed of two equations due to complexity of the system.’ As
a result, it is difficult to make the solvability condition satisfied by merely adjusting one
parameter rg. |

The clue to overcome this difficulty lies in disclosing a hidden over-constraint imposed



by the previous approaéhes. Making use of the 2-D ballooning transform®
B(z,1) = f dAdk explik(z — 1) — iM)3(k, A) , | (1)

where ¢(z,[) is defined by physical mode &(z,6,() = exp(in¢ — imb) Y, exp(—:l0)¢(z,1)
with z = n[g(r) — q(ro)], one can see that there is indeed lack of rationale to confine \ on
real axis, as being treated previously,l‘.5 le., the variable A may have 5 parametric imaginary
part A;. This additional parameter ); is found not only to be helpful to resolve the difficulty
in satisfying the solvability condition, but also to yield an important modification to the
balldoning equation.

The non-zero A; (henceforth, the analytical continuation A — ), +i)\; with a parametric
Ar is understood) immediately destroys the translational invariance of the lowest order mode
amplitude in the radial direction. Taking cﬁ(k,/\)‘ — @o(k,A) ~ 6(A — A*) at the lowest
order,® where /\f stands for the localization in A space, we readily find that ®o(z +77,6,¢) =
exp[—im(\* + 0)]@0(_:1:, 9,¢) with an a,rbitrkary integer 7, where the subscript 0 refers to the
lowest order, i.e., the radial variation of the (IoWest order) mode amplitude is exp(mA 1)
Notice that A;(= ImA¥*) as well as Re A* should be determined a postpriori by the higher
order equations of ballooning theory. When ); is solved to be non-zero, the sponta.neoﬁs
breaking of the ballooning symmetry takes place.

Let us consider a Q-D eigenmode equation which resembles, without loss of generality,
to the fluid drift wave equation described in Ref. 5. The 2-D ballooning transform Eq. (1)

converts the eigenmode equation in real space into an equation in the k — A representation®

2 -
Lo 4 L(’)% + L“L%E + LW 4 higher orders] @k, A) =0, (2)

where L = T1{)8?/0k? + I{) 2 + 1®) + cos(k + MY +sin(k + Mk (i = 0,1,2,1), and
Hgo) ~ 0(1), HJ(-I) ~ O(1/n), Hgg) ~ O(1/n?) are independent of k, ), determined completely
by the local parameters, and Hg-i) = f(k) + g(k)0/dk ~ O(1/n). Expressions for all II's can
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be derived in a straightforward manner for a given equilibrium. The non-zero JAS AC I
reflect the fact that the translational invariance is not exact for the entire system.

To illustrate our mechanism, we consider a toy model, wherein both :L® and L2 are
real numbers independent of k, denoted by Ly/n and L, /n? respectively (we have spelled out
the order n explicitly, so that L; ~ L, ~ O(1)), and LD = 0. This toy model is equivalent to
I = I = 0 for j = 1,2,4,5, and L; = inTI{Y, L, = n2I1?. In this limiting case Eq. (2)

is separable, and @(k, ) can be written as X(k, \)¥(\) with X(k, A) being the solution of the

ballooning equation

LOM)x =11 W+[Hg°)k2+cos(k+A)Hﬁ°’+sin(k+x)ng°>k] X(k,X)=~II(A)X(k, ), (3)

where II(}) is the eigenvalue of the ballooning equation, and parametrically dependent on A
via cos A and sin A. The reflection symmetry of Eq. (3) in £k —» —k, ) — =) indicates that
II(A) = Ho+II; cos A+II; cos 2A+---. Assuming a not very strong toroidal coupling and a wave
U(A) localized by the potential well cos A, we approximately have II()\) = IIi(chArcos A\, —
ishArsin A,), where A, is the variable. Substituting Eq. (3) into Eq. (2) yields the equation

for ¥(A):
L&y 1dv
n2d2  'n dh

where 11 = I1I{”) 4 O(1/n) is the eigenvalue of the 2-D system. The most localized solution
of Eq. (4) for A\, ~ 0 is U(X) ~ exp(i(Ly/2Ly)n A, — (n\/B/2)(A; + itanh A\;)?] with p =

+ [I® — 1 cos(), +iAn)] ¥(A) =0, (4)

—~IIychA1/2L,. If A\; were taken to be zero a priori for a non-zero L;, a too fast variation of
W(A) would be superimposed on the appropriate ballooning ordering dln ¥/dln A ~ /n,
resulting in a divergence of the expansion in power series of (1/n)8/d) for Eq. (2), thus
leading to a difficulty of the ballooning theory.? Therefore, A\; should be determined by

eliminating this too fast variation of the wave function U(A), i.e., the solvability condition can

be satisfied by choosing skA; = L, \/(—-ch/\I/QI'Ing), so that the valid ballooning ordering

is restored.



With full operator form of L) and L), Eq. (2) can be solved perturbatively.® For the

most localized ¥ ~ exp(—n.,/pA?/2) the solvability condition consists of the equation

ilishAr=n/p(XLOX) (5)

with p = —IIchA;/20*[(XLOIX) + (XLW,)], where () = fdk--/ [dkX?, and B, ~
O(1/n) is the inhomogeneous solution of the equation LO%, + (L®) — (XIMX))X = 0.

. Provided a priori \; = 0, the solvability condition Eq. (5) reduces to (XTUX) =0
[Eq. (8) of Ref. 5]. For an ideal system, e.g. the ideal ballooning mode, where the quantities
associated with the ballooning equation are purely real, and also zm is real, the solv-
ability condition is likely to be satisfied by merely adjusting ro with /\ 1 =0, and the lowest
order mode ampli_tude is radially invariant.? In this case there is no symmetry breaking of
the lowest order mode. |

Generally, one has to solve Eq. (5) with the ballooning equation [Eq. (3)] to determine r,
and A; simultaneously, so that the solvability condition is satisfied self—consistently.A‘Then,
the eigenvalue determined by the eqﬁation for W(A) just gives an O(1/n) correction to the
eigenvalue of the ballooning equation: II; cos(Re A*)ch); (for the potential well cos Ar, ReA¥
can only be 0 or 7). Notice that there is a multiplier chA; along with II;. This does not
mean that the multiplier is the correction to eigenvalues of the ba,ll'ooning theory with A\; =0
(the conventional ballooning theory), beca.userﬂl implicitly depends on A;. However, one
still may expect an O(1) correction to the eigenvalues of the conventional ballooning theory,
if A; is not small. Radial envelopes of physical mode ®(z,0, () are also modified by the finite

Ar. Tt is estimated that the peak of radial envelope is shifted from ro to a radial position ry?,

~ which is defined by q(ry") = q(ro) + VP If g(r3?) is well beyond the range of the safety

factor within the plasma, the corresponding mode is not physically interesting.
In conclusion, the solution of the ballooning equation is the authentic lowest order one,

only if the contribution from higher orders is shown to be negligible. This is indeed a problem



for non-ideal systems, whereupon a novel quantity Ay is thus introduced into the ballooning
equation to make it possible to validate the ballooning ordering, if it would otherwise be
violated. Therefore, the ballooning equation [Eq. (3)], the lowest order one, must be solved
along with the solvability condition [Eq. (5)], the formal first order equation, simultaneously
to determine the parameters pertaining to the ballooning equation: ro, representing the

equilibrium, and Az, describing the spontaneous breaking of the ballooning symmetry.
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