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Abstract

An asymptotic theory is developed to determine the continuum damping of short-
wavelength Toroidal Alfvén Eigenmodes, which is essential for ascertaining thresholds
for alpha particle driven instability in ignited tokamaks.

Magnetic fusion research has finally reached the point at which large scale thermonuclear
burning experiments can be undertaken. The introduction of .D-T fuel into TFTR and JET
is being planned and several larger experiments such as BPX, ITER, NET and FER have
been proposed to attain full self-sustaining burn. Thus it is essential to think a.bOLit novel
physics features that may arise from the presence of large numbers of fusion product alpha
particles whose speeds are greater than the Alfvén speed vy = Bo/(47rp)1/2. Some effects have
already been seen from superthermal fast ions produced by neutral beams or rf heating.!:?
It has been pointed out®* that toroidal coupling of the alphas to the Alfvén wave might
lead to instability and possible diffusive loss of \the alpha pérticles. A principal uncertainty
in estimating the critical threshold for the instability lies in calcillating the damping rate
of the Alfvén ‘waves. In a sheared magnetic field these waves are highly localized at the
surface w = kv, and strongly damped in most cases. An exception occurs for ti’lé so-

called Toroidal Alfvén Eigenmodes (TAE)® where, due to the periodic nature of the toroidal
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field, gaps can arise in the continuum frequency spectrum of localized modes, within which
discrete modes (undamped in lowest order) exist and can be alpha particle destabilized..
Since the destabilization is weak, it is also necessary to calculate the damping with some
precision. Within the ideal MHD equations one can describe damping independent of the
detailed dissipation mechanism from the structure of the Alfvén continuum resonance.6-8
The purpose of this letter is to present a detailed asymptotic linear theory for the damping
of short wavelength TAE modes in a large aspect ratio tokamak.

We limit ourselves here to nearly circular equilibria and assume small inverse aspect ratio
r/R, low 3, and high average poloidal mode number mo (so d/dr > 1/r while mge is finite).

The frequency of a linearized wave is determined from the stationarity of the Lagrangian

2
2 _ Magnetic Energy _ /dar [V(b - V®)]
Kinetic Energy 47r/d3rp(V<I>)2/Bz ’

(1)

In Eq. (1), @ is the wave electrostatic potential, and b is a unit vector along the unperturbed
field Bb = B,® + B;8. Because of the equilibrium toroidal symmetry, we expand ¢ =
exp[i(ne — wt)] 3, dm(r)e=imo and, by varying Eq. (1) with respect to ®m, arrive at the

mode equations valid to first order in e:

d <w_2 52 >d¢m m? (w2 ) w? [d2¢m+l d? by

— - I _ — k2 ol = 2
dr \vg§ "lm v} Kl ¢m+€vft iz T dr? J 0. @

vi dr rz
In Eq. (2), kjm = % (n ~ W";)') with R and r the major and minor radii of the torus, and

q(r) = %%%. The toroidal coupling factor is ¢ = or/R < 1, where the value of & depends
on the details of the equilibrium, €.g., 0 = 5/2 near the TAE resonances for a low-beta,
near-axis, Shafranov-shifted circular equilibrium.” In the cylindrical limit (e = 0), Eq. (2)
has a singularity at the surface w = Kjim v4, which may be regularized by nonzero €. Since
the toroidal coupling is important only near the éingularity, it is retained only in the higheét
order derivatives of ¢,4;.

v

The essence of the TAE is seen by noting that for w = 3Ry modes mo and mg + 1
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are both resonant at the point where ¢ = m—‘Hﬂ. Thus we look for a solution near r =
To where q(ro) = mg/n = ¢ and use ;%— = —2—- [1 + (¢ ~q0)— In(1/v%(q ))} We write

R%w? = 34—(29— (1 4 €go) where go represents the shzft of the eigenfrequency. In Eq. (2) we

introduce m = mg+¢, with ¢ < my, and expand for each harmonic about the point r, where

Bjjmote = 0, i.e., q(re) = (1 + = ) go = q¢. We find

-l 0) - [ e o] =g ] o

-1
where z = n(g—gqq) and g, = go-f—;%es: withé =¢ [%6—%%@ ] . Equation (2) then becomes
. ,

d (1+ege >d¢e (4l z3) € d*bep1 | dpe_q] ‘
d_xz( T I e B A da? T aez | T ()

with z; = ¢ — ¢ and s = dlng/dInr. Toroidal coupling is only important at z, = £1/2

(couphng to the £ = 1 harmonic). Near a singular layer (say z¢ = —1/2), we find

d |/€ge )d¢z- ggi_cﬁ_e_ € ddey (sge )die_
dy[( —Y) dy +4 dy 0, dy 4 dy + 4 + dy =0, (5)

- with y =z — £+ 1/2. The first integrals are found for ¢} = doe/dy:
/ € 2, & 2
Py = {yCz - Z(Czq + ge Oz)] / Yy + —1_6—(1 -9 > (6a)

€
b1 = [0 + G+ 0eC] [ (4 5500 ) - (65)
The integration constants Cy and C,_; are the values of y9; and yé;_, away from the singular

point. While y¢’ is constant across the boundary, ¢, and ¢,_; are discontinuous across the

boundary layer of width /4, with jumps given by A¢ = /oo ¢’ dy so that

4
= Aje = Co_1Bs + Coay;

+
be A )
. f:hql = —Cor0p — Cyf3s (7)

T
with ag = —g(1 - g7)~'/% and By = a;/gs. The branch of the square root is to be determined

from the causality requirement that if w, > 0 all functions of g are analytic in the upper half
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plane. Hence along the real axis the square root is positive for |g| < 1 and is — TyLi g* —1
for |g| > 1, manifesting damping. Branch cuts are taken from ge = :El to —io0.

Next we must ensure that all the harmonics ¢, vanish as z, — +oo. Except near
the singularities at ; = %1/2 the harmonics obey Eq. (4) with € = 0. Thus, near the
singularities, ¢¢ ~ (In [z} —1|+A)C, where A takes on various values depending on boundary
conditions. Three characteristic values of A are: a) Ac(s), the value at z3 2 3, for the
solution that is well behaved as |z,| — oo; (b) A,(s), the value at z, 2 —1 for the solution
that is symmetric about z, = 0, i.e., Cy(1/2) = Ce(—1/2), where we denote Cp(—1/2) = C;
and Cy(1/2) = Cf; ¢) Similarly, A = A,(s) for the antisymmetric solution, with CH=-C;.

We now trace the construction of ¢,. For z, < —1/2, we must have ¢, = Cy(In|z? —
1/4|+ Ag). For zp R —1/2, Eq. (7) give:; ¢e = Cy(In|zf —1/4|+ Ago +moy + 76, CF, /CF).
Since ¢, can also be expressed as a superposition of symmetric and antisymmetric solutions,
we have ¢, = ACy(In |zf ~ 1/4| + A,) + (1 — \)C; (In |22 — 1/4| + A,) for z, R —1/2.
Hence, Ay + may + 78:CH,/C7 = MA, + (1 — A¢)A,. Further, for z, S 1/2, we have
be = C’Z’[ln 11/4 — 23] + (AeAy — (1 = A)AL)/(2 — 1)], with Cf = (2\, = 1)C;. Finally
we must ensure after the jump at z, = 1/2 that A = A thus, /\,_A%\(:_—%& — MOy —
TBes1 %‘,%l = Aq. Solving for ), after eliminating the C- coefficients, we obtain our basic
recursion relationship between the C'+ coefficients (henceforth we drop the superscript) :

2 N2 A2 A X
c, ’:ﬂl+1 (ep1 + A) 4 A J= e-1[ BeA J+Ce+1[ Bey1A J .

A+ apyy A+ a, A+ A+ apgq

(8)

We have defined A(s) = =[2A,, — (A, +4,)] and A(s) = 8:=8a and their values are shown
in Table I. Note that A <0, A > 0, and & > |A]. The eigenvalue go must be determined by
the requirement that a solution to Eq. (8) can be found for which C; — 0 as [¢] — co. Note
that if go is an eigenvalue, then g, + 2j/mo€ with j any integer will also be an eigenvalue.

Our principal interest is thus in the imaginary part of go.

For given s and mo€ Eq. (8) may be solved numerically. It can also be solved analytically
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in two asymptotic limits, First consider the case me€ K 1. Then all g, except go will be

large and for ¢ #0; a¢ = —4,8, = 0. Then Eq. (S) is solved with only Cy and C~, nonzero,

yielding
© = lim go = _ l_;y2 (9)
b moe—0 ° l+y2 '

withy = A —A?/(A ~1). Since A > 0, Eq. (9) gives Im g( ) < 0, implying damping. Values

of the real and imaginary parts of go are shown in Table I and provide an upper limit to
the damping to be expected at finite moE.

We turn now to the interesting asymptotic case® mo€ > 1. In this limit the coefficients
in Eq. (8) vary only slightly with ¢ and we employ a finite difference variant of WKB theory.
We write Eq. (8) in the form Co(Xet1+ Yy) = Comy Wy + Ce+1 Wet1 where the subscripts on

X,Y, and W indicate the dependence on ¢ arising from g, and hence ap and f,. Letting

&+3 ,
Ci=TT @ = e S (0 ~ e g (10)
and then expandmg in orders of ¢’ = 3% = —x with Q@ = Qo + Q1¢’, we ha.ve :

_ @ _ [X' = QoW — Q4W] -
= G T TWQe =1y D

with the primes denoting differentiation with respect to g. Equation (11) is solved to find
= f % JT=T with f=1208+(1-2A%+ A1 —93)*/2|A| . For |f] < 1, we have

|Qo| = 1, representing an oscillating behavior of the C,, whereas for |f| > 1, as occurs for

I X+ Y,
Q(8) W,

Qo(€) +

]gl ~ 1 (since A > ]Al) solutions are predicted that grow or decay as [¢] — co. We must
choose the damped solution, corresponding to the minus 31gn in the expression for Qo. Then,
after some algebra. and care with the singularity in W, Ql can be found from Eq. (11) and

the integral f & > dg performed to yield

o T (=BT (Pn g - v7T)
=1 = 7 1/4 =
(- [1+A/1=¢ (f—\/f'z—l)J



with T' a normalizing constant. In the oscillating region

—ge + Ay/1 - 97

and the usual WKB joining condition applies, viz., the solution (f* = 1)7Y4 exp[— Ian)
when |f| R 1, behaves as 2(1 ~ f2)~Y/* cos[f(- - -)] when Ifl < L.

|Comt] ~

P B
(1= 2 (1 _ f2\1/4 (13)

The global structure of the TAE mode can now be understood. Figure 1 shows a
schematic plot of the toroidal shear Alfvén continuum resonance curves 1 962, £) = —(2¢/meé) £
[1+16(z —£—1/2)?/€*]"/? as a function of radial position z = n(q - qo), for a succession of
poloidal harmonic numbers m = mq + ¢, where 90 = mg/n. (The expression for g&** follows
from setting the denominator in Eq. (6) equal to zero.) For a given normalized frequency
go = (w?/w§ — 1)/e, the harmonic ¢,(z) will have a dissipative response at the positions
where continuum resonance, g, = 90", occurs. However, in the region where 92 < 1, with
ge = go + 2¢/mqE, no such resonance occurs, and these harmonics can combine to produce a
global eigenmode. Each individual harmonic has only a limited radial extent, being localized
where |z — £| < 1/2 and exponentiating to zero beyond this interval, as shown in Fig. 1.
However, toroidal coupling permits the broad excitation of a global-type mode. In the region
where | f(£)| < 1, the adjacent harmonic amplitudes have nearly equal amplitudes and shifted
phase: i.., for Cy o cos(1), then Cpy; o cos(y £ 0;), with cosfy = f(£) and 9 the phase.
This “wave-like” pattern exists in the region (mo€/2)(9- — go) < z < (mo€/2)(g+ — go),
where f(gs) = +1. Outside of this region, the harmonic amplitudes C; are evanescent, with
Crs1/Ce = exp(—lgg,), where the upper and lower signs correspond to g > g4 and g < g_,
respectively, and cosh§, = |f(€)|. Since |gi| < 1, the dissipation due to the continuum
resonances at g% = 1 occurs where the mode amplitudes—have exponentially decreased from
their level in the wave-like region. Therefore, we expect the damping decrement to be pro-
portional to a combination of the tunneling factors exp[~2 [, ! L(dg/q") 6(] evaluated from the

wave-like region to the dissipation region.



In order to calculate the damping rate we construct a quadratic form by multiplying

Eq. (8) by Cf and summing over all £ to find:

1+ A&° _ A? Ber1 A
I= Z il {A+ae+1 2A}+;ICKI'A+0‘£ ZZ:(CZ C£+1+Ce+102> A+ apgy 0
(14)

For real g, I will have an imaginary part arising from « and 3 for |g| > 1. Moreover, for large
mo€ where Cy decays rapidly as |g| increases, the main contribution to Im I will come from lg]
close to 1. The damping rate will be determined from the relation (Im g) (dI/dg)+Im I = 0.
Using Egs. (12)—(14), we finally obtain an analytic expression for the damping rate y = Im w |

when my€ > 1:

I 6 = 27/ =~ fexp(~molflHL) + expl-malelHL)] , (19
with o
G(s) = 8_\/2#(1 +5A22_—AA22) In ( 2—: —1+4 ’%)] - (16)
and . .
Ha(o) = o5~ BT WAL ) e, g
(K (k) - E(k)] . -

RGO
Here A= (1+A*—A%)/2A | B= —K/A , k? = LHEL | 4 = sin™! b, and F(k, ¢)
and E(k, $) are the usual elliptic integrals, with K(k) = F(k,7r/2) and E(k) = E(k,7/2).
Values of G(s) and Hy(s) are shown‘in Table I. |
Equation (15) gives our analytic result for the TAE damping at large mg€. For small myé,
Eq. (9) applies. An interpolation formula for the entire range is (Im g)‘.1 = (Im g1 +
(Im g°*)~*. Comparison of the interpolated analytic solution with the numerical solution of
Eq. (8) shows the following features: |

1) The analytic values asymptote satisfactorily to the numerical results at large mgZ.

Since the large moé analysis assumes a large exponentially decaying region it is quite sur-
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prising that it seems to remain valid even for moderate and small mo€, where typically the
analytic damping rate may be 30% higher than the numerical values.

2) The numerical results show considerable oscillation in the damping rate as mg? is
varied, which may be expected from the discrete nature of the sum for Im I from Eq. (14). At
smaller s and mo€ these oscillations are enhanced because in the numerics the sign of /g7 — 1
is discontinuously changed when crossing the branch cuts, taken arbitrarily at g, = +1 — i+
with v real and positive. To refine this and to study whether interesting contributions to
wave evolution arise from the branch cuts, it is necessary to resolve them by introducing
finite Larmor radius or resistive effects, a subject to be considered in a subsequent paper.

Although our results are not valid if the overall eigenmode extends beyond the region
where the linear expansion for ¢(r)/v3(r) is satisfied, the WKB procedure is easily gener-
alized to treat this case, as will be discussed elsewhere. |

Finally, we may draw three general conclusions. Damping is very weak at small shear (s <
0.5), which makes instability likely in the center of the discharge. Damping decreases strongly
with mo (and hence n); however, the alpha drive dependence with m can be diminished due
to FLR and banana effects,® while other non-ideal damping, e.g., due to the parallel electric
field, will increase with m. It thus seems plausible that intermediate values such as those seen
in recent experimental observations of the TAE instability’? are most dangerous. Finally,
we note that profiles with large & = ¢ [a—l’;—(l%l[;'—‘l]—l should be susceptible to alpha particle
driven instability and alpha particle loss since the mode extends for large radial distances

and the damping is small.
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Table Captioh |

Values of the A and A parameters, the normalized complex frequency g((,o) of Eq. (9), and
the G and H. functions in Egs. (15)-(17), as functions of the shear s.
Figure Caption

Schematic plots of the toroidal shear Alfvén continuum resonance curves 95°(z,¢) and of

several TAE harmonics $e(z) and their global envelope, as functions of radial position z =

n(q — Qo).
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