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Many characteristic features of Alfvén waves and related instabilities are strongly de-
pendent on the inhomogeneity of the background density and the ma.gnetlc field. On the
other hand, these waves also have an influence on the inhomogeneity, which is caused by
the enha.ncefnent of the cross-field transport through wave-distortion of flux surfaces. This
pfoblem is addressed here within the framework of the single-fluid reduced MHD model and -
generalized Lagrangian representation of motion. The new effect of transport enhancement
is identified as a consequence of the local squeezing of adjacent fAlux surfaces, which results in

increased radial gradients and cross-field fluxes. This effect is found to be proportional to the

Vsecond power of the ratio of the magnetic field perturbation to the normal field component.

The result 1s applied to several problems related to m = 1 equilibrium relaxation and Alfvén

resonance broadening.
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1. Introductidn

In toroidal confinement devices and in other systems with closed magnetic surfaces, the
cross-field transport can usually be described as a one-dimensional (1-D) process, since the
temperature and density of the plasma are approximately constant on each flux surface.
Evaluation of the transport coeflicients, though, requi;es a 2-D or 3-D analysis of the geom-
etry of these flux surfaces. An Alfvén wave, introduced in such a system, may change the
diffusion in two different ways: by causing additional scattering of plasma particlés, thus
changing the local confinement properties, or by distorting the equilibrium configuration of
the flux surfaces. In this paper we examine only the second mechanism, which is assumed
to be the dominant one at least for the thermal plasma component and the low-frequency
kink and Alfvén modes.

These modes are studied here within the single-fluid MHD model. Because of the math-
ematical difficulties, we consider only the case of a 2-D wave, although the same physical
effects should be present in more general situations as well. In our model the transverse
fluid motion is incompressible, and no coupling to sound waves occurs. All ideal motions
are much faster than any dissipative ones and have reasonably large (nonlinear) amplitudes.
However, the interesting process is the cross-field transport, which, of course, is slow. This
type of model has many limitations, but it is relatively simple and physically clear.

The advantage and the main limitation of the model lies in its artificial preservation of
topology of the magnetic surfaces, which eliminates all effects related to reconnection. In this
case it is relatively simple to describe the plasma motion in Lagrangian-like coordinates, by
introducing the slow “velocity of slip” between the fluid and the “frozen in” magnetic field.
As pointed out by Moffatt,! this procedure can be unreliable for complicated field structures.
However, it is adequate for simple initial equilibria either in the absence of a rational flux

surface (where the pitch angle of the perturbation is equal to that of the magnetic field lines)



or sufficiently far from a rational surface. This crucial point will be discussed in more detail
in the Conclusion.

In Section II we consider the resistive diffusion of the magnetic flux. The related resistive
damping of the nonlinear wave is discussed in Sec. ITI. Modifications of the cross-field diffusion
of a passive scalar that is somewhat different from the transﬁort enhancement of the magnetic
flux, due to the role that the magnetic field plays in the propagation of an Alfvén wave, are
described in Sec. IV. In Sec. V we coﬁsider some specific cases of application: namely, the
evolution ;)f the g-profile in a tokamak, the broadening of Alfvén resonances during intensive
radio-frequency (RF) heating, and the self-consistent relaxation of a nonlinearly saturated
m = 1 kink mode. In the Conclusion, we mention.other possible-applications and. discuss

the inherent limitations of this approach.
II. Current Diffusion

" The only effect that is able to cause current profile to evolve in flux-surface related
coordinates is the finite -conductivity. ThereforeA, we have to discern this slow diffusion in
the background of l'arge-amplitude, high-frequency oscillations. It is fortuna.te that the fast
motion conserves magnetic surfaces, and hence the Lagrangian. approa,ch may be used. In
an ideal system this approach simplifies the descnptlon of nonhnear Alfvén waves and , in
particular, the descnptmn of the internal m = 1 kink mode in tokamaks.?

To use such a method, one has at least to assume the conservatlon of regular structure of
the magnetic surfaces. This restriction is not a very strmgent one 1f for a given wave, there
is no rational surface in the plasma volume under in.vestigation. Otherwise, reconnection
will occur in the vicinity of this rational surfa.cé, leading to eventual stochastizatidn of
fhe rhagnetic structure. In some cases (e.g. tearing stability and high magnetic Reynolds
number), one can neglect the thin resistive layer and excludé it from consideration. The

rest of the motion will not destroy the structure of the magnetic surfaces, although it may



change the current profile.

In this Section, our discussion will be based on the sheared slab model of the equilibrium
magnetic structure. It is chosen for the sake of simplicity of the intermediate algebraic
expressions, although the same logical steps can be performed in a cylinder cohﬁguration as
well. Specific differences relevant to cylindrical geometry of the magnetic surfaces are listed
in Appendix.

The first equation here is the Ohm’s law, expressed as a transport equation for the

modified magnetic flux *:
dip*

dt = Dovi,(/)* = EO(t)- (1)

Following Ref. 3, we have assumed the magnetic field to be of the form B, > B, , where
B, = e, x V¢ . The z-axis is chosen along the symmetry axis of the wave, so that B 1 =0
at the resonant rational surface. Plasma motion is incompressible, V-v = 0. Also, in Eq. (1),
D, = c?/4wo is the resistive diffusion coefficient, and E, is the z-component of the external
electric field. ‘

In the ideal MHD case, viz., D, = 0 and E, = 0, Eq. (1) is reduced to 3* = Yo(z,),
where z, is the Lagrangian coordinate (initial position of fluid element). Because of flux
conservation, viz., di)™/dt = 0, this position also labels a magnetic surface throughout the
motion.

In the presence of resisfive diffusion, it is useful to represent the magnetic flux as ¥* =
Yo(z,,t). In this situation, the formal definition of z, must be changed in order to conserve
the feature that z, labels the magnetic surface, where the given fluid element resides at the
current time ¢. This procedure of labeling is straightforward only in an equilibrium, so we
must follow certain steps to define it.

First, we ‘freeze’ the system and assume ideal conductivity. Then, we relax the system
to equilibrium, taking this constraint into account. Measured in the new equilibrium state,

Z, is the physical radius (or other metric characteristic) of a magnetic surface.
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This description can be also rephrased as follows. Each intermediate state, reached by
the resistive system during its motion under the topological constraint, is equivalent to
some other perturbed state of the ideal system with the same initial topology but .with
some different initial ¢,. We define the independent coordinates (z,, Yo) for our dissipative
problem as the Lagrangian coordinates in this édjoint ideal system. Such an operation is, of
course, time dependent on the slow resistive scale. Moreover, the most interesting parameter

that can be found as a result of the entire study is the time dependence of 1,(z,, t), i.e., the

" time sequence of 7 profiles for equivalént ideal systems.

In an initially ideal system, viz., D, — 0, the operational definition of‘coordinat‘es is
equivalent to the Lagrangian one, which simplifies the description of ideal motion. Hence the
Légrangian derivative, % = %’{- + v - Vi, will be represented as % = (%—’f) oL + V. (%>qL’
where V, « D, is the slow crpss-ﬁeld velocity of the fluid, and (aait) o is the pé,rt'ia.l deriva-
tive in the new quasi-Lagrangian system of coordinates (z,,¥,,t). (Henceforth all partial
derivatives can be taken to be in this quasi-Lagrangian systerh, unless otherwise §tated.)
The motion is nown described by the time—dependent plane transformation z = z(z,,¥,, ),

y = Y(,,Yo,t). Assuming transversal incompressibility of flow, we have the Jacobian of the

transformation,

Oz 8y Oy 0z _ o (
= 2,0y, Bo. g, @

or, using the notation of Poisson brackets, [z,y] = 1. In these coordinates we have Viy* =
[[¥s, 9], 9] + ([, 2], ], so that the equation of magnetic flux transport, Eq. (1), takes the

form

0, e AN o (0z\* | [0z
ot +V;c¢o_Do(¢o ('a?) +¢o l:"a?ay:l +»¢o (%‘:) +'§bo [37,27}) —Eo. (3)

(] o o

Here V; is the velocity of fluid displacement relative to the flux surface z, = const. (and
hence V; o< D, and V; < ca); also, 9, = ,/0z, and 3" = 6%,/ 0z2.

Our objective is to derive the y-independent equation for the evolution of flux. This is



possible only with certain types of boundary conditions in y (otherwise the result could be
y-dependent). In the following, we assume that the boundary conditions are defined as either
the periodicity of perturbations with period Ly, or as y = y, and z = 7, at ys = +L,/2
(which is equivalent to having impenetrable limiters at y1). Note that if any function A is
periodic in y, it is also periodic in y, with the same period and remains so throughout the
motion; the distance between boundaries y+ in ¥y, also remains constant, viz., Ay, = L,.
Bearing this in mind, we define the surface average of quantity A as < A >= 'L%; § A dy,.
The quasi-Lagrangian coordinates are defined with the volume conservation requirement;
i.e., the definition of z, is such that the total flux of fluid through the surface z, = const.
is zero, or < V; >= 0. This property allows us to separate the flux surface—é.vera,ged part of
Eq. (3) from the y,-dependent part. The first one governs the evolution of ¥,(z,, t), whereas
the latter only defines the value of the convective velocity V; (which will be used in the next

section but is not necessary for the description of the %* transport).

One can use the following identity

Goh- () - (emh-2G)y o

for any function a that satisfies the boundary conditions, including y and z, and so express

the averaged equation for the magnetic flux transport as

o 8 (.00,
5= Doz (I{%:) ~ E,. (5)

K51+((g?i)2+(§50>2) (6)

is the transport enhancement factor, with A = y —y, and £ = z — z, . This is an exact

Here

expression, obtained without quasilinear assumptions and valid for nonlinear perturbations

of magnetic surfaces.

Displacements A and ¢ can be expressed via the perturbation of the magnetic field in the



ideal limit (D, — 0). From

oY RS
Bx_—-gg_[o’]“‘ oayo’
oy A\
e o2 2),
it follows that ) :
o€ 1)) _ B?
(ayo) ¥ (”ayo) "By
and hence
K = (B}/Blo) =1+ ((6BL/By)*). Us

While using the above equations for- the-description:fof‘s;the~magnetic flux-transport; one-
must bear in mind that the enhancement factor: K can have component.s ‘.WhiCh are-rapidly
oscillating with time. If the wave is stationary, such as a-saturated kink mode, or:if it is
a coherent wave moving with a fixed group velocity, then. the averaging procedure in y, is
sufficient to remove all such oscillations from K (z5,t). In genefal, however, the enhancement

factor should be averaged over these fast oscillations:
K(zo,t) = 1+ 3 ((§BY/Buo)’). T®

Thus, for example, the influence of a traveling wave on the diffusion will be two times greater
than that of a standing wave of the same amplitude with nonzero frequency.

Equations (7) and (8) for the enhancement factor only appear to be simple. Complications
are hidden in the simple notation < ... >= (1/L,) §(...) dy,, which denotes the averaging
procedure on a magnetic surface. If the perturbation is large enough, this surface can be
distorted in an number of different ways, including those shown in »Fig. 1. This figure
represents sample cross sections of perturbed flux surfaces, shown in pairs to illustrate the
density of the y,-grid, which is proportional to the relative diéta,nce h, between adjacent

flux surfaces. Let us define the distance along y = const. as H, = hAz, = (0z/0z,),Az,,



where the partial derivative is taken at constant y and Az, is the difference between the
surface coordinates in equilibrium. The density of the y, grid is J = (0Y5/0Yy)z,, where the

partial derivative is taken at constant z,, i.e., on the surface. Between these two quantities
(090) _ [z _ <3y>-1
a:1"0 y [xoay] ayo Lo ’

(4)= -  AGenr) (1 s (aaf) ) . ©)

However, this particular expression is not too convenient, because the transformation from

we have the direct relationship

hy

and thus for any A

Yo to y may not be single-valued, as shown in Fig. 1(b).
It is instructive to-examine how the averaging procedure works in the example cases (b)

and (c) shown in Fig. 1. The relative distance along the normal to the perturbed surface is

hohe (( 8y>2‘ (83:)2) -1/2
b= —me—= =] +|=— , (10)
/R + hZ 8o Iy, -

so that £ =< h™* > «x < B} > and B, o 1/h. Here B, is the perturbed field. In cases
(b) and (c), the minimum distance between the flux surfaces is approximately the same, i.e.,
the maximum perturbed magnetic field is approximately the same. Also, the fraction of the
surface area where the field is thus perturbed, is of the order of unity in both cases. However,
the resulting scalings of the enhancement factor K with B L max are quite different: K « B, ?
in case (b), and K o B! in case (c). The reason for this is quite evident in physical terms:
in case (b), the increase of the flux surface area is inversely proportional to A, so that the
flux (and K) should increase as the inverse second power of A, whereas in the case (c), this
area is approximately independent of 4 and the flux increases only as A~!. In terms of the
mathematical averaging procedure, this means that most of the integral in yoiis accumulated
over the area \‘avhere most of the inter-surface fluid is situated. In case (c) this is the area of

large ~ and hence small B, .
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Equation (5) governs the evolution of the current in the presence of a given large-
amplitude Alfvén wave. To make our approach self—co,ﬁsistent, we next consider the evolution
of the wave itself. In the following section, we study this problem using the modification of
the ideal nonlinear description presented in Ref. 2 and show that the damping is predomi-

nantly caused by factors other than those responsible for the enhancement of diffusion.
III. Resistive Damping

As we have seen, the mean component of the Ohm’s law does not contain any information
about the damping of the wave, at least in the leading order in D,. Such information can
be obtained. from the convective flow (Vz, Vy), defined by thé Yo-dependent component of
Eq. (5) It ca,nc-"b.e conveniently described by an effective potential U as follows: V, = 9U/dy,,
Vy = —0U/0z,, where U can be found as |

By ay 1\~ ~
U= /deo-D /dyo( (6%) +[0yo D , | (11)

so that for any a, we have ‘ -
da/dt = (da/dt)q, ~ [U, a] = Ra, (12

where the index qL’ means the quasi- Lagranglan coordinates.

To describe the propagatlon and the damping of Alfvén waves, we start with the dynamic
(vorticity) equation |
dv 1
and rewrite it using true Lagranglan coordinates (:1:0, Yo) in the slab model:
9%\ 0% \
[PW, .T/] + [PW,JZ} = [¢, vi ¢] (14)
(The corresponding expression for the cylindrical case is derived in Ref. 2.) In the ideal limit,

viz., ¥ = ,(z,), we can further transform Eq. (14) to obtain

]+ oG] = £ [ Gha] + [wg?i,} w9
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or

[My,y] + [Mm, a:] =0, (16)

where Ma = 41p8%a /8t — (1/)28%a/ 9y?.

Equation (15) demonstrates the well-known fact that in a slab geometry, the ideal linear
wave solutions are at the same time the exact solutions of the nonlinear equation.? Indeed,
for any A, for ¢ defined by the incompressibility condition [z, + &,3, + A] = 1 and vy =
W' [(4mp)*/?, the pair

A= ’\(xo,yo x vAt)7 = f(l‘o, Yo £ vAt)’ (]‘7)

satisfles Eq. (16). Since v4 = v}/(47p)*? = kjca depends on z,, such waves, in general,
experience spatial phase mixing, which leads to fast damping rates.

To include the influence of resistivity, let us transform the expression of Eq. (15) to our
quasi-Lagrangian coordinates. We note that the right-hand side of thi.s equation remains
unchanged in the presence of resistivity. This is a consequence of the fact that in the newly
chosen coordinates, defined in Sec. II, the magnetic line bending force is exactly the same as
in the original Lagrangian coordinates. The only modification is in the inertial terms, where

the time derivative is no longer a partial derivative and must be replaced by R:

. . 2 2
[roftn,s] + [ompfie, o] = P Gto] + (4705, (18)

The form of the operator R is given by Eq. (12). This description may be closed by the
inclusion of Eqs. (2) and (5) in the system and, if necessary, a similar equation for the
diffusion of the density p.

As a next step, we argue that the influence of the resistivity becomes important only at
large times ¢ ~ 4 oc D7/3. In this limit we have v)4(Z,)t > 1, and the radial derivatives of

a shear Alfvén perturbation become larger than any initial gradient, while the y, derivative
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remains of the same order. Indeed, we find that

0 0 0 d

~ — Tt > —,
0z,  0z.|,, ,_o ta A, > Y, (19)
Thus, we have
, a

— V.

bz,  A'By, (20)
Evaluating U in this approximation yields

U = D,(vyt)A, (2‘1)

where all significant nonlinear corrections have cancelled each other. The same thing happens
with the approximate form-ofiR:

Bxa T Dt (22)

This result leads to the same conclusions as the linear model® in the sense that it recovers
the fast exponential decay of the perturbations ~ exp(—vt®). Indeed, with the lowest order
correction [in D,(v;t)?], the equation of motion looks like . A

) 82\ Y. 5\ | -
W - via—yg - 2Do(vAt)zaay§ = 0. (23)

In our ordering, v?zhere t o~ D;"l/s, the correction term is still small;-»\so- that it- does not
significantly modify the conditions of wave propagation. However, the amplitude Qf' the
wave decreases as |

Ar(t) exp (—%vﬁkzte’) , (24)
which justifies the initial ordering.

We have shown that the damping of the large amplitude shear Alfvén waves does not differ
significantly from that in the linear model, and thus the damping process can be decoupled
from the essentially nonlinear effects responsible for the enhancement of the cross-field flux
diffusion. This is not alw.ays true; for example, the case of the Global Alfvén Eigenmode®

requires special treatment.
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IV. Diffusion of a Passive Scalar

A number of extensive studies has been conducted to investigate the changes of diffusion
in a perturbed magnetic field.”® The main channel of the diffusion enhancement discussed
in these papers is the stochastization of magnetic field lines. However, with our set of initial
assumptions, no such stochastization occurs, and the increase in transport will be caused by
effects similar to those that influence the diffusion of current (Sec. IT). Only these effects are

discussed in what follows.

The transport equation for a scalar T in incompressible plasma flow looks like

dT
= = ViV + v CaviT), (25)

where d/dt = R = 8/8t + V:0/0z, + V,0/0y, in our model coordinates. This differs from
the flux diffusion equation, Eq. (1), in that it has an additional term on the right-hand side,
describing the transport of the scalar T alorig’ the field lines, while ¥* is constant on each
flux surface by definition. Also, the perpendicular transport coefficient, x 1, is positioned in
between the radial derivatives, rather than in front of them.

For a hot plasma in a strong magnetic field, parallel diffusion is usually much faster then
perpendicular diffusién, viz., X|| > XL, so that there is a fast smearing out of T' along each
field line. Moreover, in a general tokamak-like sheared magnetic field, this parallel transport
keeps the distribution of T' homogeneous on each flux surface. The question of whether this
property is retained in the presence of fast Alfvén -type fluctuations determines the relative
importance of the convective transport (caused by the y-dependent part of the cross-field
flow, V,,) as compared to the mean change in the effective diffusion due to the “squeezing”
of flux surfaces (Sec. II). Here we show that the convective transport is not important. The

reason is similar to that in the case of a stochastic field.”?

An estimate of the T perturbation on the flux surface can be found from the linearized
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version of Eq. (25):
oT " . | ~
5~ Ve (x1ViT) = vy VL) = VaTl + (Vixo Vi)™ T (26)

The second term on the right-hand side of this equation is necessary because of the distortion
of the magnetic field by the Alfvén wave. However, we have V, ~ D, and if y, is also small

(which is usually true), we get
—TJ% ~ ¢ =max{D,,x.} (

and the convective contribution to the mean diffusion is second order in this parameter. Here

” L%) <1, (27)

Lt = |V InT,|™! and wy is the typical wave frequency. For stationary perturba.tioﬁs, wy
should be exchanged for x &f.

If we completely neglect the perturbation, ' = 0, then the y-independent part of Eq. (25)

looks like
oT,
ot

Evaluation of the right-hand side of this equation can be done along the same lines as in

= (Vix1Vi)To. (28)

Sec. II, and we arrive at

T, 8 o, -
5 = Ba (XLK a) (28)
or ' R S
oT, 1 0 oT,
Tt (XKa—) : (30

where K(z,,t) = 1 + E;, ((6B%/BLo)?) as in Eq. (8). The diffusion corrections in these
expressions are first order in € ~ max(D,, x.), and therefore the neglect of the convective
contributions is justified. |

We have found ‘that the influence of a large-amplitude perturbation of the poloidal mag-
netic field on the transport can be described simply as an enhancement of the transport
coefficient propg_rtiona,l to the second pbwer of the pertqrbation a,mplitude; This result is
only slightly ciifferent from a similar correction to the flux diffusion equation, which was

obtained in Sec. IL
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V. Examples

The conditions for the derivation of the flux diffusion equation (A5) are compatible with
the so-called ‘cylindrical tokamak’ approximation. The requirement that the recénnection
be absent or insignificant is definitely satisfied in such problems as the nonlinear saturation
of the m = 1 internal kink mode in a tokamak with a nonmonotonic ¢ profile,'° or the long-
term behaviour of the Alfvén resonances. In these cases there is no rational surface within
the plasma column, so that reconnection cannot develop.

Before addressing these particular problems, it is convenient to rewrite the flux diffusion
equation in a more useful form, as an equation governing the evolution of the rotational trans-
form of the magnetic field lines, p. In a cylindrical configuration the rotational transform

can be expressed as p(r,) o ¢, /r,, and thus

%12 (2 rina) (31)

ot r,0r, \ 1, or,

is the equation describing the resistive diffusion of p, and, consequently, that of the safety

factor ¢(r,) = 1/p.

A. Relaxation of m =1 helical equilibria

The general outline of the problem can be described as follows. The ¢ profile in tokamaks
is believed to experience periodic perturbations related to the sawtooth crashes and then to
return to its initial form due to the resistive diffusion of current. During these returns,
various transient forms of the ¢ profile can be formed, for example, nonmonotonic functions
of minor radius with minima close to but above ¢ = 1 at some radius r = r,. It has been
shown that a plasma equilibrium with such a ¢ profile can become ideally unstable with
respect to m = 1 perturbations. Such instabilities and their subsequent saturation can be
interpreted as the cause of the so-called partial sawteeth. These phenomena are seen in

experiments as fast perturbations of the magnetic field and the temperature, centered close
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to the inversion radius of the usual sawteeth and causing perceptible m = 1 displacements
of the plasma core. The significant feature of this process is that in a relatively short time
the discharge can recover its original symmetric state without massive losses of energy from
the central region, in variance with what is seen during full sawtooth reconnections. In this
section, the return relaxation of a helical m = 1 equilibrium is described in terms of the fast

changes in the ¢ profile that are induced by the saturated mode itself. -

The full asymptotic solution of the ideal saturation problem for the m = 1 kink mode in a
+ tokamak with nonmonotonic ¢ profile has been published in Ref. 10. This result will be used
as a source of information about the form and intensity of the field perturbations expressed
in:terms. of-the-fluid ‘displacements: The- radial displacement-in:cylindrical coordinates. is.

given by Eq: (8) ofithis-paper-as.

(@)= [

0

- 1| dz + A(8), (32)

(f(zo) + 9(6))1/2

where
f & (a® +25)" + 246 (v /)" (a® + 23)’;
a™*g(8) = (8v/m) cos 6 + 15(v/7)? cos 20 + (v/27)3[639 cos § -+ 135 cos 36);
a® = 2Aq/q"; v¥ = £2¢"/(8Aq) < 1; Aq s the difference between the ¢ value at the minimum

point and ¢ = 1; ¢” is the second radial derivative of ¢ at the mihimum; Ag, is the threshold

value of Ag; and the saturation condition is

£2ql/_ 8 87 2 ch 3/2 ) '
27 (3) [(aq) - (#)

The radial coordinate z, is defined as a flux surface coordinate z, = r, — Te, where 7, is the

radius of the minimum-q point.
Equation (32) defines ¢ as a function of a mixed, nonorthogonal pair of coordinates, so

we need to recalculate it for use in formulae (31) and (A6). The fluid incompressibility can

15



be expressed as [r?,0] = 2r,, and £ = r — 15, A = § — 8, by definition, so that

ar\ 06 0x B¢ A", A\’
(8r0>9—1+8ro_8_r0;9§:(1+5£> =+ "%, - (34)

The partial derivative on the left-hand side of Eq. (34) is given in terms of the (r,, ) coor-

dinate system. The left-hand side of this expression can be evaluated from Eq. (32), and we

find

2 or\? 4y
" (1 * aao) S @ o (35)

Conditions of the validity for Eq. (32) include the smallness of the radial displacement, viz.,
¢ K r,, and the fast radial variation of the perturbation around r = Te, OF T, = 0. In this
approximation the expression for the enhancement factor K is simply K = ((1+0A/06,)%),
and thus K =< (f+g) > /(a?+22)?. Substituting the known parameters into the cylindrical

analog of Eq. (9) for the averaging procedure, we obtain

flro) +9(6), _ 1 f+g [or L (f g
(W) = %){W (5;;)0030 ~ %){cﬂ_-;-z?da’ (36)

and, in the same approximation as in Ref.10, we find

8 (Ag./Ag)*? —1
535 (1+ (ol al)

K(z,) ~1+ (37)

where 8%/639 ~ 0.8. The région of enhanced transport is localized around the ¢ minimum
point, r, = ., and its width is determined by the parameter a. Equations (31) and (37)
constitute a full system, capable of describing the self-consistent profile relaxation in detail.
The physical assumptions for sucﬁ a description would be: (1) that the resistive evolution of
q 1s slow enough so that the system is always close to the ideal helical equilibrium; and (2)
that the relaxation of the plasma pressure profile and the current profile around r = r. do
not induce significant changes in the instability drive, as described by the parameter Ag,.
Because of the subordinate role of this section, the details of the relaxation behaviour are

not essential, whereas the estimate of the characteristic time scale involved in this process
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can be interesting as an insight into the possibility of experimental compatibility and into
the relative importa,ncev of the nonlinear enhancement mechanism. Following this idea, we
simplify the problem assuming Ag.—Aq < Ag < 1 and also assuming ¢" to be approximately

constant durihg relaxation. Then the right-hand side of Eq. (32) can be evaluated at z, = 0

‘to yield A : :
5 _ 32D, ,
and
Aq ( Aq) { 3-2Do " } .
1— =(1-— e —_—q't 5. 39
ch ch t=0 P Aqg ! ( )

Here D, = ¢*/(4nc) is the resistive diffusion coefficient, so that rr = 1/(¢"D,) is the
characteristic time of the g-profile change without magnetic perturbations. As can be seen

from Eq. (39), the relaxation time of the Belica.l equilibrium is
™ R 0.3A¢%7R, I : (40)

which is typically ‘102 times faster than the normal time scale associated with the change in
the equilibrium, viz., 7 ~ Ag,Tg, and is compatible with the observed time scales for partial

sawteeth.

B. Broadening of the Alfvén wave resonances

In’this subsection we qualitatively déscribé the prbcéss of radial resonance broadening,
which may occur during Alfvén Wave heating eiperiments. The importance of this effect is
linked to the rate of wave energy absorption, which depends on vthe radial wavelength and
will decrease if the gradient of the local Alfvén frequency becomes small at the resonance
point.

An exact description of the wave structure in the vicinity of the Alfvén resonance can
be achieved only in kinetic theory, which is beyond the scope of this paper. However, we

may consider this wave to be externally given and assume the width of the resonance layer
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to be of the order of p; and smaller than the hydromagnetic scale length, with which we are
concerned.

From the standpoint of the rotational transform distribution, described by Eq. (31), the
existencé of a narrow resonance layer implies the generation of a local ‘dent’ in the overall

profile. Indeed, in a stationary state, we have

D, 8

ro Or,

(uKr?) = const. , (41)
where K has a local maximum, and hence
K= po(ro)/K(r,). (42)

Here po(r,) is the equilibrium profile of the rotational transform in the absence of the wave
perturbation. If the resonance is sharp enough, this process can reverse the local gradient of

 even if the wave amplitude is small. The threshold for this effect is

~ (2
B
Vi (E)

where L, = |Vln p,|™ = 1,/S, and S = r¢’/q is the usual definition of the magnetic shear.

L, > 1, (43)

The influence of the wave on the density profile is less significant (at least in our hy-
drodynamic approximation without heating and scattering effects). Since the enhancement
factor K for passive scalar transport enters Eq. (30) only between the derivatives, a change
is induced only in the value of the local density gradient and not in the value of the density
itself. This effect can then be disregarded as long as the resonance is local and the wave

amplitude is not too high.

The radial position of the hydromagnetic Alfvén resonance is determined by the condition

-
W = Wlpe X “‘pl/2 'a - (44)

where o = n/m = const. The usual stationary u, and p profiles correspond to a decrease of

these quantities with radius, and for definiteness we assume that 4 > a and |Vu| > 0.5|Vp],
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so that the local frequency wiec(rs) decregses with radius. This means that any additional
decrease in 4, such as that induced by the wave, shifts the resonance point inward. This
inward shift of the resonance can be repeated in the new position by the same mechanism,
and so forth, until a balance is achieved between the wave-induced perturbation and the
regularizing background- diffusion. It is.also obvious that the system should:maintain a
certain significant level of fluctuations at all radii where the resonance point has been during
the transition period. Otherwise a new resonance will arise there and. increase the wave
amplitude. The whole process amounts to-the broadening of the resonance area in radius
from the initial resonance point inward. This also:can be rephrased as follows: the resonant '
Alfvén-wave- flattens. the-gradient of'the right-hand side-of ‘equation:(44), and thus. causes
the resonance condition w = wy,. to-be satisfied over. a-sizable radial interval.

The width of the new resonant aredvcanl be estimated frorn the following considerations.
The depth of the drop in the u value due to fluctuations should compensate the decrease of -
the equilibrium wg, with radius, so that the lc;cal Alfvén frequency at the innermost resonant

point is the same as at. the initial, outermost point‘ where the process started. This means

. _|Bu, 1Apl |S 1 |
K—-1= . - 57 = ; —2Ln AT‘O, (4:5)
and thus |
. __{(B/Bg)* |
Arofv ‘S/T0_1/2Ln|. (4:6)

Here Ar, is the resonance width, and L, = |[Vlnp|~! is the density scale length.

Some rough numerical work, involving the nonlinear diffusion equation (31), has been
done to check the largely qualitative discussions in this section. No significant discrepancies

have been found.
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VI. Conclusion

In this paper we have derived the 1-D equations describing modifications of the cross-
field transport of the magnetic flux and of a passive scalar caused by a propagating Alfvén
wave, an MHD instability, or other perturbations of the flux surfaces. The importance of the
underlying physical process is in the induced local changes in the profile of the safety factor,
which influences the MHD stability and the dispersion properties of the plasma column. The
most interesting feature is the possibility of self-consistent adjustments between the g-profile
and the driving MHD perturbation. This may account for some features of the penetration
of the magnetic field into the discharge.

It is necessary to emphasize that the results obtained in this paper are not quasilinear
and are valid for finite amplitudes, when K > 1. However, in practice such a situation is
probable in the neighbourhood of a resonant magnetic surface, where either By — 0 (for low
frequency oscillations and internal kink instabilities) or the perturbation amplitude, B, is
significant (for Alfvén wa.ve- heating experiments). In each case the impact on the transport
properties is local, and the most affected characteristic of the equilibrium is the current
profile or the profile of the safety factor g.

There are two important limitations of the applicability for the results derived in this
paper. The first one is the absence of reconnection. This limitation is partially due to the
mathematical difficulty of describing arbitrarily reconnected surfaces, but also is related to
the real physical problem of Alfvén wave propagation in a medium with magnetic islands.
However, the application of the formulae (5) or (A5) is possible for description of the per-
turbed flux surfaces just outside of a tearing island, and such application may be valuable
for the problem of the nonlinear growth of tearing islands.

Another inherent limitation of our approach is the 2-D approximation of motion. This

is certainly not very adequate for tokamaks and ballooning modes, but this limitation is
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not related to any major physical difference of the 2-D situation. The problem lies with
the mathematical difficulty of describing all ideal motions and perturbations of magnetic
surfaces in a full 3-D case. Indeed, the final result will probably contain information about
the equilibrium configuration of the flux surfaces, which are not concentric and not even
circular. An effort to overcome this difficulty can be launched as soon as interest in the

overall problem has been established.
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Appendix. Flux diffusion in a cylindrical configuration

The definition of the modified poloidal magnetic flux in a cylinder is
Y=V —yr, (A1)

where ¥ is the full poloidal flux, r is the radial coordinate, and the constant v < 1 is a

characteristic of the helical axis of symmetry. The formal definition of v follows from
ec=e, —ve, x Vr, (A2)

where e is a vector along the axis of symmetry of perturbations, so that e;-V = 0. Equation
(A1) is quite similar to that used in the derivation of Eq. (1) for slab geometry, but now we

have VZr = 1/r # 0, and , consequently, there is an additional contribution in E,:
E, = E, +vD,Vir. (A3)

However, this contribution is almost never important and cancels out exactly if we are dealing
with the full lux ¥, the safety factor ¢, or the rotational transform of the magnetic field
p = 1/q, instead of the somewhat artificial modified flux ¥*.

In the cylindrical quasi-Lagrangian system of coordinates, (75505, 1), the incompressibility

condition is [r?, §] = 2r, and

viv.= g et + EE (A4

We can define the surface average as < ... >=1/(27) §(...) df, and perform this operation
over the parallel component of the Ohm’s law in Eq. (1). As a result, we get the analog of

Eq. (5) with small modifications:

8%, D, d (

0,
5t = oo \oK (ro)———> - E,. (A5)

22



&

Here ¥, is the poloidal magnetic flux, E, is the component of the external magnetic field
along the magnetic axis, and

K(r,) = <(TL%")2 + (}%)3 | (A6)

The enhancement factor K. can be similarly expressed through the perturbation of the mag-
netic field: _
K =1+ (B%/(B)? . (AT)

where B*(r,) = 0t,/dr, is the “reduced” magnetic field.2
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Figures

FIG. 1. Possible types of flux surface perturbations. Flux surface cross sections are plotted
in pairs to represent the relative distance between adjacent surfaces. The area between
each pair of surface cross sections is conserved By the incompressibility of the fluid. Case
(a) is the unperturbed configuration; in case (b) the area of the flux surface increases
roughly in inverse proportion to the relative distance; in case (c) the cross-field transport
is determined predominantly by the “squeezed” areas of flux surfa,qes, which do not

depend on the effective relative distance.
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