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Abstract

The possibility of stabilizing the m = 1 tearing mode by rapidly oscillating the res-
onance point r,(t) about its mean position is examined. The calculations are carried
out for both externally controlled, coherent oscillations of r(t), as well as those result-

ing from turbulent plasma motions. Complete stabilization is possible in the coherent

. case, while turbulent fluctuations may yield substantial reduction‘.in the growth rate.

The technique seems to apply to any linear mode that depends upon local properties

around a resonant surface.

» )Theory Division, Culham Lab., Abingdon, Oxon, United Kingdom
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I. Introduction

Sawtooth oscillations are important in the study of reactor-relevant tokamak physics. Various
experimental methods of profile control using a range of heating and current drive techniques
have been used to achieve sawtooth stabilization.!’> The purpose of the present, theoretical
study is to point out a possible new method for stabilizing the m = 1 tearing modes.

The m = 1 mode, as is well known, is different from higher m tearing modes in several
important respects. Its linear stability in a cylinder depends upon the shear parameter
§ = ryq'(r,) (where ¢(r,) = 1) rather than the global A’ characteristic of other tearing
modes. The possibility exists of stabilizing this mode by reducing the shear® either by
external means or by the plasma itself via some transport mechanism. It has recently been
shown* that when the shear parameter 3 is sufficiently low, and when certain other conditions
can be met, the weakly unstable linear resistive internal kink may saturate to form finite
amplitude, helical island structures reminiscent of ‘snakes.’”

In the present work, we investigate a second possibility. Instead of trying to lower 3, we
examine if the resonance at r = r,, where ¢ = 1, can be detuned by rapidly oscillating the
resonant point in time about its mean position. This is analogous physically to frustrating
the system from achieving its resonant linear growth rate by rapidly moving the resonant
point out of resonance. This process is also analogous to finite Larmor radius stabilization
due to the averaging of the potentials seen by gyrating charged particles.

The calculation is carried out for both externally controlled, regular oscillations of r,(¢),
as well as those resulting from plasma motions themselves. We discuss two possible ex-
perimental scenarios and some typical numbers to illustrate the results. We also present
numerical calculations, using the reduced magnetohydrodynamic equations, which confirm
and extend approximations used in the analytic theory.

The approach appears to apply in any linear mode for which the dispersion relation and



the mode structure are strongly dependent upon local properties around a resonant surface.

Extensions to modes other than m = 1 resistive tearing will be left to a later work.

II. Formulation of the Problem

Our starting point is the low-beta reduced MHD (RMHD) equations® of motion. For the
narrow boundary layer associated with localized tearing, the equations are effectively one-

dimensional. The linearized form is given by’

; | |
X kg =y (1)

5 + zk”d}” =0 _ ‘ (2)

where t is measured in umts of p0101da1 Alfvén time 74 = R/vyu; v4 = Bt/\/47r , Bt is-

the toroidal field, p is the plasma density, and R is the the maJor radius. The coordmate
Z = r — r, measures the (normalized) distance from the rational surface at rs, such that
q(rs) = 1. Primes denote differentiation with respect to z. The normalized resisti?ity n is
the ratio 74/ Tr, Where 75 is the resistive dlffusmn time-scale defined by TRt = *n*/dnr?,
where ¥ is the dimensional (in cgs unlts) resistivity. In the above equations, 1 and ¢ denote
the usual m = n =1 perturbed poloidal flux and velocity stream functions, and by =1 -1
isa functlon of z, ¢ being the equ1hbr1um safety factor. |

Oscillations in the resonant point are introduced by letting
Bi(z,t) = K {z = (1)}, )

where {(t) is the motion of the resonance, and k| =dz/k)at r =r,. Below we let s = —k.
A basic assumption of our analysis is that motion of the rational surface is rapid compared
.to the classical growth rate:

w>>7c1 ‘ (4)



where w is a characteristic “jitter” frequency, w ~ dln¢/dt, and 43 = s% is the standard
m = 1 tearing mode growth rate in the absence of £(t). The jitter-modified growth rate
will turn out to be complex, v = v, + éy;. While v, < 4, also satisfies (4), the oscillation

frequency 7; need not: v; ~ w.

We assume that the fields i and ¢ have the form
f&=e*F+75), (5)

where f is independent of time. We also assume the existence of an ‘intermediate’ time-scale

T such that

1

and define the time-averagé of the function f(t) by

1 T2 .
(Fen=g [ fedt. (™)

~T/2

In the coherent case we can choose T = 1/w. Note that (f(t)) # f.

ITI. Analysis of the Coherent Case

With the notations introduced, the equations of motion take the following form:

1@+ 8)+ 9~ isx(F+ §) =n(F" + ) = ~isé(3+ ) Q
(& +¢") + 637 —isz(P" +9") = —isé(F" +4") . (9)
After time averaging we get the ‘slow time’ equations,

1 —iszg = nP" = —is (€4) (10)

7" —isz" = —is (€Y . (11)



The problem consists in evaluating the averages (£¢) and (£¢”) in terms of &, $",w and
s, thus closing the system (10) and (11). By subtracting (10) and (11) from (8) and 9),
respectively, we obtain the exact equations: - | '

P

5 HrP sz =i = —is(64 — (¢4) (1)
. aai; + 49" —isz = —is(&Y" — (€9")) . | - (13)

- Although linear, these equétions are difficult to solve exactly due to the shear (isz) and
resistive () terms. However, we anticipate here that $ and ¢ will derive their spatial

structure from that of the averaged fields, 5 and . Thus, for example, in (12),
" ~ (—%) b,
w
where w is the layer width associated with the linear tearing mode. Recalling that v, ~ n/w?, |

we see that (4) allows us to ignore resistivity in (12). A similar argument shows the shear

terms to be of order 7, /w also. Hence we consider the lowest order system:

o) W
Bomfoises— ). (15)

Note that (15) is derived from (13) by a double spatial integration.

To uncouple these equations, we introduce the fields,

u=1b+¢ , » (16)

and
v=1h—¢ . (17)

Then we find that @, satisfy, | |
O (y+is—isen— (), (1)

ot



av

o = —(7 —is§)T +is(v ~ (¢v)) .

(19)

It is sufficient to solve for u since v can be obtained from u using symmetry: v = u(s —

—s,u — U). We introduce the function X(t) such that

X
‘ — =€)
Then Eq. (18) is straightforwardly integrated and we find

u(t) +7 = A(t)(is (¢u) + 1)

where

A = [ ; dt' exp [is(X () — X(8)) + 1(£' — )] .

Now we average Eq. (21) to get

u =1s (§u) (A(1)) + 7 (A()) T

i (4)
(€u) -
From symmetry, we have
=y (4)

Using Egs. (16) and (17) in (24) and (25) gives

i [A=v(A)] =
o =-1—m |?
-\ 3 [(L=~(A)] -
(6d) = — EraiE
Substituting in Eqgs. (12) and (13), we finally get
| iy B —iseB = =0
1 - . =0
<7>~¢—23:m,b =0.

(20)

(23)



Thus, the new dispersion relation is extremely simple: It is obtained by replacing v by 1/ (A)

in the old one. Thus, the modified dispersion relation (for arbitrary ¢ (t)) is simply

1 _ o
ﬁ"‘")’c- » ) (30)

We now evaluate (A) in the simple case where £(t) = £y coswt :
/ dt’ exp [ % (sinwt’ — sinwt) + y(t' — t)} . (31)
Letting A = séo/w, and using the standard Bessel function relation,

u\smwu__ Z J (/\ mu . | ' (32)

n=-o0

we readily obtain,

n=—0oo

- 5w (E) (ea)” @

or ' ‘
| RACY v o | N
(4 === [1+0(2)] . | (33)
It finally follows that | ‘
| vy, A= (39)

Because v; ~ w in some cases, the éxact form of (33) is generally needed.

Complete stabilization occurs for A = 2.4. For typical large-tokamak parameters (B, =~
30kG,n ~5x10" /cm®, R = 300 cm, r,q' ~ O.i), the jitter frequency w needed to completely
stabilize the m = 1 mode is on the order of a few kHz, for a jitter amplitude of ¢ < 5% of |

the minor radius.

IV. The ‘Random Function’ Approach

Now we turn to a more general case where £(t) consists of an ensemble of functions

£(t) = &ocos(wt + g) where the phases 6 are uniformly distributed in (0,27). We still
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assume that w >> 7.. Interpreting the time averages now to be ensemble averages, we find
that the preceding analysis applies provided we set { ) =1/ (27) f&™ df. For the present o
will be fixed. The equation for A(t,8) thus becomes,

A(t,0) = /;too dt’ exp [i) (sin(wt’ + ) — sin(wt + 0)) + (' =1¢)] , (35) |
and we have
(A(t,0))y = '{Y_O (%9') ) (36)

with no approximation.
Now we allow {2 to be a random variable, distributed exponentially with mean o2. Thus,

- P(¢%) = e7%/7" [o%. The resulting integral can be evaluated to give

1 _s%2 s%o?
(A(t, 0,50))9,50 = ; e ? I <_2F) . (37)
Thus,
Y =Y exp {—Zt; } Io (822522> : (38)
Finally, asymptotically expanding Iy(z) for large %, we obtain

We observe that to get total stabilization, a coherent amplitude (except for possibly random
phasing) is necessary.

We could alternatively consider £(¢) to be of the ‘random Fourier series’ form,

E(t) = i €n cos(wnt + 6,) (40)

where {w,} is an increasing sequence of frequencies. Provided ¢,,w, are not random vari-

ables, Eq. (36) may be generalized to

oo J2 "f&
(At 01, ., 8.)), . =TI 0(7) :
n=1



Fiﬁa,lly and briefly, we consider the general case where £(t) is a Gaussian random function

of time, with a correlation time 7, and a correlation function ¢ (u —u') given by
Clu—u)= ({(u)é(u')) = <§§> exp (—-Iiiﬂ) coswAu ,
Au=u—u'.
Tt follows from conventional cumulant expansion that

o (6) =X =es [ (= 07)]

(=30 = [du [ Cu—w) = ag (22

T
where ,
a = 2s? <£2> 2 (l +w27'2)_1 , At=t—t,
and | |
gw)=w+e™™ (1 + w27-2) -1 [(1 - w27'2) cos WTw — 2wT sin wrw] - %_{%:::—; .

We observe that g(w) > 0, and g(w) ~ w? for w — 0. It follows that

(A) = T/Ooo dw exp [—yTw] exp [—ag(w)] .

Note that

(—A> =F (77‘, s* <£2> 2 ; wT) .

T

(42)

(45)
(46)
(47)

(49)

This form shows that 7 can be scaled out of the dispersion relation. The ‘reduced’ dispersion

relation takes the form,

G(:?v ;,CJ) = ‘70 y

(49)

" where & = wr, § =7, §, = v,7, and & = [a(1 +w2r2)]1/2. If time is measured in units of

7, the dispersion properties are independent of =, which merely amounts to recalibration of

the clock.



The general integral in (46) is not elementary. We consider two illustrative special cases:

(a) @ —0, k — 0 (3-finite):
(A) ~ Te” /01 dw w1 exp(—aw) ,
which leads to (A) ~ 7(1 4+ a)/(a + v7), and
¥ =7 — 257 (). (50)
The growth rate is moderately reduced.

(b) T — o0, keeping w fixed:

&—o00, k— o0 Yw <Ll afwr L1.

After some manipulations, we find

and

v =7, Ip(a)e @ 7 . (52)
This is a mild generalization of (38).
V. Comparison with Numerical Simulations

Now we turn to a comparison of our analytic results with numerical solutions of the reduced
MHD equations as an initial value problem. For brevity, only the 2-D coherent jitter case is

considered. We let the equilibrium poloidal flux be given by
Yo(r, t) = 3(r) + %(1 —rH)coswt , (53)

which leads to
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ky(z,t) = kj(z) + ecoswt . | . (54)

. The static part‘of the equilibrium, determined by 1§ above, is chosen .such.tha,t
9 = 0.9, ¢ =3, and k(r,) = —0.97. Note that the quantity ¢ = k(o of the previous
sections. The calculated growth rate of the m = 1 mode as a funétion of the jitter amplitude
is shown in Fig. 1. A combination of two different jitter frequencies, and two values of Y, the
classical growth rate, are considered: a)n =107, w =4x 102, b) n = 107, w =2x 1072,
and ¢) n =107°% w =4 x 1072 Since the dispersion relation of (30) and (33) has only a
weak dependence én w for w > 7., the results from these three differenf scans are expected

| to lie quite close to the same curve, as seen in Fig. 1. ‘

Also shown in Fig. 1 is p#rt of the numerical solution of the analytic dispersion relation
in Egs. (30) and (33). Evidently, for a given A and w, the dispersion relation has an infinite

| number of éolufions of th_e' formy=v,4+inw, n=0,1,2,...00. Initial value solutions of
the RMHD equations, which converge on the fastest growing mode, find only the two lowest )

}order branches (n =0, and n = 1), as seen in the figure. For A < 0.7, the n = O branch
domina.tes, whereas for 0.7 $ A S 1.2, the n‘ = 1 branch has the higher growth rate. No

‘unstable modes are found for A 2 1.2 With the initial value code. There seems to be an
apprdxima,te fac’qor of two difference bétween the st.a,bility boundary calculated numerically
and the one predicted by theory.. ‘We do not have an éxpianation_ for this anomaly. Note
that this factor has been incorporated into the numerical solution of the dispersion relation

in Fig. 1.,
VI. Conclusions

We have used linear reduced MHD to study the effects of motion of the ,i‘ational surface on
m = 1 tearing stability. It is found that the growth rate of the tearing mode can be reduced,

- even in principle to zero, by coherent surface jitter at the appropriate frequency. Random
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motioﬁ of the rational surface is similarly, if less dramatically, stabilizing. The mechanism in
both cases is detuning of the k) = 0 resonance, closely analogous to the finite Larmor radius
(FLR) detuning of electrostatic modes, due to particle gyromotion. Our methods combine
analytical (quasilinear) and numerical treatments, which are found to be in good agreement.

It is clear that the present investigation is neither exact nor exhaustive. In particular,
while treating with case the m = 0, n = 0 component of an externally applied field perturba-
tion, we have neglected other components, some of which might have serious nonlinear con-
sequences. Perhaps more importantly the (low-beta) reduced MHD model neglects several
effects, including plasma pressure corrections, FLR terms and kinetic processes. Nonethe-
less we find the results sufficiently striking, and the analysis sufficiently straightforward, to
suggest further theoretical and experimental study.

In one respect, the conclusions presented here seem remarkably general. Notice that the
quasilinear treatment given by Eqs. (14)—(22) is nearly model-independent. The particular
resistive and shear terms that affect linear sta.bilit‘;y could be modified freely, with the addition
perhaps of kinetic and FLR corrections, without changing the main conclusion: that +, in
the averaged equations of motion, is to be replaced by 1/ (4). What is essential is that the
stability of the linear mode of interest be determined locally, by conditions near the resonant
rational surface. This circumstance suggests that stabilization by resonance detuning might
pertain to a number of instabilities, including for example, drift-tearing modes and even drift
waves.

The most important problem not addressed in this paper is the practical issue of varying
the safety factor so as to move the ¢ = 1 surface in the manner required. We ﬁ;st note
that there are always natural perturbations in the plasma (effects of global modes and local
turbulence) which lead to some jitter. The results of the “stochastic/incoherent” case of our
model suggest tha.t'such naturally occurring motions of the ¢ = 1 resonance, although of pos-

sible experimental importance, cannot be expected to provide complete stabilization of the

12



linear m = 1 tearing mode. Therefore we consider whether suitable particle/energy/current
sources can be applied to the plasma by external means: rf héating/ current drive suitably
amplitude modulated and localized near ¢ = 1. | |

An approach to this question uses conventional fluid equations, given the appropriate
(possibly aﬁomalous) transport coefficients and suitable ﬂuctua.fing sources. If is sufficient
to consider the linearized response to an oséillatory sourc~e. Since this system is nonresonant
(m=0,n=0)itisin principle possible to calculate the function q(*y,t) = qo(r) +68¢(7,t) =
q0(7) + 6g(7) cos wt. The perturbation 6q(~) will depend upon the transport pfoperties and
equilibrium profiles and of course will'be limited by plasma dissipation; on the other hand,
we einphasiée that 67 ~ 10% seems sufficient for dra.friatic growth rate reduction. This
problem can .be investigated numerically.

It might be desirable to test the basic resulté derived here on resonance detuning directly
by using, for example, é,n ecth current source § J(r,t) suitably localized near ¢ = 1 and
arnplitude-modﬁlated to give a harmonic pérturbatidn to th_é ¢ = 1 radius of a suitable
_amplitude. If our model is correct, this should detune the m =1 resonance and thereby
lower the growth rate of the resistive internal kink. We erhphasize that there is no need to

eliminate the mode. If the growth rate of the linear mode is sufficiently reduced, it is known*

that nonlinear effects can lead to saturated island states.
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Figure Caption
1. Normalized growth rate of the m =1 mode as a function of the jitter amplitude. The
curves labelled a — ¢ are results of the initial value calculations, whereas d, e show the

solutions of the analytic dispersion relatibn, Egs. (30)~(33). a)n =107, w =4x 102,
b)n=10"", w=2x 10‘2,‘and c)n=10"% w=4x 1072, d) n = 0 branch of the

é,na,lytic dispersion dispersion relation, ) n = 1 branch.
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