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Simple, closed form Green’s functions are derived for convective-diffusive systems
in slab and cylindrical geometries. In slab geometry, they are Gaussian, while in
cylindrical geomctry,' they are of the form e““’zIO(ﬂr), where I, is the modified
Bessel function, and « and 8 depend on time via e~*. Time dependent profiles
resulting from various pulsed and oscillatory sources can be obtained using these
Green'’s functions. These solutions can be used to model a variety of time dependent
transport experiments such as pulsed impurity transport, oscillating gas puff, pertur-
bative RF heating, and sawtooth heat pulse propagétion. A successful comparison

of our profiles with pulsed impurity injection experiments on TEXT is presented.



1. Introduction

Perturbative experiments have become important tools in studying transport
of particles, energy, and impurities in tokamaks. In these experiments, a variety of
time dependent perturbations are used. These include impurity pulses, oscillating gas
puff, modulated radio-frequency heating, and sawtooth heat pulses. If the perturba-
tion is sufficiently small, one can make the linear assumption that the pulse responds
to the ambient plasma without changing it. A simple phenomenological description
of the process can then be given in terms of an effective diffusion coefficient D and
inward convective speed V', which one can separately measure by observing the time
evolution of the induced perturbation. In cylindrical geometry, such a system can be

modeled by the linear, driven convective-diffusive equation

L(F)= BFé:,t) + -i—g;rf(r,t) = s(r,t), (1)
L(r,t) = —-D%—f —rVF, (2)

where s(r, t) is the external source, I is the flux, D is the diffusion coefficient, rV
is the convection speed, and F' is the time dependent perturbed quantity ( density,
temperature, impurity density etc.). The linearity of Eq.(1) allows D and V to depend

on r, but not directly on F.

The usual approach!'? taken in analysing the two dimensional (r and ¢
dependent) experimental data with this model is to guess a form for D and V, solve
the model numerically, and iterate the process until a good fit is obtained. It is,
of course, expected that general analytical solutions of this system would be quite
valuable in understanding broad features of the data, and in rapidly extracting the
transport coefficients from it. Such solutions were available only in slab geometry
with .constant D and V. In a cylinder, a class of solutions was obtained® by setting

the perturbed quantity to zero at the wall for all times. Such a condition is clearly



too restrictive : During the initial rise phase of an externally induced impurity pulse,

and at all times during an oscillating gas puff, these solutions cannot be used.

In this paper, we calculate the Green’s function for Eq.(1), and find that it
has the simple form e‘“’lIo(ﬂr), where I, is the modified Bessel function, and «
and § depend on time via e~*. This function exhibits the sam'e form-invariance as
the Gaussian solution in slab geometry, viz., it maintains its functional identity as it
eﬂrolves in time. Also, a sharp (delta function) initial pulse evolves into this shape..
'Using this Green’s function, we obtain exact solutions for a variety of external
“sources. Due to the absence of any restrictive boundary conditions, these can be
used to model any 6f the experiments deséﬁbed'above. As an example, we present

comparison of our results with pulsed impurity injection experiments* on TEXT.

2. Solutions in Slab Geometry

'We start with a brief restatement of known results in slab geometry with
“constant D and V', where |

_9F _*F _ dF)
M(F)= 55 Dz V=5~ =

s(z,1), (3)

is to be solved for F. By rescaling z and ¢ to the dimensionless variables y? =

z?V/D, and T = V't, we get

The Green’ function of this equation, i.¢., the solution of M(G) = §(y —yo0)é(T —7o),

is the displaced Gaussian in y,

= S (4 = yoe==Y?
G(y,yo, Ty TO) - \/27‘,(1 _ 6—2(1'—1'0)) exp (—' 2(]_ - 6—2(7‘-—7'0)) ) (5)

In order to satisfy causality, we set G(y, yo; 7, 70) = 0 for 7 < 7o. The response to

an arbitrary external driving source S(y, ) is obtained from this Green’s function



by
Fly,r) = / dpdnG(y, p;mm)S(pym). (6)

bl ]

This leads to a Gaussian response for a Gaussian driving source.

The sourceless form of this equation admits a steady state profile of the
form F = Fyexp(—y?/2) due to the balance between diffusion and convection.
Also, a sharp initial pulse F(y,7 = 0) = Aé(y — yo) evolves into the Gaussian
shape G(y, yo; 7, 0), leading to the asymptotic steady state

7

o
\/ﬁexp(—z—)-

(7)

T —00, FF—

It is also well known that an initial Gaussian pulse in space stays Gaussian as it

propagates and spreads.

3. Solutions in Cylindrical Geometry

We now derive similar results in cylindrical geometry with the basic model
given by Eq.(1). Upon rescaling to dimensionless variables y = r2V /2D, and

T = 2V¢, it is transformed into
LF)= 5= - 595 ——5— =5u7) (8)
The Green’s function G(y, yo, 7, 70) for the operator L satisfies
L(G) = 6(r — 10)8(y — vo), (9)

with dimensionless yo = a?V/2D, where a is the radial location of the source.

Expanding G in terms of Laguerre polynomials

G(y,y0; 7 70) = €7 Y an(7, 70,%0) Ln(y), (10)
n=0



[¢]

and using the orthogonality relation
‘/0 dyLn(y)Lm(y)e—y = 6m,m (11)

we obtain, for each coefficient,

da,

— tnan= §( — 70)Ln(yo)- - (12)

Integrating this equation, and setting a, = 0 for 7 < 79, gives

o0

Gy, y0; 7, 70) = e Y e "™ ™ Lo (o) Ln(y)- (13)

Using the formula for the infinite sum,

gLn(m)L-n(y)z“ = ex; <_z_(””_i_yl> I (@i) A

l1—2 l1—2z

one obtains the simple, concise form for the causal Green’s function

G(y,y0; 7, 7o) = X exp (—X(y + yoz)) Lo (2X \/yyoz) 6(T — m0), (15)

* where 6(z) is the Heaviside function [6(z) =0 for z < 0, and 8(z) = 1 for z > 0],

- | (16)

T = exp(—(v; —T0))- (17)

The solution for an arbitrary source S(y,7) can now be written in terms of this

Green’s function as

Fyr)= [ " dn /o ~ dpGy, p; 7, m)S(p, ) (18)

where we have used the causality of G to extend the upper limit of the time integral

from 7 to oco.




The Green'’s function of Eq.(15) is the analogue of the Gaussian in slab. Just
as an initial Gaussian pulse evolving via the Cartesian Eq.(4) remains a Gaussian for

all times, an initial pulse of the form in Eq.(15), ie.,

S(y,7) = 8(r)e~ W) [y(2a, fyyo), (19)
governed by Eq.(8) also maintains its form : The explicit solution is the form-
invariant expression

Fly,r) = St ) g () (o)

—————— eXp

a(l—x)+x ( a(l—x)+x a(l—x)+x

where Y = e~ 7. The sourceless form of this equation also admits a steady state
solution of the same form. Finally, a delta function initial pulse evolves into this

same shape, and approaches a nonzero asymptotic steady state.

In pulsed impurity injection experiments, the initial external source can be
assumed té be a delta function. The solution is then just the single-term Green’s
function of Eq.(15). The more general choice (19) of the external source allows
considerable flexibility in modeling other experimental situations. It can be made
to peak near the edge (or the center) by choosing a large (or small) value of c. It
can also be used in experiments where the external source is oscillatory. By fourier

analyzing the time dependent part

S(y,7) = e [H(2a4/y) Z anstn(nwr), (21)

and carrying out the space integral, we get, for each sinusoidal component

1 Zinw
Tn = /e_r el =2) +7)
o (S22} (220

a(l—-z)+=z a(l—2)+z

This equation can be used to directly calculate the phase and the amplitude of the

(22)

oscillating quantity as a function of r for each fourier component.



4. Long time decay of the pulse

This model requires an additional feature, edge loss, so that it can realisti-
cally model pulsed impurity injection experiments. The injected impurities disappear
from the plasma after som; interval because impurity ions which diffuse across the
plasma boundary are not recycled. The solution described in the previous section
does not include any loss mechanism: it relaxes to a nonzero steady state at large
times due to the balancing effects of D and V. We can model the impurity loss by -
adding a term propdrtional to the perturbation F' at the plasma edge (y = A). For

the case of the initial delta function source, the resulting pulse is the solution of

L(F) = 6()(y — p) — Ad(y = M) F(y, 7), (23)

where A has dimensions of velocity.A Although in specific cases (such as impu-
rity transport) A can be related to D V, and the mean free path, in general it is
treated here as a free parameter. Equation (23) is readily ﬁansfomed into an integral .
equation by using the Green’s function solution of Eq.(18). We perform the spatial

integral to obtain
Fly,7) = G(y, p,7,0) — A /0 Gy, \, 7, m)F(\ 1), (24)

where we have assumed the perturbation to be zero before 7 = 0. This equation can

be solved easily by discretizing the time into n steps to turn the integral into a sum

F(y,7) = G(y, p,7:,0) = AAT Y Gy, A, i, 75) F(A, 75). (25)
| | g .

.We first invert the n X n matrix equation to obtain F(), 7;) at the sink location, and
then use it in the sum to obtain F'(y, ;) at all other locations. The decay rate of the
solution after the initial rise is controlled by the sink strength A. A similar procedure

can be followed for arbitrary sources and sinks.



5. Comparison with impurity pulse experiments

We now demonstrate one practical use of our solutions by modeling data
from Scandium (Sc) injection into the TEXT* tokamak. In these experiments, the
Sc puff was initiated outside the plasma by laser ablation. The temporal evolution
of radial profiles of chord-averaged emission from successive ionization stages of Sc
was spectroscopically observed. The low ion charge states (Sc*” to Sc*'%) radiate
near the wall, where the perturbed profiles change quickly in response to the external
pulse and sink. The higher charge states (Sc*1? to Sc*!®) radiate progressively deeper
in the plasma, where the pulse reaches its peak later and decays slower. We expect
from atomic physics, and also notice from the data, that only a few states are present
at each radius, and that there are radii where just one state dominates. Therefore, the
time evolution of each charge state at its own peak radius will be taken to represent
the time evolution of the total impurity density which is described by our model. In
comparing the data with the model, we look for a combination of D, V, and A that

reproduces all observed traces.

The time evolution of full radial profiles was measured for three charge
states (9, 12, and 18) of Scandium. They were found to peak at 27, 16, and O cm
respectively. A comparison between experimental and predicted signals at their peak
locations is shown in fig.1. Only the trace for Sc*'®, which peaks in the center,
is used to set the coefficients at D = 1.85 & 0.05 m%/s, V = 10 £ 10 m/s, and
A = 7.5+ 0.5 m/s. Using these values, we predict all the other traces. Clearly, all
features of the data arc well modeled by our profiles with constant D, V, and an

edge sink.

Time evolution of chord averaged signals was also measured for charge
states 7, 8, 10, 13, 15, 16, and 17. Since the spatial locations for these ions were
not measured, we can only deduce the radii (27, 27, 22, 14, 13, 12, and 10 cm



respectively) where our results best match the data. Three of these are also shown
in fig.1. For high charge states (>12), each trace amplitude is normalized to match
the peak in the data with the peak in the calculation. The lower charge states (<
10) peak very near the plasma edge where their initial rapid buildup is governed by
a competition between transport and atomic processes. The atomic time scales for
ionization and recombination in the edge change from 1 to 30 ms within 2 ¢cm. For
charge states belbw 10, this is slower than tﬁe time at which the high initial peak is
predicted by our transport calculation. The buildup to the peak is therefore expected
to be slower than the 1 ms that our model predicts for these states. However, the
later decay is on much longer time scales, and can be compared with the experiment
directly. Therefore, the traces for the lower chirgc states are normalized to match at

the peak in the data, and their subsequent decay is observed. .

With only three free parameters, our model does a good job of deducing

nine signals. All three stages of the observed time evolution, viz., the rapid initial

buildup, the time at which the peak is reached for different ionization stages, and
the subsequent decay with continuously slowing down decay rate are predicted well
by our model. Unlike the eigenfuction models® we are not restricted to analysing
only the decaying stage of the pulse. We correctly predict the radial and temporal
dependence of the deéay rate. As expected, the average decay rate is faster at the
edge than in the center. For each trace, the decay rate after the peak is initially rapid,
and decreases to a constant value. All this indicates that the essential physics in this
case is well represented. Ou{ model is also applicable to many other experiments,

"some of which are currently under investigation.:
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Fig. 1 Comparison between experimental measurements of time

evolution of six Scandium lines and the predictions of our
model for D=1.85 m’/s, V=10 m/s, and A=7.5 m/s.







