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"Abstract

It is shown that Nambu dynamics can be generalized to any number of dimen-_

sions by replacing the O(3) algebra, a prominent feature of Nambu’s formulation, by

an. arbitrary Lie algebra. For the infinite dimensional algebra of rotations in phase

space one obtains quantum mechanics in the Weyl-Wigner representation from the

generalized Nambu dynamics. Also, this formulation can be cast into a canonical

Hamiltonian form by a natural choice of canonically conjugate variables.

To appear in Physics Letters A



I. INTRODUCTION

The purpose of this Letter is to provide a unified basis for various noncanonical
Poisson brackets introduced in the past [1-8] and to give a new and important example
of such a bracket. This unification is obtained by extending the concept of the triple
bracket introduced by Nambu [9] in his generalized version of Hamiltonian dynamics.
Our extension of the Nambu dynamics involves the replacement of the Lie algebra
of the rotation group in three dimensions, that features prominently in the original
formulation, by an arbitrary Lie algebra. When this algebra is chosen to be the
(infinite-dimensional) Lie algebra associated with the Weyl-Wigner representation,
we obtain the phase-space formulation of quantum mechanics. The noncanonical
bracket for the Wigner function that results from this formulation reduces in the
classical limit to the well-known bracket for the classical distribution function.

Our extension of Nambu dynamics leads to a natural parametrization of the orig-
inal noncanonical variables in terms of canonically conjugate pairs of new variables.
With this parametrization, the noncanonical brackets are transformed into ordinary

Poisson brackets. Thus, a phase-space variational principle can be constructed.

II. LTE ALGEBRAIC BASIS FOR NAMBU DYNAMICS
We begin by considering a semi-simple Lie algebra with structure constants cf-“j

and metric tensor g;; (see, for example, [10])

9i; = —sz Ci’ka (1)

that is used to raise and lower indices. We have introduced the minus sign here to
make g;; positive for the rotation group. With Lie algebras we can associate dynamical
systems whose states are described by the elements w'L; of the Lie algebra. The w'

are to be viewed as phase-space coordinates of the system and L; are the algebra



generators. A natural Lie bracket can be constructed from the structure constants as

follows:

o g1 0A OB

{A’B}C = %% 5 dw an (2)

The Jacobi identity satisfied by the structure constants,
ciy ¢+ i d i+ cinj =0, (3)
guarantees the Jacobi identity for the bracket {, }.,
{A,{B,C}c}e + {B,{C, A}c}c + {C, {4, B}c}. = 0. | (4)

Such structures were discovered by Sophus Lie (1890) and are known to generate
classical Eulerian dynamics of various continuous media [5]. Also, they have been
studied in the context of Poisson manifolds [11,12].

The fact that the structure constants have three indices hints at the existence
of a geometric bracket operation on three functions. It would be appealing if all
three functions appeared on equal footing, which can be achieved by using the fully

antisymmetric form of the structure constants [10],
P =g g (5)

Thus we introduce the following iriple bracket:

Gir 94 0A 6B 0C (6)
Hw' Ows Owk _

[4,B,C] =

A simple relationship exists between [4, B,C] and {A, B}., which is made mani-
fest by inserting the Casimir of the Lie algebra,

1
S = 39w w’, | (7)
into one of the slots of the triple bracket, i.e.
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[4, B, 5] = {4, B}.. (8)

Due to this relationship time evolution can be represented as follows:

O~ r 1) ()

where F' is an arbitrary dynamical variable. In this formulation the dynamics is
determined by two generating functions, the Hamiltonian H and the Casimir which
we shall call the entropy.

In the special case where the structure constants are those of the rotation group

in three dimensions, ¢'/¥ = ¢;;x, our construction reduces to that given by Nambu [9],
[A,B,C]=VA- (VB x V(). (10)

In order to describe the dynamics of a rigid rotator Nambu chose S to be the ro-
tational kinetic energy and H to be the Casimir, the square of the total angular
momentum. In this way he obtained Euler’s equations from his triple bracket (10). It
is interesting to note that for this case the roles of the Hamiltonian and the entropy
can be interchanged as exemplified by Nambu’s choice. However, this is a peculiar-
ity of the rotation group for which any function S in Eq.(8) produces a genuine Lie
bracket. In general, the roles of S and H are distinct since .S must be the Casimir
in order for {A, B}, to satisfy the Jacobi identity, and thus S can be viewed as a
kinematical object. On the other hand the Hamiltonian H is free to be chosen to

generate the dynamics of the system of interest.

III. TRIPLE BRACKET FORMULATION OF QUANTUM MECHANICS
Now, we generalize the triple bracket formulation of the previous section, which
is based on finite dimensional Lie algebras, to accommodate a particular infinite

dimensional Lie algebra that we extract from the Weyl-Wigner representation [13,14]
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of quantum mechanics (For recent references see e.g.[15].) We begin by defining the

following family of operators:
E(r’,p’) — /de ez’(r’-p—p"r)/h ez’(r-f)—p»f)/h, (11)

where dI' = d"r d"p/(27%)", n is the number of dimensions, and * is used to indicate
operators. The operators E(r, p) can be viewed as a basis spanning the space of all
quantum mechanical operators, a basis from which the Weyl-Wigner representation
is derived. The Wigner function is obtained by projecting the density operator j onto

the basis £, i.e.

W(r,p) = Tr{pB(r, p)}, (12)
p= [dCW(r,p)E(r,p). (13)
In analogy with the finite-dimensional case, Wigner functions play the role of coordi- -

nates for the Lie algebra spanned by the operators E. In the simplest case of a pure

state, we obtain Wigner’s original formula,

W (r,p) = Tr{|0)(¥|E(r,p)} = (¥|E(r,p)|¥)
= / d*se™ =P/ (v 4 5/2) %*(r — 5/2). (14)
Here we have chosen to work with a dimensionless Wigner function, which requires a

normalization that differs from that of other authors (cf. [15]).

The basis operators E(z)(z = (r,p)) obey the following commutator algebra:
() [B(=1), ()] = [dTsC(en, 22, 2) Elas), (15)

where the "structure kernel” C(zy, 2y, 23) is given by

2.4
I

C(z1,22,23) = sin%([zlzg] + [z223) + [2321]), (16)



and

[zizj] =r‘p; —Db;- r;. (17)

We have chosen the name structure kernel since C( 21, 21, 23), like ¢'7¥, is antisymmetric

under the interchange of its arguments,
C(z1, 22, 23) = —C(29,21,23) = C(22, 23,21), (18)
and satisfies the Jacobi identity,
[dr (C(e1,22,2) C(z, 26, ') + Clz2, 25,2) Ol 20, #') + Clz3, 20, 2) O3, 72, 2)
= 0. (19)

The structure kernel C(zy, 22, 23) defines a Lie algebra for phase-space functions as

follows:
{A, BYu(z) = / dT1dT; Oz, 71, 23) A(z1) B(z). (20)

The subscript M is used since this bracket can be shown to be equivalent to

—

2 .k —
{4, Bhu(r,p) =  A(r,p)sin5(8x- Op— 9p- 3x) B(r,p),  (21)

which is the usual form of the Moyal bracket [16]. This algebra generates a bracket on

functionals which is an infinite dimensional analogue of the bracket {A, B}, defined

by Eq.(2),

6A 6B
{A’ B}C = /drl szdF3 W(zl) 0(217 22, Z3)6W(22) 5W(Z3)
6A 6B
‘/ WA s 5wt 22)

Now, in complete analogy with Sec.II, we introduce the triple bracket,

6A 0B éc
(5W(2’1) 5W(2,'2) 5W(23)

[4,B,C] = [dTydT; dTs C(z1, 22,2) (23)
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where A, B, and C are arbitrary functionals of W. Following Nambu we obtain the

evolution equation for a functional F[W] in terms of our triple bracket in the form

‘% = [F,H,S). (24)

The natural choice for the Hamiltonian is H, the energy of the system,

HW|= [dW,p) HE,p), (25)
where
H(r,p) = % + V(r). (26)

. Similarly, there is a natural choice for the entropy S, since the group of transforma-
tions generated by the structure kernel C' has a continuous version of the Casimir

used in Sec.2. Indeed, owing to the antisyfnmétry of C,
{A4,S}c=0 (27)
for all functionals A if
_‘ 1 2
S=s / dTW?(2). (28)

Equations (23)—(25) and (28) generate the usual (cf. e.g. [15,16]) time evolution of

the Wigner function, i.e.

ow
ot = —{W,H}M- , (29)

In the classical limit, when A — 0, the Moyal bracket reduces to the standard
Poisson bracket and the bracket (22) for functionals of Wigner functions reduces to
that for classical distribution functions. Such brackets were previously introduced 3,

8] to cast the Vlasov equation into Hamiltonian form.



IV. TRANSFORMATION TO A CANONICAL HAMILTONIAN FORM
In this section we introduce a general method for expressing noncanonical brack-
ets of the form (2) and (22) in terms of canonically conjugate variables. The method
is a generalization of that used to express the Vlasov equation in canonical Hamil-
tonian form [4]. The new canonical variables, which may be viewed as generalized
Clebsch potentials, are related to the original phase-space coordinates by the following

expressions, for finite and infinite dimensional cases, respectively:

w'=cl ¢ P (30)
W(z) = / dT C(z, 21, 2) Q(z) P(z3). (31)
Using the chain rule
OF  OF 4 4 OF OF 4,
apJ - ow' Ce 9 8qJ - ' C; Pk, (32)

and the Jacobi identity, the following relationship between the two brackets is ob-

tained:
' _ 0AOB 0AOB
{A(w(q,p)), B(w(q,p))}qp(q’p) = 3—(]’5—12 - 8_]3;(9_(12
;i 0A OB
= v e e = (AW, Bw)k(w). (33)
Similarly,

6B 6A 6B )
§P(z) 6P(z)6Q(z)

(A1, P1L BIWIP, Qlller(Q. Pl = [dr (757
oA 6B

5W(Zz) 5W(23)

= {AW], BW]}o[W]. (34)

= / dTy dT2d T3 W (2y) C (21, 22, 23)

Since the canonical brackets generate the equations of motion in the usual way, we
can also derive these equations from the phase-space action principle. In particular,

for the Wigner function the action is



S[Q, Pl =

/ dt] / dl' P(z,1)0,Q(z, t) — / dTy dT2d Ts H(z) Oz, 23, 23) Q(22) P(zs, 1)}, (35)

where () and P are varied independently. If @ and P satisfy the resulting Hamiltonian
equations, the W constructed from Eq.(31) obeys Eq.(29).

V. CONCLUSION

We have generalized Nambu dynamics to include arbitrary Lie algebras, even of
infinite di‘mension. An important example of this construction is quantum mechanics
in the Weyl-Wigner representation. Hence, already qudntized theories fit into this
framework and the quantization attempted by Nambu appears to be unnecessary.
We hz;ve shown how noncanonical brackets arise in a natural way from our triple
bracket that are based on structure constants of Lie algebras. Further, we have given
a general construction for introducing canonical variables with the corresponding
phase-space action principle. In this way we have obtained the action priﬁciple for
the Wigner function.
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