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Abstract
Exact solutions to the.Vlasov-Maxwell system in tﬁe two dimensional circular cylin-
drical fnodel are presented. The magnetic surfaces are shifted circles for the m = 1
case, where the shift is determined by a parameter ¢; ¢ = 0 gives concentric circles and
represents i—D solutions. For m > 2 cases, the solutions are singular at the 6rigin and
the magnetic surfaces contain islands and separatrices. An improved one dimensional
model with currents in both the axial and azimuthal directions is also presented. It is
° shown that this simple finite pressure model can yield field reversed equilibria in the
presence of appropriate boundary constraints.
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I. Introduction

In this paper, we extend the investigation!? of the solutions to the Vlasov-Maxwell system,
to consider some exact two dimensional equilibrié, as well as an improved one dimensional
model equilibrium that can provide a simple representation of a field reversed pinch plasma.
The motivation, as before,!? is to arrive at a more realistic description of laboratory plasmas
through the Vlasov approach which permits proper inclusion of density and temperature gra-
dients in a natural way.? Our results are derived on the basis of the infinite series distribution
function which has been shown to be an exact solution of the Vlasov equation. We briefly
review the properties of this distribution function in Sec. II. The expansion coefficients in
the infinite series are proportional to powers of the parameter, A = uos/v0q, Where ug, and
Voo are, respectively, the drift and thermal speeds of the ath species. For laboratory plasmas
where A < 1, this series can be readily truncated and we derive a set of differential equa-
_ tions relating the density (g) and temperature (¢?) profiles to the electromagnetic fields.
We present exact two dimensional solutions to these equations and discuss their features in
Sections III and IV. The magnetic configurations corresponding to these solutions are shifted
circular surfaces for the m = 1 case (where m is the azimuthal mode number) and chains of
magnetic islands separated by separatrices for the m > 2 cases. The latter solutions are also
singular at the origin.

In Sec. V, we consider a one dimensional cylindrical plasma with currents in both the
axial (Z) and azimuthal (5) directions. The distribution function is suitably modified to
include a term proportional to ps, the canonical angular momentum, and following the usual
truncation procedure, a set of coupled equations are again obtained relating the equilibrium
plasma profiles to the electromagnetic fields. These equations also admit exact solutions

which are an interesting extension of simpler solutions obtained previously.l'? Next we in-
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troduce an external B, field modeled by a current at the boundary. The solutions of the
modified model equations are then seen to display field reversal phenomena. These equi-
librium states resemble ‘Relaxed’ states of reversed field pinches and can be viewed as the
kinetic analog (with finite pressure and pressure gradients) of the single fluid states discussed
in the literature.® An example of a numerical plot of a F' — © curve is shown for this model
pinch equilibrium. Section VI contains a brief discussion of our results, their implications

and directions for future work.

II. Solutions in Terms of Invariants

We begin by constrﬁcting a distribution function describing the plasma with the density
and temperature gradients. The function is exactly the same as that in. Refs. 1 and 2. vBut,
here, we deal with the problem in a two dimensional cylindrical geometry. The plasma, .
embedded in a strong externa;l field By Z, has current flowing only in the Z direction. The
equilibrium now depe1/1ds both on r and 6§ allowing the axial current to produce a new general
self-consistent' magnetic field B = B,7 + Byf. The infinite series distribution function!? is

» o ‘o 2m 2
— NoeYa 2Ugq o v \" v v
fa = 7r3/2v8a¢2 1+ Z Z Cnm ( ) ( ) . ] exp <_vga¢§> ‘a (l)

Voo it Voo Voo Va

where the density n, = ﬁOan, the thermal velocity v, = (‘.ZTC,,/rr'L,,,)l/2 = VooPqa, With g, and
Yo being the profile factors, and g, is a measurevof the drift velocity in the Z direction.
We first show that the choice of Crm’s which make the distribution function, Eq. (1), solve
the Vlasov equations also allows f, to be expressed in tefms of the constants of the motion.
The derivvation i1s simply a two dimensional version of the one given in the Appendix of Ref. 2.
Subétituting Eq. (1) into the steady-state Vlasov“equatlion (describing the equilibrium Z

pinch) yields the following general relationships for C2_ by equating power of v, and v,

vV [m (%) - {’ohaA,J =0, | | (:

(8]
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where hq = (atoa)/(cToa); t = 2Uoa/Voa, and Dps = m!/[(m — s)!s!] for m > 0 and s > 0.
The recurrence relation Eq. (4) expresses the fact that all nonzero C,,’s are expressible in
terms of Cf; and Cf;. Without any loss of generality we choose C% = 1 (any other value can
be absorbed in the redefinition of uga, and appropriate scaling of C2 ) and put Cg = f..

The summation from m = 0 to m = oo in Eq. (1) is thus given by (see the Appendix of

Ref. 2)
0 o m n-1 0 (—za)a oin 3
Z Cnm"o: - ! exp(za) z 1 (1 ""3/3 ) ’ . (‘3)
m=0 n. s=0 S.

where z, = [v/(voa%a)]?. Equations (2) and (3) are now integrated to yield

'_g.g_ — eh"’Az
h3 ?
a .

(6)

and

1/)2 — eﬁahoA'z . (7)

which along with Eq. (5), and the definitions Hy = $mqav?, poa = mav, + (ga/c)A.(r, §) help

us rewrite Eq. (1) (see the Appendix of Ref. 2) entirely in terms of the invariants H, and

Pzas
YLor Uper Hoz ( Uox ):'
= == Pz Il Mo z . 8
fOI 7r3/2vga exp (Too,p Q) exp [ TOQ exp IB To,;,p =4 ( )

Note that 8, = 0 reduces Eq. (8) to the standard drifting Maxwellian with a constant
temperature To, # 0. It is also clear from Eq. (8) that 7 and # dependence of the distribution

function can come only through the canonical momentum p.,. Expressing the exact solution
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(1) into the form (8), which is an explicit function of the constants of the motion, constitutes

the main result of this section.

III. 2-D Solutions to Vlasov-Maxwell System

We consider a plasma which has a current in the axial (Z) direction and whose equilibrium
profiles are a function of (r,6) in the cylindrical geometry. The equilibrium is obtained by

solving the Z component of Ampére’s law
4 "
VZAZ = ——C'Jz R (9)

where J, is to be calculated using the solution of the Vlasov equation given in Sec. II. For

simplicity, we calculate J; only to O(uoa/voa = A < 1)

-

J. = engug, (ioé B l) (1 +7)g¥? = —chp , - (10)

where 7 = To,'./Toe, h = h.(58/2 — 1), and p = pogy)? is the pressure with ﬁo = noToe(l + 7)
being the pressure at the plasma center (r=20). In deri.ving Eq. (10), we have assumed

that ¢; = g. = ¢ (quasineutrality) and ¢¥; = ¢ = ¥ ‘(for long-lived equilibria), implying

Toi/Toe = uo,/uOC and §; = B. = —0. Makmg use of Eqgs. (6) and (7), and defining
h@——h <3§—1>A - - (11)
where ® = —A, is the magnetic surface function. Ampére’s law [Eq. (9)] can be cast as

1 0 ,0h® 1 0°h® _

0,2 162\ ,h® _ _2(1 _ 2\ hd - 5
Eorar T ap = —(2ro/bie §m?(1 — €?)eh? | (12)

where R = r/rq, ro = 26;m(1 — €2)¥/2, and the scale length

~1/2 '
_ | 2mnge? u0e 56 2 _ I '
b= [ A (2 1) A = G (13)
Equation (12) admits exact solutions®=® of the form |
hR® = —2In[R'"™*™ + R'™™ 4 2¢R cos(mb)] , (14)
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yielding the following expressions for the relevant physical quantities:

2 _ _h® R~ :
gy* =" = {[Rzm + 2¢R™ cos(mb) + 1]} ’ (15)
. Rim-1) 2(36-2)/(58-2)
9= [RZ"‘ + 2eR™ cos(mf) + l] ’ 1o
— 48/(50-2)
o= i Coan
R?m 4+ 2¢ R™ cos(mf) + 1 ’
2\ 1/2 (m-1) 2
Poc R
= — = | —— 1
S = el (27r5%) { B+ 2eB cos(mb) + 11} ’ 1
B, = [0 ][ _4eR™ Dsin(md) (19)
TT2(1 - €?) R?m + 2¢R™ cos(mf) + 1| ’
and .
2rpo 12 [(L+m)RE™D 4 (1 — m)R™! + 2¢R™=D cos(md)
By = Do (20)
m2(1 — ) R?m + 2e¢R™ cos(mf) + 1. ’

where the self-consistent magnetic field, By, has the singularity at R = 0 (or r = 0) for
m > 2, and € lies in the range, 0 < ¢ < 1. In deriving Eqgs. (18) to (20), we have used

—h =|h|. The square of the magnitude of the magnetic field,

[R?™ + 2¢R™ cos(mb) + 1]?

B - 27 po [(14+m)R®™=D 4 (1 —m)R™1)? + 4eR™=Y cos(md)[(1 + mIR*™ + (1 —m)]
= |m =)

42 R2m=1[1 4 (m? — 1) sin®(m#)]
[R?™ 4 2¢R™ cos(m@) + 1]? '
will be used in the next section to calculate the magnetic energy.

Note that, in the limit ¢ = 0, the solutions reduce to the 1-D case:

Rm—1) 12(36=2)/(36=2)

929
l + R2m 1 ("’“)

(21)



R(m._.l) 45/(5ﬁ—2)

5 = [1 + Rm} , (23)

J poc® V21 pim=1) 12 5
- (55) [T 24
B, =0, (25)

and . | _

2100\ Y2 [(1 = m)R™! + (1 + m)R(m=1)

B = < m? ) 1+ Rem ‘ (26)

Thus, the 1-D solutions shown in Refs. 1 and 2 are only a special case (m = 1) of the

solutions Egs. (22)-(26). For m > 2, the magnetic field, By, is singular at the center.

IV. Numerical results
A. m = 1 mode

In this section, we start to discuss the new solutions. We first consider them=1 caéé, Vand
illustrate the contours of the magnetic surface function for different values of €. It is shown,
from Fi igs. 1, 2 and 3, that the structures of the contours are cxrcles with their centers shifted
toward the negative X direction. We can understa.nd this from Eq. (1 ), which takes the
form: | |

® = ——In(o) , (27)
where

o= X+26(l—62)1/2]2+y2}+1—62, (28)

. {[
4(1 — €?)
with X = rcos(d)/6, and Y = rsin(8)/6;. Clearly, the shapes are circles with centers at
X = —2¢(1 — €%)Y? and Y = 0, becoming. concentric for ¢ = 0. The centers shift to a
maximum distance Xmax = —1 [e = 27(1/?)], then shift back toward. the origin.

We also calculate the total plasma energy (K), and the magnetic energy (M) associated

with these states,

K= / /_ SnTrdrdf = /  Rede . (29)
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and
M = /0 ’ /_ : g:-rdrdﬁ = /0 * Hede (30)

where ¢ = r/6; and ¢, = r,/6;, with r, being the plasma radius. We plot X and M with
respect to £ in Figs. 4 and 5 respectively. For € = 0, representing the ordinary situation,
the plasma pressure (or K ) peéks at the plasma center and decays toward the edge, while
the magnetic energy increases from zero (at r = 0) to a maximum value, and then decreases
toward the edge. For larger € (for example, e = 0.6 or 0.7), the magnetic energy begins with
a larger value at the origin, forms a well around a particular region, and then decays toward
the edge. The pressure clearly peaks near the location of the well, implying that the plasma

is displaced from the center for larger e.

B. m 2> 2 modes

All m 2 2 solutions are singular at the origin. Figures 6-8 display the contours of the mag-
netic flux function for different values of e. The crowded contours near the origin represent
the singularity, and the magnetic islands and X points are clearly visibie.

Figures 9 and 10 show the plots of the plasma and magnetié pressure with respect to £.
To illustrate the results, we choose m = 2 as an example. The magnetic pressure is singular
at r = 0. thus, no plasma exists there. The plasma clearly peaks near the region, where the

magnetic pressure well is formed.

V. Pinch Equilibria; Field Reversal

In this section, we consider a further improvement in the pinch model by inclusion of an
azimuthal current in the equilibrium. The motivation is to arrive at a better representation
of laboratory devices like the reversed field pinches. However, for simplicity we restrict

ourselves to one-dimensional cylindrical geometry. We once again start from the distribution



function of Sec. II, but modify it to include a term proportional to py. It is given by

fa= ;%exzv (g%pm + %zm) exp [ 1}"; exp < ﬁa pm>] : (31)
where o denotes each plasma species, uﬁa ‘and Wo, are, respectively, the constant drift and
angular velocities in the z and 0 directions, [, measures the effect of the tefnperature gra-
dient, and p,o = Mav, + (¢a/c)A:(r) and pgy = myrvg + (ga/c)rAg(r) are the canonical
momenta. The plasma, thus, produces the self-consistent magnetic field B = B,% + B,4.

Letting A, equal to zero reduces Eq. (31) to the ordinary displaced MaxWelIian distribu-
tion function. '
For simplicity, we cénsider the problem only to order O(uoa/voa) and O(lwes/voq ), Where

L is the scale length of the system considered. This reduces Eq. (31) to

Noa Jo v? 2Uga U, v? 2T Woav
fa= ..3/3 3 g,—.exp (" P ) [1 T 0 (1 + B o2 2) + .20 9} , (32)
n v 'U 0 @

3
0o Ya V6 W2 Ocx p4 Voa

where g, and %, are the density and temperature profiles and are given by

Jo = €Xp [ha (l_+ 3§a> A, + Tla’r‘Ag] , : o (33)
and
d}i = €Xp (haﬂaAz) y . (34)

with 7L = (gaWoa)/(cToa). Further, if we assume that g; = g. = ¢ (quasmeutrahty) and

b; = b, = ¥ (for long-lived equilibria), then

Uoi - Woi _ Toi

=r7. (33)

Uge Woe TOe

To derive the relevant equations, we start from the axial and azimuthal components of

Ampére’s law

1d dA, 4 :
FEE T e (36)



and
dld

4
prei A

with currents J, and Jg calculated by using Eqgs. (32) and (35),

J. = noeuo, (36~ 1) (14 7)oy = ~ehp

Jo = —noerwoe(l + T)g¢2 = —crhop ,

where p = pog?, and kg = —h.. With the definitions

P=-hA,,
Q = _hOrAB )
2,2 /= 2 -1/2
Tnoe” ug, (58 1 1/2
= | 2= = - = —"7=2"%6 |
o [ To <2 1) (14+7) ] (7pa) /2 1

and

Woe

2 _ [um(l - 56/2>r
p = )
We convert Egs. (36) and (37) to the succinct form

dz dz

d2
——Q = —aoe(P+Q) .

dz?

d aF —eP)

(37)

(38)

(39)

where z = r2/62, and ap = 62/p?®. Notice that the parameter p? is a dimensional measure

of the ratio of the axial to the azimuthal current, while g is dimensionless. Since &, is

the expected macroscopic length, ag(= p~2) is a proper indicator of the relative strength

of the azimuthal to the axial current. Interestingly enough, Eqs. (44) and (43) allow exact

analytical solutions

P=—Mno+£>,
b
Q=%¥mﬁ+%>.
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from which, we can derive

2 Z1/2
By =2
1
Bz = _Qb(aoﬂ'po)l/zl =, (49)
b
1/2
CPo 1 ,
= 2 (50)
(7"1/250) (1 N §)2 .
Jg = _(aox)1/2Jz , (51)
z\ —bl(36-2)/(58~2)=aob]
7=(1+3) ) (52)
[~265/(58-2)]
w#=(1+3) : (53)
: b
where we have used the notation <
hob? = (3_) ”
T
9
ol 2 o
Qo 4
" and

To see the relationship of these solutions to the previous results,!? we first express b in

terms of . Eliminating p in Egs. (55) and (56), and solving the quadratic, we find

1+(1 —8ao)1/2

by =
e

(37)

Since ap and b are real, ag cleaﬂy must be in the range, 0 < o9 < 1/8, and b then can be
shown to be in the range, 2 < b < oc. Note that the ag = 0 limit of 5_ yields b_ = b =2
which will exactly reproduce the solutions given in_ Refs. 1 and 2." We further note that,
with the inclusion of Jj, the scale length b increases and 3, required to have decaying g and

¥, also increases. These parameters have the values of b = 2, and 8 > 2 /3 in the earlier

11



result.!? For example, op = 1/8 gives b =4, and B > 2 is required to have decaying density
and temperature profiles.

The model equations (36) and (37) do not contain any external magnetic field but deal
only with the self consistent fields created in the plasma. Note that a uniform magnetic
field in the Z direction can be easily incorporated by redefining Q to include a term linearly
proportional to z. The model equations remain unchanged with this transformation and the
same solutions hold. However a more realistic situation is one in which the external field is

created by coils at the boundary. This situation can be modeled with a current
J§t = JorS(r —r.) , (58)

which when incorporated modifies Egs. (36) and (37) to

dix% = —P+Q) | (59)
z
and
d? o
E.z%’ = —qoeP+d) + ;1—}2‘5(3 - o) , : (60)
0

where oy = 2w Johor?6p/c, zo = r?/82, and @ is now defined to be Q = —hor Ay = —hor(A)+
Ag*), where Aj and A§™ refer to the self-consistent and external parts of the vector potential.
Equations (59) and (60) need to be solved numerically with appropriate boundary conditions.

For this purpose. it is more convenient to write them in the form

d dP :

el _o(PHQs+Q) 61

dz " dz ¢ ' (61)
and

d2 ext

df; = —-aoe(P*Q""Q ) , (62)
where @, = —horAj, and Q%' = —hor A$* satisfies the equation

dZQext o ‘

= E/_fé(x — o) , (63)

12
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with the solution

o \ 2
058y [ — ] z, z<uz , (64a)
ext _ ) TPo '
Q™ = o \ 12 4
0.5B, (W—;O) To, T > g (64b)

We consider the situation where the plasma edge is a conducting 'wall, so that B, = 0,
‘where B, is the normal component of the magnetic field. “This implies that the toroidal flux
@ is conserved, i.e., (B;) = By, where

27

Tp 2 .
(B)= =5 [ Bordr = Bo+ - A3(ry) - (65)

Conservation of ¢; thus forces the boundary condition Aj(r,) =0, i.e., @,(r,) = 0. We solve

Egs. (61) and (62) nufnerically with the following boundary conditions
P(z=0)=0, Pl(z=0)=-1, (66)

and :
Qu(z = 0) = Qe =2,)=0. S (6T)
Since we want to express all our results in térms of a minimum number of macroscopic
plasma parameters, it is important that we impose additional constr.aints to limit the choice
of solutions. It is natural to believe that stable and interesting eqﬁilibria should correspond

to a minimum of the total energy

25 3 o /B, B
W = m%/o » [5506P+Q,+Q N (BT) n <§m dz , (68)

where W is normalized to 2w Ry BZ/87 with Ry being the major radius, and 8y = 8xpy/BE.
The minimization is to take place with respect to ag (a measure of the ratio of the azimuthal
to the axial current) and f,o which represents the central plasma pressure. A typical plot of
B.(Bs) is presented in Fig. 11(12). It is seen, that unlike the unconstrained solutions [(46)

to (53)'], these solutions can exhibit field reversal and thereby bear a close resemblance to

13



‘relaxed’ states of reversed field pinches. ‘Relaxed’ states have been extensively discussed in
the literature® within the context of the ideal fluid model. Qur equilibrium solutions can be
viewed as a kinetic analog of such states, with finite pressure and finite pressure gradients.
For our simple model, we can also construct a F' — © diagram to map the reversed field
regime, where F' = (B./Bo),, and © = (21,)/(cr,Bo) with I, being the total current in the
Z direction. An example of a F' — © plot, showing the field reversal (F' = 0) at © = 1.57,
is shown in Fig. 13. Notice that in this paper, we are simply attempting to investigate the
scope of constrained Vlasov-Maxwell equilibria;. we do not make any detailed comparison

with pinch experiments.

V1. Discussion

In this paper, we have considered two kinds of improvements on exact solutions of the Vlasov-
Maxwell system and tried to understand their significance for modelling realistic laboratory
plasmas. The first kind of improvement lies in extending previously obtained one dimensional
solutions of a simple Z pinch model to obtain two dimensional exact solutions. These
solutions display a great deal of interesting structure. For the m = 1 case, the equilibrium
magnetic surfaces are shifted circles, where the shift is controlled by a parameter (0 < € < 1).
The self consistent plasma profiles (density and temperature) also display corresponding
shifts in their peak values. The m > 2 equilibria display magnetic surfaces with chains of
islands and separatrices, but have a singularity at the origin. All these equilibrium states
(with self consistent plasma profiles) can play a significant role in understanding a wide
variety of laboratory plasma situations.

Fluid analogs of the m > 2 states have been considered in the past for stability stud-
ies of magnetic islands around mode rational surfaces in tokamaks,® or Kelvin-Helmholtz
vortex formation in cross-field plasma sheaths.® Our kinetic states could represent a better

equilibrium model for many such situations.
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Our second direction of improvement has been toward incorporation of an azimuthal
current in the pinch model to arrive at a better representation of laboratory devices like
the reversed field pinches. Restricting ourselves to one dimensional cylindrical geometry,
we have once again been able to obtain exact analytical solutions of the Vlasov-Maxwell
system. These equilibrium states, Which have well behaved monotonic plasma profiles, do
nof exhibit any field reversal. However,_introduction of appropriate physics, like a uniform
external axial magnetic field (created by currents at the boundary), and conducting boundary
walls (imposing toroidal flux conservation) lead td a more realistic model; the total toroidal
magnetic field B, can now change sign near the plasma edge. These equilibrium states
resemble the ‘relaxed’ states of reversed field pinches and can be viewed as the kinetic
analog of such states with finite pressure and finite pressure gradients. Although a detailed
analysis and further refinements are necessary to establish a proper correspondence with
the experiment, and also with the existing ‘relaxed’ equilibrium states, the present solutions
demonstrate once again the power and simplicity of the Vlasov approach. Further reﬁnements

in the model are in progress.
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Figure Captions

L

o

Magnetic surfaces for the azimuthal mode number m = 1 at ¢ = 0. The surfaces are

centered at the origin.

Plot showing the displ@cement of the center of the magnetic surfaces; maximum djs-

placement is X ~ —l,form=1ate=0.7.
Centers of the magnetic surfaces shift back towards the origin for m =1 at e = 0.9.

Numerical plots of the plasma energy versus the normalized radius r/6; for m = 1 at

different €. For larger ¢, the plasma is displaced from the center.

Numerical plots of the magnetic energy versus the normalized radius r/6; for m = 1
at different e. For larger ¢, the rnagnetlc energy forming a well near the peak of the

plasma energy [Fig. 4] i is clearly shown

Magnetic surfaces for m = 2 at € = .551. The magnetic islands and x points are

. clearly shown. The crowded contours near the center represent that the solutlons are

~1

singular at the origin.

. Numerical plots of the rnagnetié surfaces for m = 3 at ¢ = .§759. Similar to Fig. 6, the

contours display the islands, X points, and a singularity at the origin.

Numerical plots of the magnetic surfaces (similar to those of Figs. 6 and 7) form =10

and ¢ = .662.

An example of the plasma energy versus the normalized radius r/6; for m > 2 at
different e. The plasma has completely moved away from the center, showing that the

solutions are singular at the origin.
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