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Abstract

The interaction of two near marginal teai‘ing modes in the presence of shear flow
" is studied. To ﬁnd‘the time asymptotic states, the resistive magnetohydrodynamic:
'(MHD) equations are reduced to four amplitude equations, using center manifold reduc-
tion. These amplitude equations are subject to the constraints due to the symmetries
of the physical problem. For the case without flow, the model which we adopted has
translation and zleﬁection symmetries. Presence of flow breaks the reflection symmetry,
_‘while the translation symmetry is preserved, and hence flow allows the coefficients of
the amplitude equations to be complex. Bifurcation analysis is employed to find various
possible time asymptotic states. In particular, the oscillating magnetic island states
discovered numerically by Persson and Bondeson!” are discussed. It is found that the
flow introduced parameters (imaginary part of the coeficients) play an important role

in driving these oscillating islands.



I. Introduction

Resistive tearing instability is important in many aspects; it concerns problems such as con-
finement in laboratory plasmas and conversion of magnetic energy to thermal and kinetic
energy. The nonlinear evolution of a single tearing mode has received much attention.!?345
Saramito and Maschke® applied bifurcation theory for compact operators to the general
problem of the nonlinear solution of the 3D incompressible visco-resistive magnetohydro-
dynamic (MHD) equations, and they proposed that there exists a saturated tearing mode
state when Sk (the magnetic Reynolds number) exceeds the critical value, where the orig-
inal equilibrium loses stability. Recently, Grauer’ has studied the nonlinear interactions of
two tearing modes near marginal stability. Applying center manifold reduction, the resistive
MHD equations were reduced to four amplitude equations, which are significantly easier to
analyze. Compared with the usual small amplitude expansion, center manifold expansion
has two advantages.® Firstly, the center manifold has been rigorously shown to be locally
attractive,®10 i.e. any solutions which stay sufficiently close to the original equilibrium must
eventually converge to the center manifold. Thus for local time-asymptotic states, such
as steady state and periodic vsolutions, the center manifold reduced equations give a com-
plete description. Here “local” means that the solution is close to the original equilibrium.
Secondly, unlike the usual small amplitude expansion in which the dependence upon small
parameters must be specified, in center manifold expansion the order of magnitude of all
variables are naturally expressed in terms of the (small) distance from the marginal equilib-
rium state. However, the calculation of the coeflicients in the center manifold reduction is
as tedious as the small amplitude expansion and usually numerical evaluation is required.

If the model considered possesses certain symmetries, the reduced equations can be dis-

cussed in general terms without knowing the coefficients. Even though the presence of



symmetry may complicate the problem by forcing the marginal modes to have a multiplicity
larger than unity, it can greatly simplify the reduced equations by selecting only the terms
satisfying symmetry constraints.!'? Recent studies of mode interactions for systems pos-
sessing symmetries haVe been very successful in explaining complicated behavior in some

3 and Faraday’s experiment.!* The model

experiments; for example, Taylor-Couette flow,’
used by Grauer possesses (O(2) symmetry: rotations, elements of SO(2), act by translation
of X— X + Xo, and reflections, elements of Z(2), act by flipping X — —X, where X denotes
a coordinate of the system. This O(2) symmetry is common for systems with circular or
periodic slab geometry. Features of O(2) symmetry-constrained amplitude equations have

been well studied by Dangelmayr,'> Armbruster et al.'® and many others.'!? In these refer-

ences it is shown that such systems can saturate at various types of symmetry-broken states

depending on the parameter domain. The predicted solutions of mixed mode, and traveling -

and standing waves have been observed in Grauer’s simulations.”

In many circumstances the plasma equilibrium is not static. For example in. recent
Tokamak experiments shear flow plays an important role in the transition from Low to High
confinement mode. When shear flow is present the reﬂecfion symmetry in Grauer’s model
will be broken, while the translation symmetry survives. Cdnsequently shear flow is expected
to affect the nonlinear evolution of tearing modes. In recent numerical simulations, based

on straight cylinder reduced magnetohydrodynamic equations, Persson and Bondeson'” have

discovered nonlinear oscillating island states for the evolution of tearing modes, which are

driven unstable by shear flow. They also found that the oscillating island states remain when
the spectrum is limited to include only the modes m/n = 2/1 and 4/2.

In the present paper, we also study the .nonlinear evolution of tearing 'modes.in the
presence of shear flow. We treat a slab geometry model in which two modes with wave
numbers o and 2a are near marginal, while other modes are stable. Thus the nonlinear

evolution in this model is dominated by the interaction of modes & and 2c.. The slab geometry



is adopted for simplicity and to be consistent with our previous linear calculations.’®' Since
magnetic reconnection occurs only in a very thin layer, slab geometry provides a physical
picture for understanding more complicated geometries, such as cylindrical and toroidal. To
find the asymptotic states of the nonlinear interaction, the dissipative MHD equations are
reduced to four amplitude equations, using center manifold reduction. The model which
we will use is similar to the one used in Ref. 7; however, the breaking of reflection by the
presence of shear flow allows the coefficients of the reduced equations to be complex. Thus the
dynamics of the reduced amplitude equations are more complicated. Employing bifurcation
analysis, various structures in addition to the oscillating island states are discovered. Also
the roles of the new parameters introduced by flow (imaginary parts of the coefficients) are
identified.

In Sec. II, the basic equations are described, and the linear results are briefly reviewed.
Section III is devoted to the center manifold reduction, in light of the constraints of symmetry
on the reduced equations. Solutions of the reduced equations are discussed in Sec. V. Finally

Sec. VI contains discussion and a summary.

II. Basic Equations and Linear Problem

We start from the incompressible dissipative MHD equations:

2
98_‘t/+v.vv=_%vp+(vXB')><1§+S;1v2v
B‘ - -
%_t_:._vX (SZH(V x B)) + V x (7 x B) (1)
V-V=0
V-§=0,

where all quantities are dimensionless. Space is scaled with a, the width of the current sheet;

time with the Alfvén time 74 = %, where B is a characteristic measure of the magnetic
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field; and velocity is scaled with V4 = The quantities Sp = &= 4” > 1,5y = 2 —~ > 1,

'7.—
" where 7 and v are respectively the resistivity and the kinematic viscosity.
Assuming slab geometry and independence of the z coordinate, the magnetic and velocity

fields can be represented as follows: B=3x V'g/)(x,y),v =z X V¢(z,y). Thus Eq. (1)

becomes
o0 1
3_+V vVQ = B VJ + 5y V_LQ
0 - 1.
—a%/)+z-(V¢>‘<V¢)=SR1]—Ez, (2)

where Q) and j are respectively the vorticity and current in z direction, i.e. Q = V3¢ =
(552- + ay2) é, 7 = V2%1; E, is the external electrical field, which is applied to compensate the
magnetic diffusion in the equilibrium state. We assume that the equilibrium state depends

==<r <K 1 In the

only on y, and magnetic diffusion dominates the vorticity diffusion, i.e. s-

equilibrium state,

5§1j0(y) =FK

Let ¥ = to(y) + ¥1(z,,1), 6 = ¢o(y) + b1(z,v,t), where the subscripts 0 and 1 denote the

equilibrium and perturbation states, respectivély. Equations (2) become

g [ V2
L)
where

L_(S#VH%@)%V'& WL LY+ )%)
~owE SEVi+E )

(v ij,_v¢ x VQi )
N(¢1,¢1)~—Z'< ' —v(;lxv;bl 1) '

Here prime denotes differentiation with respect to y. We assume that the magnetic aull

plane is at y = 0, i.e. By(0) = —5(0) = 0.



Assuming periodic boundary conditions in the z-direction, the perturbed stream func-

tions can be expanded as
:E ya Zd)ln 2/, moz:c C.C.

syv Z (,?Sln yv mozz: C.c. (4‘)

where 2222 and L is the period in the z-direction.

The linear tearing mode problem with shear flow has been studied before.!”181920:21 Tp

the region away from the magnetic null plane (external ideal region), the magnetic field is

frozen into the flow; hence the global flow can dramatically change the matching quantity

Al = 1;‘1 (8‘/"3(51) - 311”3(5—) ) In the region around the magnetic null plane, the tearing

mode is very sensitive to the flow shear. If |y/aBj(0)e| <

Bl 0)‘ where v is the growth
rate and ¢ is the resistive layer scalelength, then convection dominates the inertia term and
the scaling of the tearing mode growth rate will change.’® Hence near marginal stability,
even small flow shear will cause a significant change in the linear problem.'” It has also
been shown that the stable tearing mode can be driven unstable'®!%-?2 by strong shear flow
(V5(0)/B5(0) ~ O(1)) provided V3(0)Vy'(0) — B§(0)By(0) # 0 and Sg <« Sy < 1. In this
case the condition of A’ > 0 for instability is removed; such destabilized tearing modes have
been found numerically.!”

The magnetic field and shear flow are characterized by parameters, such as their magni-
tudes and shear lengths. Near the parameter values where two modes with wavenumbers «
and 2a are marginally stable (and all other modes are stable), the nonlinear evolution can
be studied analytically. There are many situations where we can find such critical parameter

values. One example is a piecewise continuous magnetic field with a separated double jet

flow
1, y>1
BO(y) = Y, ly, < 1 ’
-ly< -1



0, ly|>b

Vo(y) =< Vo, b> |y > 1
0, lyl<1

Here flow only exists in the external ideal region and the tearing mode is unstable only if

A’ > 0. With the assumed profiles, A’ is equal to zero at the wavenumber o where

(1 — ap tanh(ap)) — -V V2 + (2 — V2)eo(t-1)
ag’ 0 V2 + (2 - VO'Z)ezao(b—l) )

Assuming 1 < V2 < 2, there exist two solutions for ag, and by choosing appropriate values.
of V5 and b, we aré able to get A; = 0 and A, = 0, while A, < 0 for n > 3. Thus the above
profiles describe the desired multiple instability. Another example can be constructed from a
magnetic profile Where all the tearing modes are stable, i.e. A, <0 for all n, by including a
shear flow that drives the tearing mode unstable. This is the case treated in Persson and Bon-
deson’s numerical simulations. Again by choosing the parameters V" (0)/ B'(0),v” (D) /B"(0),

and Sy;'/Sg! appropriately, the modes o and 2c can be driven simultaneously unstable while

the other modes remain stable.

III. Center Manifold‘Reduétion

10,23,24 and

" Center manifold reduction and related theorems can be found in many references
‘and we give only a brief description. For simplicity and clarity, let us first look at a finite-

dimensional dynamical system
X = AX + N(X,Y), (5)

Y =BY + M(X,Y), : (6)
where matrices A and B describe the marginally stable and stable linear modes, respectively,
M and N denote the nonlinear terms and M (0,0) = 0, N(0,0) = 0. Thus (X,Y)=1(0,0)is
an equilibrium state (fixed point). For the equations linearized about (X,Y") = (0,0), there

exists an invariant “center eigenspace” spanned by the eigenvectors of A, i.e. (X,Y) = (X, 0).
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When the nonlinear terms are included, the center manifold theorem states that there still
exists an invariant subspace called the center manifold. The center manifold is tangent to
the center eigenspace at (X,Y) = (0,0), as shown in Fig. 1, and has the same dimension as

the center eigenspace. Thus the center manifold can be expressed as a “graph of a function”;

(X,Y) = (X,h(X)), (7)
with K
h(0) =0, g—; (0)=0. (8)

Also, if M and N are differentiable to order r, then A is differentiable to order r7l. As
mentioned earlier in the Introduction, the center manifold is locally attractive, and so for
the purpose of finding the local time-asymptotic states, the system can be reduced to lower
dimension, the dimension of the center manifold. The dynamics on the center manifold are

expressed as

X =AX + N(X,h(X)) . (9)

It now remains to calculate A(X), which is achieved by plugging Eq. (7) into Eq. (6). We

have

%(X)(AX + N(X,h(X)) = Bh(X)+ M (X,h(X)) . (10)

In most cases Eq. (10) cannot be solved exactly for h(X) (otherwise an exact solution of
the original equations would be found). However, h(X) can be approximated as a Taylor
series near (X,Y) = (0,0) satisfying the conditions of Eq. (8). Usually only a few terms are
needed to describe all of the local asymptotic states.

The technique of center manifold reduction can also be extended to partial differential
equations. However the main center manifold theorem cannot be applied directly to our
present problem, since the spectra of the modes o and 2« are not exactly on the imaginary

axis, but this difference can be overcome by shifting parameters. Let Z, denote the distance



0]

of the parameters from their critical values, discussed in the last section, and expand the

dynamical system by adding a new equation

Zo=0. : (11)

(

Since the modes a and 2a are near marginal, Z, is very small. Taking the equilibrium state
of the enlarged system as (ii) = 0, Zo = 0, the spectrum of this new equilibrium with
wavenumber « and 2« lies on the imaginary axis.

Similar to Eq. (7), we have in the center manifold

(ZZI) ’y7 Z Z (qsnc) (y)em.a:t; + c.c. + h( ' Y Z‘nvzn’ ZO) ’ (12)‘
1 n=1,2

where (<p"°) withn =1,2 correspond'respectively to the critical linear marginal eigenfunc-

Pne

function % is subject to the following constraints

h
57 (2,4,0,0,0)=0,

h(z,y, 07 0’ 0) 762
oh Oh
.57_71-(:3’%0’0’0) 37, —(2,%,0,0,0) =0 .

Plugging Eq. (12) into Eq. (3), results in the following reduced amplitude equations (see the

appendix for details):
Zl = fl(Zly 717'227 7‘2) ZO) :
. ZZ = f2(Z17717Z27 727 ZO) . (13)

with f1(0) = 0, £(0) = 0, 2£(0) =0, 2£:(0) =0, ;é- 0(n=1,2and 7 =1,2). For the
nonlinear evolution with |Z| small, the functions f; in Eqs. (13) can be Taylor expanded.
One needs only expand to some finite order to unfold the new branches of solutions. How-

ever, to just third order, the number of terms is very large, and calculation of all of the

9



coefficients laborious. Fortunately in the present model, many terms in the expansion will
vanish due to the constraint imposed by the symmetry of the system. Thus the reduced
amplitude equations are greatly simplified and can be discussed as to the possible kind of
solutions, even without knowing the coefficients. As noted in the case without flow (¢o = 0)
this model possesses O(2) symmetry,” and Egs. (3) are “equivariant” under the following

transformations:

Tz (ii) (z,y,t) = (ii) (z + z0,7,1)

2(8) @t = () (=0,

where 7, arises because of periodic boundary conditions. In words, the symmetries imply

thatif (j}l ) (z,y,t) is a solution of Egs. (3), then so are 7, (;Zl ) (z,y,t)and Z (Zl> (z,y,t).
1 1 1

Inclusion of shear flow breaks the reflection symmetry, however the translation symmetry T;o

is preserved. Thus the reduced amplitude equations (13) are equivariant under translation

in  which acts on the amplitudes (Z;, Z3) by:
Lo(zlv Zz) — (eiazo Zl, eZia:L'OZ2)

(c.f. (12)). The basic monomial invariants for the above operations are |Z; 2, |Z[?, 73Z2,

Z%Z,, thus the expansion of Eq. (13) must have the form:
Zy = (M +twie)Zy + a121Z2 + 5121|Z1|2 + s |Z2|2 +0(Z%)
ZQ = (/\2 + inc)ZZ + (12Z12 + sz2|Z1I2 + CnglZle -|" 0(Z4) (14)

where \; + iw;. (1 = 1,2) are the linear eigenvalues of the near marginal modes, w;. are the
eigenfrequencies at the critical parameters values Zy = 0, and A; = ¥(Z,). Formulas for the
coefficients of Egs. (14) in terms of the (adjoint) eigenfunctions of the linear problem are

calculated in the Appendix. Breaking reflection symmetry allows the coeflicients a,b and ¢

10



to be complex. Similar equations have been discussed in Ref. 25 for studying the interactions
of two oscillators with 2:1 resonant frequencies. However, these authofs mainly discussed
the equations near a special degenerate parameter regime, where the pure mode solution
(c.f. Sec. IV) has double zero eigenvalues. Here we are interested in more general parameter
regimes.

Furthermore, the unessential nonlinear term Z;|Z;|* can be removed by a near identity
SO(2) invariant coordinate transformation Zy — 2,2, — Z; — Z—’;Z? Equations (14)

become

Z1 = (/\1 + ’iwlc)Z1 + a171Z2 + C]_Z]_[Zglz + 0(24) (15)
Zy = (g +1wae) Zy + a2 22 + bZo|Z4 P + 2 25| Z5|* +0(Z*) (16)

where b = by + 2b;, and the small modification of the coefficient a, is neglected. Now let
ay = p3e'®, ag = pse’® b= pbe"eb, 01 = p1et, ¢y = poe'® and assume |ayaqsce| # 0. We can

reduce the number of parameters in Eqgs. (15) and (16) by doing the fvollow‘ingAresca,li‘ng

Zy =2 Bz 7, Beitg, 1 P2y
P2y P4 P2 P3

The rescaled equations are

Zy = (N + G1e) 2y + Z1Z5 + 167 21|25 |* + O(Z%) (17)

Zz = (:\2 + Gzc)Z2 + e;ozlz + 5b6iebz2|Z]2 + e’ Z2|Z2|2 + 0(24) ? (18)

where 8 = 6 + 04, Xy = By, Xy = 2By, Gro = Buwre, Fgo = Buwge, fr = 2, fy = 228,
3+ 04 A= FAL Ag gAY, Wie = Fwie, D2e = Bwae, P1 = o3, Py = 208 For

convenience we drop the tilde in the following discussion. In the next section, bifurcation
analysis is employed to find the possible time asymptotic states, i.e. branches of nonlinear

solutions of the reduced amplitude equations that result from the linear instability.
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IV. Solutions of the Reduced Equations

Bifurcation analysis is the natural technique for finding the possible time asymptotic states
when parameters Zo are away from but still near their critical values. There are two types
of bifurcations?®: “local” and “global.” Local bifurcation is recognized by a change in the
stability of a solution. Depending on how the stability is changed, local bifurcations are
again divided into two types: “steady state” and “Hopf bifurcations.” If stability is changed
because an eigenvalue transverses zero, the bifurcation is of the steady state type; if the
stability is changed because eigenvalues are pure imaginary at criticality, the bifurcation is
the Hopf type and new branches of periodic solutions are often found. As for the global
bifurcation, its existence is not revealed by local analysis, and will not be considered here.
We are interested in the local bifurcation near the original equilibrium (Z1, Z3, Zo = 0).
This problem has been reduced to the amplitude equations (17) and (18) which may be

rewritten in polar coordinates Z, = rie'!, Z, = rye'¥? as

71 = (p1 +r2cos¢ + p1 cos€1r§)r1 - (19)

Fg = faTy + cos(p — 0)r? + py cos Byriry + cos far; (20)
2

© =& — (sin(p — 9)7'—1 + 2sin ¢r3) + pysin fors + dr3 (21)
2

where p; = ReA;, B = Im); (1 = 1,2), § = woe + f2 — 2(wic + B1), ¢ = 92 — 291, and
d = sinf; — 2pysin ;. Since the frequencies w;, arises mostly from Doppler shifting, and
such Doppler shifts are cancelled in the combination wq. —2w;,, 6 is a small parameter. In the
case without flow, § =sinf = d = sin 8, = 0, and hence these are the parameters introduced
by flow. Note that what matters in the nonlinear evolution is the phase difference, not
the individual phases of each mode. Thus the original amplitude equations (17) and (18)
are reduced to the three independent ones of Egs. (19)-(21). (This happens because of the

translation symmetry.) The variation of the individual phases of each mode are governed by

12



the equations

@ = wi. + 1 +sinpry + pysinby7 |
2
. . T . .
¢ = wye + P2 — sin(p— 0);} + ppsin 6,72 + sin Gor2 .
2

Small amplitude solutions of Egs. (19)—(21) have the following magnetic flux function

near the magnetic null line (for the constant-1 tearing mode):
1
YR —'5—3;(0)3/2 + 11 cos(az + wit + 1) + r cos(2(az +wit + 1) + ) (22)

where w; = wy, + B + r2sing + pysin6yr2, and ¢y is the initial phase. Note in the above
expression we haven’t take into account the rescalings of coefficients, but this will not change
the qualitative physical picture. If w; = 0, it is a steady island state, while if wy; # 0, it is a
traveling island state. It is interesting to note that a pure mode solution with r; = .O,.’ T2 #0
still solves the nonlinear interaction equations, even when higher order terms are 1ncluded
This is due to the symmetry which has forced rﬁany nonlinear interaction terms to vanish.
However, a pure ﬁlode of the form r, =0, 7-" 0 is not a solution. Contour plots of Eq. (22)
| with wit 4+ ¢, = 0 and ¢ = 0 is given in Fig. 2. If the stability of the bifurcated solution
changes, a secondary bifurcation can happen.” However, a secondary steady state bifurcation
is not of much interest, since it does not change the magnetic field structure. What is of

interest is a secondary Hopf bifurcation. When this happens, Eq. (22) becomes
X | A
& ~5B,(0)y® + (10 + r11 cos(wot)) cos(az + wit + 1) +
(r20 4 r21 cos(wot)) cos(2(az + w1t + 1) + Yo + 11 cos(wet)) , (23)

where wy is the Hopf bifurcation frequency. In this new magnetic field structure, the ampli-
tude and phase differences between the two modes oscillate. If it is not far away from the
secondary bifurcation, then [¢;| < 1, and Eq. (23) is close to a modulated traveling wave

state. This is the form of the oscillating island state observed in simulations by Persson

13



and Bondeson. Below we will discuss the parameter domains for the pure mode and the
mixed mode solutions with their secondary Hopf bifurcations. Since only the stable time

asymptotic states are practically observable, we also discuss stability of the solutions.

A. Pure mode solution (r; = 0,r2 # 0)

In this case, the amplitude equations decouple from the phase equation and Eqgs. (19)-(21)

become
rp =0
Fo = paTy + cos fg73 (24)
(g = wye + P2 +sinbyry

which have the solution

2 K2 . M2 ,
= — f <0. 25
"2 cos 8§y’ ! cos 04 (25)

This solution is a traveling wave state with phase velocity (wg, + B2 + sinf,r?)/2a =
(woe + B2 — % u2)/2¢, which differs from the steady state case when there is no flow. The
contour plot of magnetic flux corresponding to the pure mode is shown in Fig. 2a. There
are two magnetic islands in one period length. From Egs. (19) and (20) the sta.bility of this
solution is determined by eigenvalues —2u2 and p1 + (/= &% cosp — ﬂ’c;—%f—‘,uz. Since the
phase difference ¢ is arbitrary, the pure mode is stable when p; > 0, and gy + \/:% < 0.
A secondary bifurcation occurs when the stability changes. The first stability change occurs
at pg = 0, which represents the initial bifurcation of the pure mode. The second eigenvalue

comes from the perturbations of the mode a, thus the secondary bifurcated solution is a

mixed mode solution, which will be discussed next.
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B. Mixed Mode Solution (r;rs # 0)

Equations (19)-(21) yield

cos @ry + pycos Oyri = —py (26)
o cos(p — 0)ry + (py cos By + cos )12 = —pg | (27)
—(osin(p — 8) + 2sin@)ry + (ppsinbyo + d)ri = =6, (28)

where o = g denotes the ratio of amplitudes of the two modes. Let us first look at the
2

stability of the solutions, which is determined by the solutions of a third order polynomial
/\\'3 - d1/\2» + dg/\ bt CZ3 =0 , (29)

where
dy = —2(ocos(p — 8) + cosp)ry + ‘9(7'22) )

4ry
dy = |(0 — 4sinpsin(p B 9)) — % cosp cos B | 73 + I(riry) ,

ds = 2(o cos g + 2 cos(p — 8))riry + I(rird) + I(orird) .

A stable solution requires that dy <0, dy > 0 ds < 0. If the three eigenvalues are real,
the above condltlons are also sufficient. If two elgenvalues are complex, then didy —ds < 0
guarantees the stability. For d; > 0, and dyd,—d3 = 0, there exist pure imaginary eigenvalues
= 4i+/d;. Thus a secondary Hopf bifurcation could occur along did; — d3 = 0. Due
to the exchange of stability principle,?® the Hopf bifurcated solution is stable on the side
did; — d3 > 0, while unstable on the side did; — d;s < 0. The siade on which the Hopf
bifurcated solution appears depends on the sign of the coefficients of higher order terms.
Equations (26)-(28) are still very difficult to solve directly, so we consider several special
cases: § =0, 0 =, and § = v/2. For the case § =0 and § = 7, we discuss the difference

made by flow introduced parameter §. Note § = 7/2 is only possible with flow.
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(i) 8 = 0. In this case, Egs. (26)-(28) imply

21 + p2)? + 82
ry = V( ﬂ10+:; (1 4 9(rs))

2
cosp = — e + 9(ry) (30)
Sty o

1 d + J(rs)
sin = 2) -
\/(2#1 + p2)? + 62

In the case without flow, the solution requires that phase differences of the two modes ¢ must

be 0 or w. Here ¢ can be any value depending on the ratio (241 + i2)/6. The coefficients in

the stability eigenvalue Eq. (29) become
dy = =2(c + 1) cospry + ¥(r) ,
« 2 47"2 -2 2
dy = (a’ — 4 sin® p — —= cos @ cos 02) ri 4+ B(rirs) ,
o
ds = 2(o + 2) cos priry + 9(rird) + d(orird) .

Thus a stable solution is possible only if cos ~ 9¥(ry), and either ¢ > 4 or ¢ < 1 with

—4 — 2 cospcos B, > 0. The secondary Hopf bifurcation is possible also only if the above

2u1+p2
5

conditions are satisfied. From Egs. (30), cosp ~ ¥(r;) requires I ~ Y(ry) < 1. Since

6 is the parameter introduced by flow, there exists no stable solution and secondary Hopf
bifurcation in the case § = 0 without flow. From Eq. (27), the amplitude ratio ¢ of the two
modes is

po + cos 73

7 (cos /T2 + pp cos by)r2

When o < 1, it is required that us + cosf,r2 — 0. Obviously this is a solution bifurcated

from the pure mode solution along

pr_ (2p1+ pe)’ + &

" cos 6, 4

When o >> 1, it is required that either |us/r2| > 1 or |cos/ry + pycos 8| < 1.
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(ii) § = 7. In this case, there exists a special amplitude ratio o = 2, at which the phase
difference ¢ can be any value even in the case without flow. We first consider the special

case where o = 2. Equations (26)-(28) yield

o2 21 + P =— g >0
2 2p1 cos By + 2pp cos 8, + cos b, 2ppsin by + d
cosp = ——2s(r) =~ 4 9(rs)

and the coefficients of the stability eigenvalue equations become
dy = 2(0 — 1) cospry +9(r3) ,
d; = (a +4sin?p — % COS (p COS 02) rZ 4 9(r¥ry)
ds = 2(o — 2) cos prirg + H(riri) + d(oriry) .
Thus a stable solution with o = 2 requires cosp < 0. A secondary bifurcation is:.‘.p'([)ssible
only when cos @ ~ 9(r;), which requires

2 H2 1)

~

2+ pa | 2p1 + o
Now for the case o # 2, Eqgs. (26)-(28) yield
2 (2p1 4 po)* + 67

Ty = (0__2)2 (1 +‘19(7'2))
cosp =+ 2+ o2 +"19(7‘2) (31)
\/(2#1 + p2)? + 62
sing = d + 9(ry) .

@b + o)t 15
If |-2-| < 1, the solution is stable only if either o > 2,cosp < 0 or ¢ < 1,cosp > 0.

cos

Equations (26)-(28) yield in this case

e 00 (35)).
cos @ cosp /)
K1 cosp cos
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The assumption |-%-| < 1 requires that 1A secondary Hopf bifurcation can
cos ¢ (2u1+u2)

only occur for ¢ < 1, which implies from the above

——<1.
H1

Obviously flow introduced parameters are not important in this limit.

If cos ~ 9(r,), similar to the case discussed in § = 0, it is required that 234842 ~ §(r,).

(iii) @ = n/2. This case is only possible with flow. The coefficients of the stability eigen-

value equations become

di = —2(osing + cos)ra + (r3) ,

drqy
( + 2sin 2¢ — Lcosn,ocos 92) 7‘1 + ?9(7‘17‘2) ,
o

II

ds = 2(c cos(p + 2sin@)riry + I(rir) + d(oriry) .
When o > /2, the solution is stable only if sin ¢ > 0, cosp < 0, —0/2 < tanp < —1/0, and
o + 2sin 2¢ > 0. When ¢ < v/2, the solution is stable only if siny < 0, cosp >0, —o/2 >
tang > —1/0, and o + 2sin2¢ — %2 cos  cos §; > 0.
Assuming o > 1, Egs. (26)-(28) give

\/(2#1 + p2)? + 62

[

TS R -
)
cosp Nt — (32)
N e
sinp &5 — fe

\/(2ﬂ1 + p2)? + 62 .

Equations (32) imply that |£}| <1, or

|tan¢| ~ 1/0 < 1, which implies that |%—] < 1.
From the above calculations, we see that flow can significantly affect the nonlinear evo-

lution of tearing modes. In the case without flow, a secondary Hopf bifurcation can only
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occur with § = m,0 < 1 or ¢ = 2. Thus shear flow plays an important role in driving the

oscillating islands with (o >> 1) in Persson and Bondeson’s simulations.
V. Summary and Discussion

The nonlinear evolution of plasmas can saturate in time asymptotic states, or a transition to
turbulence may occur. Generally the governing partial differential equations are analytically.
intractable and so we are unable to predict these asymptotic states. However, in recent
years studies of nonlinear finite dimensional systems have been successful. Very complicated
behavior, even chaotic states, have been found in finite dimensional systems. Since finite
dimensional systems appear to possess solutions as complicated as those expected for the
plasma evolution, it is natural to attempt to model the dynamics of plasmas by some finite
system. This.is also reasonable physically, since in many situations only a finite number of
degrees-of-freedom are excited. For example, magnetic island coale.scence27 can be modeled
by the interaction of two modes a. and 2a. Thus the model equations are the same as
Egs. (14) thh the restriction that the coefficients be real. Given the pure mode state, i.e.

that there are two magnetic islands in one period length, the analysis in part A of Sec. III

cos &7

tell us that this pure mode state is stable only if g2 > 0, p1+ \/_ < 0. For the magnetic
profiles chosen in Ref. 27, g1 > 0 1f g > 0. Thus the given pure mode is unstable and will
evolve to a mixed mode state, i.e. two islands in one period length will coalesce. In another
example, Parker ef al.?® studied the nonlinear evolution of tearing modes without flow, using
the period length as the bifurcation parameter. When the period length is short, only one
tearing mode is excited, then the finite time asymptotic state is the usual saturation state.
When the period length becomes longer and longer, more and more modes will be excited.
This can be modeled as the interaction of two, three or more modes. The symmetry ((9( )
will limit the nonlinear terms in the model amplitude equations, and enable us to discuss

the solution in general terms. Even though the above suggested reduced models are not
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rigorously justified, they give some qualitative insight into the problem. For the interaction
of near marginal modes, the model can be justified by using small amplitude or center
manifold reduction. Strictly speaking these reductions are valid only close to the original
marginal equilibrium, however very often results are valid well away from marginality.

In the present paper we have studied the interactions of two near marginal tearing modes
with wavenumbers « and 2« in the presence of shear flow. Employing the center manifold
reduction method, the resistive MHD equations were reduced to amplitude equations. The
model which we used is similar to the one in Ref. 7, however the presence of shear flow
in our problem breaks the reflection symmetry, and allows the coefficients of the reduced
equations to be complex. The most important parameters introduced by shear flow are 6
and sinf # 0. The bifurcation analysis was used to find possible time asymptotic states in
different parameter regimes. Various states such as traveling and oscillating magnetic islands
were found, and their observable parameter domains were also discussed. It was shown that
shear flow plays an important role in driving this oscillating island state with o >> 1, i.e. the

mode o dominates the mode 2a.
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Appendix — Calculation of Coefficients

Let L = L.+ AL where L, corresponds to the linear operator at criticality, and

oL

AL = -
L 07y

Zy .
Zo=0

Here for convenience we denote Z; and Z; by Z3 and Z, respectively. The function k(z,y)

in Eq. (12) is expanded in powers of the amplitudes

mn é'l'f'LTL
Mo = 5 2020 (8¢ S meznne (J)
m,n=0,4 mn m,n,p=0,4 mnp
Inserting Eqs. (12) into Egs. (3), and equating terms of order #(|Z|) yields the linear problem
2
() i (T25) <. -
The corresponding adjoint problem is _
a -l
nc y v2 ne )
it (§r ) - s (5) 0. 2
with | 1 . 5 9 )
L Syivi - ¢>o 1E 25 Vo5s
° Vit E  SRVI- 4k

The normalization is defined as

(8500 2 b0e) + (Brurone) = [ [ (72T b0e + Tstoe) dwdy = e

To order 9(]Z|*) we obtain

¢mn . VZ ¢mn _ ¢inh
I [ (fm) e ()| = (S)

with

A\ e
Bink = {(Zo ZoZy + 0121Z2> VJ_‘]SL: (Zo ZoZy + 02Z2> V_Lﬁlszc + c.c.

+ > ZnZn

1<m<n<4

1 aémc aQnC _ 8¢mc aQ'ﬂC _ a¢mc 0.7.7710
1 dz Jy Jy Oz oz Oy
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oL

+a¢m° Ojne + terms interchanging m and n:| Z EY7 w5 ImZoPme
0

dy Oz

A — Ao
Yink = L 7071 + 012122 | e + 22 707 + a2 2% | thye + c.C.
ZO ZO

l a¢mc aqpnc 6¢mc a"bnc
+ 2 ZmZ”l +6,,m[ 9z Oy 83/ Oz

1<m<n<4

+ terms interchanging m and n} Z 57 Zo1/)mc .
\ 0

Considering, respectively, terms with ZoZ, and ZZ,, one can obtain the following

through the Fredholm solvability condition:

M [ (=L 0L L 8L
Z)- '—// (@1002 @10 ulcaZ Iblc) d:rdy

)‘2 _ L 8L -1 8L
-Z_O - // <¢zcazo@2c '(/chaZ 1/) c> dl‘dy .

Actually if we had already solved the linear problem, A; and A, could be written down

immediately. For terms with Z,Z,, rewrite Eqgs. (A3) as
2 i 2
—Z—IZZ Lc ¢3‘2> _ iw1 VJ_¢32 — 2(&)2 _ 2601) V_L¢32
Va2 Y3z Yz

v? =
+a1< $¢IC)+'“ AVLIR
1c ]

In the linear problem, the eigenfrequencies arises mostly from Doppler shifting, so w =

wp — 2w is a small quantity. Since (2232) + (iu) is also a solution of the above equations,
32 1c

the gauge is defined by (¢i, V2 ¢a2) + (Y1, %32) = 0. Applying the Fredholm solvability

condition to the above equation yields

a(blc 5v2 é2c 6QZS‘Zc BV ¢1c a¢1c av ¢2c a9521: avi ¢1c
“= // [¢1°( dy oz Oy t oy Oz + oy Oz

a"rblc av ¢‘2c a¢2c av 1/71c 61/’1:: av "/}2c a¢2c 3Vi¢1c -1
+ or Oy * dz Oy * 0y Oz + dy Oz ¥
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(_ 3¢1c Ohac + a¢1c 81/)2c O2c Oyc + a¢2c ad’lc)] da dy + ﬁ(w) )

dr Oy dy Oz Oz Oy dy Oz
Similarly, we obtain

=[] [ %c(a«m OVidie 0610V e e 0V e .

Jy dy Oz or Oy

6¢1c aviqplc alelc 6¢lc aQélc 8¢lc
Oy Oz + P oz Oy Oy Oz dz dy +9(w) -

So a; and a, are determined by linear marginal eigenfunctions to order J(w).

Continuing the procedure, coefficients of order ¥(]Z|*) are calculated:

_ —1 [ 0f11 003.  O¢11 O0s.  Oty1 0jac | O%11 OJae
bl‘//%“(am dy gy dz Oz Oy i dy Oz

+a¢13591c 0d13 0. Ob13 Oj1c | O%13 OJic
Or Oy dy Oz Oz 0Oy dy Oz

—1 [ 011 Ohse 011 0% | Ob13 01 Od13 Oic
+¢1°( dr Oy Oy Oz + Jdz dy. Oy Oz de dy

. —1 [ 0612003 012 003.  Ob1a Ojac | 01z IJse
bz—// {(é%(am Ay dy Oz dz 0Oy + dy Oz

+0¢23 O Oos O Otz Ojic | O%as Oj1c

0z Oy Oy Oz dz Oy dy Oz

+3¢13 anc 5‘?513 0Qs¢ _ 8?,b13 8j2c' + 87,&13 aj2c
Oz Oy dy Oz dz Jy dy O

Lt (012 Oec Od1a Opac | Opos D1 Odas Oifrc
2\ 9z Oy Oy Oz Oz 0Oy Oy Oz

6¢13 6¢2c 6¢13 a¢2c
+ 9z dy Oy Oz de dy

// ¢ 0¢12 3Q4c_3¢12 0y, 012 0jsc | O%12 Ojac
el 9z Oy Oy Oz 0z Oy dy Oz
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+0¢24 O,  O¢ay 001 Otpas Oj1c + 924 9J1c

dz Oy dy 0z Oz Oy dy Oz

+@q§14 Qs 014 Qs _ 014 092¢ 4 Oh14 0j2c
dz Oy Oy Oz Oz Oy dy Oz

+$.L 8¢12 3¢4c _ 84512 a'ﬁbttc + 8¢24 a"/)lc _ a¢24 a";[)lc
el 9z Oy Oy Oz dz Oy Oy Oz

5¢14 Oae 3¢14 Obac
T dr Oy dy Oz )} da dy

2c - -

c =// 1 [ O¢a2 Oy 0oz O Orbag aj4c+a¢22 07 ac
? oz Oy dy Oz oz Oy Oy Oz

+0¢24 O 024 0ac  Oth24 O7ac n Otha4 Bjac
dr Oy dy Oz dz Oy dy Oz

—1 [Oba Othse  Obao Othac | Ob2a Othae  Opaq Othac
'H/’n:( oz Oy oy Oz + 9z 0y Oy Oz dady -
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Figure Captions
1. Depiction of the center manifold.

2. Contour plots of the magnetic flux. (a) r; = 0, rp = 0.02, (b) ry = 0.02, r; = 0.02,
(C) Ty = 002, Ty = 0.01.
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