INSTITUTE FOR FUSION STUDIES

DOE/ET-53088-510

IFSR #510

Asymptotic Spectra in Two-Dimensional Drift Wave Turbulence

Y.-Z. ZHANG
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

July 1991

THE UNIVERSITY OF TEXAS

AUSTIN

Asymptotic Spectra in Two-Dimensional Drift Wave Turbulence

Y.Z. Zhang

Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712

A hybrid field Ψ , defined as the linear combination of the vorticity and the logarithm of electron density, is a constant of motion along the perturbed orbit in two-dimensional electrostatic turbulences. As a result, the spatial correlation of the fluctuating hybrid field is logarithmically divergent at small distance, which suggests a large wave number asymptote of the correlation proportional to k^{-2} . For the Hasegawa-Mima turbulence it follows that the asymptotic energy spectrum $E_k \sim k^{-4}$.

It is generally interesting to acquire a knowledge of the asymptotic spectrum for a stationary turbulence, such as the well-known Kolmogorov's power law¹ for the Navier-Stokes fluids. For two-dimensional drift waves use has been made of the Gibbs ensemble to obtain the energy spectra, for example, of the Hasegawa-Mima² and the Hasegawa-Wakatani³ turbulence. However, the resultant power laws appear to be far away from those obtained by numerical simulations. And the hasegawa-which is found to be helpful for studying the spectrum problem.

For a two-dimensional turbulence the electron continuity equation and the vorticity equation are combined to be one equation for $\Psi \equiv \ln N - \nabla^2 \varphi$, that is a constant of motion along the perturbed orbit due to the $\mathbf{E} \times \mathbf{B}$ nonlinearity, where N is the electron density, $e\varphi/T_e$ is the electrostatic potential, T_e is the electron temperature, e is the electron charge,

the radial scale is normalized to ρ_s with $\rho_s = c_s/\omega_{ci}$, c_s is the ion sound speed, and ω_{ci} is the ion cyclotron frequency. Explicitly, the equation is

$$\frac{d\Psi}{dt} = 0 , (1)$$

where $d/dt \equiv \partial/\partial t + \mathbf{b} \times \nabla \varphi \cdot \nabla$, **b** is the unit vector of the magnetic field, and t is the time normalized to ω_{ci}^{-1} .

For a Gaussian stochastic φ , it follows from Eq. (1) that the time evolution of the correlation function is 8,9

$$\left(\frac{\partial}{\partial t} - \sum_{i,j=1,2} \nabla_i \cdot \mathbf{D}_{ij} \cdot \nabla_j\right) \langle \psi(\mathbf{r}_1,t)\psi(\mathbf{r}_2,t) \rangle = (\mathbf{D}_{12} + \mathbf{D}_{21}) : \nabla_1 \nabla_2 \Psi_0(\mathbf{r}_1) \Psi_0(\mathbf{r}_2) ,$$
(2)

where $\langle ... \rangle$ is the ensemble average, $\mathbf{D}_{ij} \equiv \int\limits_{0}^{\infty} d\tau \, \langle \mathbf{b} \times \nabla_{i} \varphi(\mathbf{r}_{i}(t), t) \mathbf{b} \times \nabla_{j} \varphi(\mathbf{r}_{j}(t-\tau), t-\tau) \rangle$, with $\mathbf{r}_i(t) = \mathbf{r}_i(-\infty) + \int\limits_{-\infty}^t ds \ \mathbf{b} \times \nabla_i \varphi(\mathbf{r}_i(s), s) = \mathbf{r}_i \ (\text{for } i=1,2), \ \Psi_0 \equiv \ln \ N_0 \ \text{for zero equilib-}$ rium electrostatic potential, N_0 is the equilibrium density, $\psi \equiv \Psi - \Psi_0 = n - \nabla^2 \varphi + \mathcal{O}(n^2)$, and $n = N/N_0 - 1$, the normalized fluctuating electron density. When the homogeneity in space and time is assumed, the l.h.s. of Eq. (2) reduces to $-\nabla \cdot \mathbf{D}_{-}(\mathbf{r}) \cdot \nabla C(\mathbf{r})$, where $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$, $C(\mathbf{r}) = \langle \psi(\mathbf{r}_1)\psi(\mathbf{r}_2) \rangle, \ \nabla \equiv \partial/\partial \mathbf{r}, \ \text{and} \ \mathbf{D}_{-}(\mathbf{r}) \equiv \mathbf{D}_{11} + \mathbf{D}_{22} - \mathbf{D}_{12} - \mathbf{D}_{21}.$ In the small $r = |\mathbf{r}|$ limit $D_{-}(\mathbf{r})$ approaches to zero as r^2 , whereas the r.h.s. of Eq. (2) goes to a constant $2D/L_n^2$, where L_n is the density gradient length, and D is the diffusion coefficient. The solution at small distance for the isotropic turbulence $(D_{-}^{\theta\theta}=3D_{-}^{rr}\sim r^2,\,D_{-}^{r\theta}=D_{-}^{\theta r}=0,\,$ where r,θ are polar coordinates), is found to be $C(\mathbf{r}) \sim \ln r$ to the leading order. This is reminiscent of the granulation solutions for similar equations.8-11 The logarithmic behavior of the correlation function $C(\mathbf{r})$ suggests that the large wave number asymptote of $\overline{C}_{\mathbf{k}} \equiv \left\langle \psi_{\mathbf{k}} \psi_{\mathbf{k}}^* \right\rangle$ be k^{-2} , where $\psi_{\mathbf{k}}$ is the Fourier transform of $\psi(\mathbf{r})$. To illustrate this assertion, we assume the following isotropic spectrum $\overline{C}_{\mathbf{k}} \sim 1/(\kappa^2 + \mathbf{k}^2)$. It yields $C(\mathbf{r}) \sim K_0(\kappa r)$, where K_0 is the zeroth order modified Bessel function of the second kind, which is logarithmically divergent at r=0.

With the adiabatic density response $n=\varphi$ for the Hasegawa - Mima equation,² the large k asymptote of $|\varphi|^2$ is thus obtained to be k^{-6} , leading to $E_k \sim k^2 |\varphi|^2 \sim k^{-4}$, that is same as the results from numerical simulations.^{6,7}

Acknowledgments

Interesting discussions with Dr. Huanchun Ye are acknowledged.

The work is supported by the U.S. Department of Energy contacts No. DEFG05-80ET-53088 and No. DEFG05-80ER-53266.

References

- ¹ A.N. Kolmogorov, DAN SSSR **30**, 299 (1941).
- ² A. Hasegawa and K. Mima, Phys. Fluids **21**, 87 (1978).
- ³ M. Wakatani and A. Hasegawa, Phys. Fluids 27, 611 (1984).
- ⁴ A. Hasegawa, T. Imamuru, K. Mima, and T. Taniuti, J. Phys. Soc. Jpn. **45**, 1005 (1978).
- ⁵ F.Y. Gang, B.D. Scott, and P.H. Diamond, Phys. Fluids 1, 1331 (1989).
- ⁶ D. Fyfe and D. Montgomery, Phys. Fluids **22**, 246 (1979).
- ⁷ A. Hasegawa, C. Maclennan, and Y. Kodama, Phys. Fluids 22, 2122 (1979).
- ⁸ T.H. Dupree, Phys. Fluids **15**, 334 (1972).
- ⁹ Y.Z. Zhang, Acta Physica Sinica 30, 584 (1981).
- ¹⁰ T.H. Dupree, Phys. Fluids **21**, 783 (1978).
- ¹¹ P.H. Diamond, T.H. Dupree, and D.J. Tetreault, Phys. Rev. Lett. **45**, 562 (1982).