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A hybrid field ¥, defined as the linear combination of the vorticity and the logarithm of
electron density, is a constant of motion along the perturbed orbit in two-dimensional
electrostatic turbulences. As a result, the spatial correlation of the ﬂuctua.tlng hybnd
field is logarithmically dlvergent at small distance, which suggests a large wave number»
asymptote of the correlatxon proportlonal to k=2, For the Hasega.wa-Mlma turbulence

it follows that the asymptotic energy spectrum Ep ~ k4.

- It is generally interesting to acquire a knowledge of the asymptotic spectrum for a sta-
/tionary turbulence, such as the well-known Kolmogorov’s power law? for the Navier-Stokes
fluids. For two-dimensional drift waves use has been made of the Gibbs ensemble to ob-
tain the energy spectra, for example, of the Hasegawa-Mima? and the Hasegawa-Wakatani®
turbulence.*® However, the resultant power laws appear to be far away from those obtained
by numerical simulations.®"3 In this brief communication a new field ¥ is'introduced, which
is found to be helpful for studying the spectrum problem.

For a two-dimensional turbulence the electron continuity equation and the vorticity equa-
tion are combined to be one equation for ¥ = In N — V2o, that is a constant of motion
along i:he perturbed orbit due to the E x B nonlinearity, where N is the electron density,

ep/T, is the electrostatic potential, T, is the electron temperature, e is the electron charge,



the radial scale is normalized to p, with Ps = Cs/wei, c4 i3 the ion sound speed, and w,; is the

ion cyclotron frequency. Explicitly, the equation is

dv
7 =0 (1)

where d/dt = 0/t +b x V-V, b is the unit vector of the magnetic field, and ¢ is the time
normalized to wj!.
For a Gaussian stochastic ¢, it follows from Eq. (1) that the time evolution of the corre-

lation function is®®

L=

(6 - 2 Vi-Dy- V,—) ({1, 8)$(r3,2)) = (D12 + Dany) : Vi Vo Uy (ry) Uo(rz) ,  (2)

where (...) is the ensemble average, D;; = Zod'r (b x Vip(ri(t),t)b x V;o(r;(t —7) ,t — 7)),
with r;(t) = ri(—o0)+ ft ds b x Vip(ri(s),s) = r; (foxlz' =1,2), ¥ =1In N, for zero equilib-
rium electrostatic ppter—l’:ioal, Ny is the equilibrium denéity, Y=V =n—V2p+ @(nz), and
n = N/Np — 1, the normalized fluctuating electron density. When the homogeneity in space
and time is assumed, the LA.s. of Eq. (2) reduces to —V -D_ (r)-VC(r), wherer =r; —r,,
C(r) = (¥(r1)(rs)), V= 8/0r, and D_(r) = Dyy + D;; — Dy — Dy;. In the small r = |r|
limit D_(r) approaches to zero as r2, whereas the r.h.s. of Eq. (2) goes to a constant 2D/ L2,
where L, is the density gradient length, and D is the diffusion coefficient. The solution at
small distance for the isotropic turbulence (D% = 3D ~ r?, D" = DO = 0, where r, 4
are polar coordinates), is found to be C(r) ~ I r to the leading order. This is reminiscent
of the granulation solutions for similar equations.3-!! The logarithmic behavior of the cor-
relation function C(r) suggests that the large wave number asymptote of Cy = <¢k¢l’:> be
k=2, where 1y is the Fourier transform of %(r). To illustrate this assertion, we assume the
following isotropic spectrum Cy ~ 1/(x? + k?). It yieldé C(r) ~-K0(m'), where K, is the
zeroth order modified Bessel function of the second kind, which is logarithmically divergent

at r = 0.



With the adiabatic density response n = ¢ for the Hasegawa - Mima equation,? the large
k asymptote of ||? is thus obtained to be k-, leading to Ey ~ k2|p|* ~ k=%, that is same

as the results from numerical simulations.®”
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