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The rotational transform associated with the magnetic surfaces of a toroidal
magnetic fleld with a non-planar axis is an example of the angle anholonomy
recently much discﬁssed in quantum and classical dynamics (the Berry phase
and Hannay angle). The same anholonomic angle appears in the phase of a
charged particle spiraling around its guiding center in a strong magnetic field.
This accounts for a contribution to the longitudinal invariant, associated with the
guiding—center motion, Which is different for guiding-center orbits that circulate

in opposite directions and is absent for orbits that are reflected between mirrors.



L INTRODUCTION
There has been much interest, for both quantum and classical dynamics, in the
so-called topological, geometric, or anholonomic-angle (the Berry phase [1,2] and
Hannay angle [1,3]). The simplest classical example of this [3] arises when the external
parameters X(%) of a Hamiltonian system H (p, g; X) are carried slowly around a closed
cycle. If the “instantaneous” action-angle variables are I (p,¢;X) and 0(p, ¢; X), then

I is an adiabatic invariant and does not change during the cycle. The change in the
conjugate angle 8 is given by
A§ = %—det+y§<g—§>-dx, (1)
where (-) denotes average over § at fixed X. The first term is simply the integral of
the local rate of change and may be termed the “dynamic” angle. The second is the
geometric angle (Hannay’s angle [3]); it is an anholonomy that dépends on the‘path' :
X(t) in the external parameter space. (Note that the coordinate § may be chosen
somewhat arbitrarily at each X; consequently the angle A8 is well defined only for a
'~ cyclic change in which X returns ‘o its initial value.)
If the cycle of parameters is not carried out slowly, but the motion remains on some
invariant surface I, then equation (1) is replaced by
A@:}z{<%—fj>+]f<§%>-dx (2)
and interpreted as the average of Af for particles distributed over the invariant surface
(the Aharonov-Anandan angle [4]). |
Much of the interest in the geometric angle, or phase, concerns its mathematical
attributes in an abstract space, or its gauge invariance and group structure. It is
worth noting, therefore, that a practical application of the geometric angle has been
exploited by plasma physicists for many years — in the rotational transform of the

magnetic field lines in the “figure-eight” stellarator introduced by Spitzer in 1951 [5].
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Apart from its interest as an anticipation of the geometric phase (for others see
Berry [6]), this problem of magnetic field lines in a torus with spatial (i.e., nonplanar)
axis exhibits the anholonomy arising from parallel transport of a vector around a
twisted axis in its most basic form. This anholonomy is given by the purely geometric
expression i, = § 7ds, where s is the path length along the magnetic axis and 7 is
the torsion of the axis.

The same geometric angle ¢, also appears in the guiding-center motion of a charged
particle in a magnetic field — spec’iﬁéally as part of the “gyrophase” (i.e., the phase
of the particle in its gyration around its guiding center), which has been stu&ied ex-
tensively by Littlejohn [7,8]. This geometric increment in gyrophase is undetectable
in the face of the much larger dynamic increment §w,dt (where w, is the gyrofre-
quency) but,. as we point out below, it nevertheless has an effect on the dynamics of

the guiding-center motion.

II. ROTATIQNAL TRANSFORM

Here we follow closely Solov’ev and-S}.lanranov 9] Consider a mégnetic field that
generates magnetié surfaces surrounding a magnetic axis X(s). We introduce local
coordinates p, 8, s, where p, # are polar coordinates in the plane orthogonal to the local
direction e; = dX/ds of the magnetic axis. As with the Hamiltonian angle variable,
the angle § can be measured arbitrarily at different points around the axis [8,10], but
we choose to measure it from the direction of the principal normal e; = (1/k)(de:/ds),
where k = |de;/ds| is the curvature of the axis. Then the binormal is e5 = e; X e

and the torsion of the axis is 7 = —e; - (des/ds) = e3 - (des/ds). The metric is
di? = dp® + p*(df + 7ds)? + (1 — kpcos §)%ds? . (3)

With these definitions Vé is not orthogonal to Vs. The orthogonal direction is
Vw = V6 +7Vs ) | (4)
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so, using the field-line equation

ds
PE—(l—kpcos(’)E, (5)

we may write

d0  Bu(l —kpcosb)
ds pB;

—r. | (6)

The rotational transform is the weighted average of df/ds, given by

=$(2:5) 15

()

so that

(Bl he i,

where (-) here denotes the flux-surface average defined in Ref. [9].

The first term in equation (8), ¢y, represents the “dynamic” (or in this case “mag-
netic”) angle depending on B. The second is the geometric angle, 14, depending only
on the path taken by the magnetic axis (specifically its torsion: there is no geometric
contribution for a planar axis). If the torsion is not continuous (i.e., there are points
along the axis at which the normal vector rotates discontinuously), then the sum of
the angles through which the normal vector discontinuously rotates must be added
to the integral in ¢,. We see from (8) that, even if there is né poloidal component of
magnetic field (B, = 0), the geometric rotation remains. This geometric angle is the
basis of the figure-eight and other stellaratorsvwith nonplanar -agxes (with the geometric
angle coming solely from discontinuities in Spitzer’s original description [5]).

To show that the geometric part of the rotational transform has the anholonomic

form of equation (1), note that

Oer
0X;

d62 =

de ’ ' (9)
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SO

db = —dX; (3%) es; = —R-dX = —rds , (10)
J

with R; = (Oea/0X;)esi = (00/0X;). Since no adiabatic vassurnption has been
rﬂade, the geometric rotational transform corresponds to the Aharonov-Anandan an-
gle rather than the Hannay angle.

It should be noted that there can be a magnetic contribution to the rotational
transform, in addition to the geometric one, even from a vacuum magnetic field.
For example, if the vacuum field were confined within a conduct}ng shell of elliptic
or triangular cross-section, which itself rotated to form a boundary with a helical
deformation, then there would be a contribution to the rotational transform from the
first term in equation (8) even if the magnetic axis was planar. This is the principle

of magnetic molding [11].

II1. ADTABATIC INVARIANTS

It should be clear that the rotational tran.sfor.m discussed above arises from noth-
ing more than the transpbrt (in the Fermi-Walker sense) of a triad of vectors along
the axis. It is not surprising then that the same angle appears in the gyrophase of a
charged particle spiraling along a magnetic field line. (It also appears in the rotation of
t-he plane of polarization of light traveling along a twisted optical
waveguide [12-16].) Littlejohn [8] has shown that for strong magnetic fields the gy-
rophase angle evolves according to |

df dX
S =wetRo— -, (11)

where R is the vector introduced in equation (10) and the ellipsis indicate higher-
order terms in the ratio of Larmor radius p to scale length of magnetic field. This can

readily be interpreted as gyration at frequency w, plus rotation arising from transport
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of the (ey, ey, e3) system. It follows from equation (6) that if the guiding center were

to travel around a closed path, the change in gyrophase would be
A9=fwcdt+'?4fdsgmd+mg (12)

a.ga,iil illustrating the dynamic and geometric angies. However, in this case the geo-
metric angle would seem undetectable in the face of the large dynamic phase (unlike
the rotation of the magnetic-field line or of the optical polarization, where the ge-
ometric angle is readily detectable). Nevertheless the geometric angle does have an
effect on the guiding-center motion. This arises because, in addition to the magnetic-
moment invariant, conjugate to the gyrophase, there is a second inva,ri'a,nt J conjugate
to the periodic motion of the guiding center itself. (This periodic motion may be re-
flection between magnetic mirrors or circulation around a torus). To lowest order in
Larmor radius, tﬁe invariant J = m § v4. ds, but in higher order there are additional
contributions (which influence the long-term average of the guiding-center motion.)
One such contribution is remarkable in that it depends on the direction of circula-
tion of the guiding center and is absent Whenl the guiding center ‘oscill.ates between
mirrors [10]. It is given by

mv?

Ji = Tds . (13)

eB
We can now interpret this in the light of the geometric phase in the following man-
ner. We should really define J over a closed particle orbit. To a first approximation
this is just the integral over the guiding-center path, but closure of the guiding-center
path does not ensure closure of the particle orbit, since the initial and final gyrophase
angles may be different. Part of this difference is the rapidly changing dynarhic phase
which averages out. However, there remains the geometric angle AQ,. This changes

the path of integration by pAQ, and so makes a contribution mvpAQ, to the invariant

J. This is identical with Eq. (13).



In conclusion, we have shown that the rotational-transform angle in a torus with
a twisted axis is a particularly direct example of the anholonomic, geometric angle.
The same angle arises in the gyrophase of a charged particle where, despite the
fact that it is negligible compared to the total change in gyrophase, it has an effect
on the guiding-center motion. This accounts for an otherwise puzzling term in the
longitudinal invariant J, which is different for guiding-center orbits which circulate

in opposite directions and is absent for guiding-center orbits which are reflected.
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