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Current drive and helicity injection by plasma waves are examined
with the use of kinetic theory. The Vlasov equation yields.la general
current drive formula which contains resonant ‘and nonresonant
(ponderomotive-like) contributions. Standard quasilinear current drive is
Hdestribed by the former, while helicity current drive may be_ contained in
the latter. Since direct analytical comparison of the sizes of the two terms
is in general difficult, vla ne,w'approach is taken. Solution of the drift-
kinetic equation shows that the standard Landau damping/transit time A
magnetic pumping qUasilinear diffusion coefficient is the only
contribution to steady-state current drive to leading order in & = pL /L,
where p; is the Larmor radius and [is the 1nhomogene1ty scale length. All

_ nonresonant contributions, 1nc1ud1ng the helicity, appear at higher order,
after averages are taken over a flux surface, over azimuth, and over time.
Consequently, at wave frequencies well below the electron cyclotron
frequency, a wave helicity flux perpendicular to the magnetic field does
not influence the parallel motion of electrons to leading order and
therefore will not drive a significant current. Any current associated with
a wave helicity flux is then either ion current (and thus inefficient) or

~ electron current stemming from effects not included in the drift-kinetic

treatment, such as cyclotron, collisional, or nonlinear (i.e. not quasilinear).

PACS numbers: 51.10.+y, 52.40.Db



I. INTRODUCTION

Several studies have investigated helicity injection and current drive by
plasma waves in bounded and unbounded plasmas.!"11 Many of these used the
magnetohydrodynamic (MHD) model.27 Although initial results,1 which apply to
an unbounded plasma, were optimistic, more recent studies show that the current
drive is severely limited in a bounded, steady-state plasma with fluctuations driven
from outside.%” This is due to two factors.” One is that the component of the wave
helicity flux perpendicular to the equilibrium magnetic field is proportional to the
parallel component of the wave electric field, which is proportional to the resistivity
in the MHD model. The other is that the total helicity “dissipation,” which causes
the bulk of the current in a bounded plasma, is proportional to the resistivity to the
two-thirds power in the presence of the Alfvén resonance.

Other studies have considered the two-fluid model.1810 Like the MHD
model, the results of these studies show that the net current averaged over a flux
surface (corresponding to a real parallel wave vector) is proportional to a collision
frequency, whether it be ion-electron, electron-ion,8'9 or an effective “rf” collision
frequency.m _ |

Since these fluid models do not contain the true (collisionless) absorption
mechanisms in a hot plastna,_ a kinetic description of helicity injection and current
drive is desirable. Two studies have recently considered the kinetic model.10-11
One,!! usihg the eikonal approximation, showed that the average rf force on a
plasma species may be written as the sum of a single resonant and three
nonresonant terms. The resonant contribution is equivalent to that considered
previously by, for example, Fisch.!2 The nonresonant terms stem from wave
dispersion, ponderomotive force, and an internal polarizing force. Based on
numerical computations for a specific application, the authors of Ref. 11 speculate

that the latter term is related to helicity injection. However, the connection is not



clear. Furthermore, applications of this theory are restricted by the.eikonal
approximation. The other study!? derived from the Vlasov equation a general and
useful form for the net force on a particle species. However, in this form, the
resonant and nonresonant contributions are not separate and are therefore not
readily compared. In both studies‘n_umericall computations indicate that the
resonant interaction is dominant in the particular cases considered.

| The present study is divided into five parts. Section II re-examinés the
general form for the force on a plasma species reported in Ref. 10. This result is
| further generalized to an arbitrary equilibrium magnetic field and written as the
sum of resonantQIike and nonresonant (ponderomotive-like) contributions. The
force is seen to depend on details of the plasma response and gradients of the Wave
fields. Although amenable to numerical computatioh; analytical comparison of the
sizes of the two.terms is in general not easy. Therefore, we take a different approach
to the current drive problem. In Secs. III-VI we consider the drift-kinetic equation.
In Sec. III a form of the drift-kinefcicr equation suitable for the study of the current
drive problem is developed. In Sec. v slab geometry and the quasilinear
| approximation are mtroduced Section V contains the solution of the drift-kinetic
equanon for small Fourler wave electromagnetlc fields. Our approach is un1que in
that it does not make use of Ampere’s law, and therefore the susceptibility tensor
does not appear in the final result. Also, the ordering of the resonant and
nonresonant forces comes directly out of the analysis. It is found, perhaps
surprisingly, that no nonresonant contribution to the current drive remains to
leading order in the expansion parameter € = p, /[, where p, is the Larmor radlus
and [ is the inhomogeneity scale length. A more general derivation of the same
result in real space and time is presented in Sec. VI. Here, one can see how the
nonresonant cAo}ntributions vanish upon averaging the fluctuations over a flux

surface, over azimuth, and over time. These nonresonant terms are reminiscent of



the ponderomotive force.. Concluding remarks appear in Sec. VII, and a discussion

of the net driven current is presented in the Appendix.

. VLASOV EQUATION

Collisionless current drive is described by the Vlasov equation,

of, q v
PR/ A —mis(*.3+;><B)-V,,fs =0, 0

where the subscript s refers to the particle species. Following the standard
quasilinear treatment, we separate the distribution and the fields into a slowly
varying part (subscript zero) and a first order rapidly varying part (tilde). Then the

slowly varying part is given by

¥eo
ot

9s . \4 q ~ Vo -~
+ v-Vf, + Es:(aodr;x By-V, f, = ‘7nsj<‘e +-xb)-V f>, @

where <> designates an average. The driven current is related to the v, velocity

moment of Eq. (2), where vy = v-ﬁo and ﬁo =By/B,. This moment may be written,

with no further approximation, as
A . ausO A ~ o~ R
no'{msnso[?*' (u,y-Viu,,] '*'V‘Pso} = no'{PsoEo + <p€ + ]sxb>}, (3)

where n is the plasma density, u the fluid velocity, P the pressure tensor, p the
charge density, and j the current density. The right-hand side represents the parallel
force on a fluid element due to a parallel steady electric field and fluctuating

electromagnetic fields, while the left-hand side represents its change in momentum.



The left-hand side can be approximately related to the driven current in steady-state
as

A [.au_so
m Sn SOnO. at

+ (g VIugl =~ manyuy, /7, = Mglsop /5% 4)
where 7, is the slowing-down time of species s on the other species. Thus,

neglecting the pressure tensor and omitting the steady electric field, the current

driven by the fluctuations is fdrmally given by

T U . .
Top = ~ 22 <& V-[at, + [, % (V x [a:&)],>, ®)

where Faraday’s law and continuity were used. For monochromatic fluctuations
(~e7), Eq. (5) may be expressed as the sum of resonant-like and nonresonant

(ponderomotive-like) contributions:

gq57, ~ ~ ' e
]50//.= za:rrjs I/‘\10'[<(Ve)’]s*>- - V'<]s e>] + ccC.. (6

For plane-wave fluctuations (~eik"‘), the last term vanishes and Eq. (6) becomes

957k .
]50” = a)ms + C.C. ’ (7)

where P is the power absorbed by species s, € -'fs* + c.c. This form is the same as

Eq. (1.3) of Fisch.12 In general geometry, however, there is nothing intrinsic about

the last term in Eq. (6) that should make it vanish. This term could be connected



with a helicity flux. In general, the driven current depends on details of the spatial
gradients of the fluctuating electric field and current density. Since the driven
current ~ 1/m,, it is clear the electron contribution will dominate, except possibly
under special circumstances. Equation (6) is amenable to numerical calculations

since j, may be expressed in terms of the fluctuating electric field through the

susceptibility tensor:
js = 7 s'é." 8

Although further investigation of Eqs. (6) and (8) may be fruitful, the presence of the
susceptibility tensor makes direct analytical comparison of the sizes of the two terms
difficult. Also, any contribution of the helicity flux to the current drive is not
readily apparent. Therefore, we now take a different approach to the current drive

problem.

Ill. DRIFT-KINETIC EQUATION

At frequencies well below the electron cyclotron frequency, electron motion is
accurately described by the drift-kinetic equation. In this section, we derive a form of
the drift-kinetic equation useful for investigating helicity injection and current
drive. We start from a form of the drift-kinetic equation valid in the so-called MHD
ordering, where the electric drift v, is the same order as the thermal speed v,. In
this ordering E,/E, = O(e), where e =p,/{ p, is the Larmor radius, and [ the
inhomogeneity scale length. The proper eciuation(also called the guiding-center

- equation) valid to zero order in ¢, is!>14

9 A A 0B, d
. 5{ + (un +v)-Vf + [;nq- E-(un +v,) —un(v, Vv, + /.t-é?]gz% =CKH O



where f = fw, 1, X, 8), w = (v=v)*/2, = (v, = v)%/(2B), v, = cEx /B, vy=nx [uVB
+u¥(A- V)N + uaﬁ/at]/wc,ﬁ =B/B,u = v-n, v, =v-un, @, =gB/(mc), and C is a
collision operator. Since the driven current is related to the u velocity moment of
Eq. (9), it is more convenient and physically relevant to work with a distribution
function g(u, 4, x, t) than f(w, y, x, t). Because u =+[2(w - ,LZB)]I/ 2, it is a simple
matter to write f(w, i, x, t) = g(u(w, u, x, t), 1, x, t) and use the chain rule to convert

Eq. (9) into an equation for g(u, u, x, t). The result is

% ., el
vl (un+VE)-Vg + [n'(m E - uVB)

A 3 |
+ (- Evg = pvyVB)/u - n-(vE-V)vE_]gf = C(g, ). (10)

Using the definitions of v4 and v, the last three terms in the square brackets of

Eq. (10) may be converted into a more recognizable form,

%

o + (un +v)Vg

A : aA A A S A :
+ {8 CLE-pvB) + vE-[a—It‘+ u(@A-V)A + (vE-V)n]}g‘E = C(g, 9). an

It is interesting to note that apart from the v, drift appearing in the definition of u,

du/dt (the term in curly braces) in Eq. (11) agrees with that g1ven by Eq. (1.20) of
N orthrop

As dlscussed in the Appendlx, the driven current is proportmnal to

'fdudyu Jg, where J is the Jacobian relating d%v to dudpd(, and { is the gyrophase.

(Here J=B + O(g)). Since subsequently we expand the distribution function and

fields in powérs of the fluctuating field amplitudes (in which case 7 must also be



expanded), it is more convenient to work with an equation for the variable G = Jg
rather than Eq. (11). Due to the properties of 4, this equation is the conservative
analog of Eq. (11) (see Littlejohn,'6 for example):

oG

> + V-[(un +v)G]

+ Z{fh L E- 9B + w5 +ud Vi + vwille} - cc o

Our goal is now to solve Eq. (12) under conditions approximating steady fluctuations

driven from a plasma boundary.

IV. PLANE SLAB MODEL

Following the standérd quasilinear treatment, we separate the distribution
and the fields into a slowly varying equilibrium part (subscript zero) and a first order
rapidly varying part (tilde). As a simple geometrical model, we consider the sheef

pinch in which equilibrium quantities vary only in the x-direction and

Bo = (ol BOy(x)/ Boz(x))r (13)
Go = Go(ur H, X). (14)

[Although our choice of velocity-space coordinates may be unconventional, the
proper equilibrium moments result from Eq. (14), as shown in the Appendix.]
Expanding the total fields in powers of the fluctuating field amplitudes (designated
by 1), we find

= (BB)/2 =By -4 5B, 2- (35 2-5 B, (15)



A

f=BBl=H,+Ab Bot - 22[BF, + 235 2-FDIB 2 + .. (16)

Ve=Ac& xneB? + A2c(@xb -bExN)BE + ... (17)
AE = A8, + %5 Byl + .. ' (18)
| 0B
A o~ _ 0 A o~
nVB = A (BB + gO-Vb,,) -
R(L8gVE 2+ 6,V 5, - 5557125, 4 19
A gy Vb S+ b Vb, - bpBy ax 0 (19)
M A Ao
vE-[a- +u(n-V)n + (v-V)n]
a -~ ~ ~ ’ -
- 2 2 -la-ubf) + Cﬁo.v[%ce_{_?- - uny (& xB)1)Bs2 + .. (20)

where the subscripts | and L of the field quantities are defined relative to ﬁo (unlike

fhe'velocity-space coordinates, which are defined relative to n). To obtain Eq. (20),
we have used V-B = 0, Faraday’s law, and have consistently discarded higher order
terms, which stem from the ratio E”/'éi. [Note E” = E-ﬁo =g-(n-4 l;_LBO“1 +..) S0 -

&,/8,=0(e) + 0(4).] Then the fluctuating disvtribution is giyen by

aa—f + ufy:VG - C(@G, Gy - C(Gy G)
- J |

.where
¥, = ub J_Bol'1 +c€x 18,7, (22)

: 0B
~ ~ A ~ =120



and the slowly Varying distribution satisfies

C(Gy,Gy) = V-{<VD§> + <— VDEII + (c&xb - %uﬁo'b'f)Bo'bBo-lGO}
¥ £{<a”c> * < EbL - uGngVh S+ bV by = bp:By IE)

J - - ~
+ 5;(—%ubi230'1) + By g VI3cZ 2 ~ uny (& xB)>B,G,). (24)

V. FOURIER MODES
We now consider the fluctuations to be produced by an external antenna,
represented by boundary conditions at x = +4, and we Fourier analyze the

fluctuations into components,

b(x,#) = b(x)el¥ + c.c. (25)
ex,b) =e(x)eY + c.c. (26)
G = h(x)e¥ + c.c. 7)

where y = kyy +k,z— ot. Landau damping and transit time magnetic pumping

(TTMP) are correctly treated by letting k be real and = @, + iy with y— 0%, For the

collision frequency much smaller than o, the fluctuating distribution, from Eq. (21),

is given by
h-—lﬁ—[v( é)_,_i( ] (28)
~i(w-uk) Yoo 5y a”GO)'.

where
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_ 3 | ‘ _
V=Xx—+i 29)
, a +ik . (29)
vy, = ub J_Bo' +cex 1’{030'1 (30)
_5_ v
m €

. 9B
a, ~ u(ikp, + b,B," —) : (31)

and the slowly varying distribution, from Eq. (24), is given by

C(G,,Gy = {vmh = GoBylo,b,} + cc.

0B |
+ —{a/ﬁ +GOBO [—e b, ~u(b, Vs, —bxb,/*Bo'_la—:)]} + cc (32)

To obtain this result, the term containing (e x b _L*)x was dropped since it is

proportional to ey and therefore higher order. With V-B = 0 and Faraday’s law, we
find |

| .. OB an, L :
= li(@ - ukb; = vy, = 2+ ce (—xx)]B AT (33)

on, . A on
But since Ex— XX = no(n0 X —0) (true for arbltrary n0 if no X = 0), the last term in

Eq. (33).is higher order and should be neglected. Then
- 1 - '
h =By 'G, + m [voxBo = CGoBo 1) +a” " ] (34)

and Eq. (32) becomes



1 ivp.a, 9G,
C(GyGy = —{ =22 Dx —”——
GoGo ax{w - uky Oa Gobo™ + -uk,,au ee
Kl za,}a” G, za/,va 4
ou'e —uk,ou @ —uk, 0 2 G
+ Gy (L e~ pvb)b'} + ce. (35)

This equation may be further reduced by writing v, , with the help of Faraday’s law,

as

Vpy = Z%; [(w- uk”)ep + uk_Le”], (36)

where ¢, = e-p and 1’)\ = ﬁo X X. Again the last term is higher order and may be

neglected relative to the first. Then Eq. (35) becomes, after some rearrangement,

oG
GGy Gy = a—{ﬂL —L

u o —uk” ou

. icd
+ GoBy (e~ Vb b" - E-—'(a”ep 1 + ce 37)

The first term on the right-hand side is purely resonant, since

. * *
apy _ lim _ _T2VAy oo
o — uk” +cc = 70 (wo—ukf 2 yz = Zﬂalfz” 6((00 uk’,). : (38)

This term describes the effects of Landau damping and TTMP and has been
thoroughly examined in the literature.!>17 The right-hand side of Eq. (38) is simply
the quasilinear diffusion coefficient, when the cyclotron resonance is unimportant.

The other terms in Eq. (37) are purely nonresonant and are of our main concern

12



regarding helicity injection and current drive. [The e-b” term is related to the wave

helicity flux,” whereas the nonresonant terms containing the magnetic moment

- have not been considered in previous studies.] ‘However, quite surpnsmgly, it may

be shown, with the use of V- B =0 and Faraday’s law, that

13

(%e—qu”)-b* +cc =%5a;_(aﬂep*) + cc + O() + O(A). (39)

Consequently the nonresonant terms cancel and Eq. (37) becomes »
: d * 9G, _
C(G,Gy = g{—Zmz/fzg 8(a~ ukp =2}, G

This is quite significant and is the main result of the present work. It shows that a

helicity flux perpendi,cula; to the magnetic field, represented by %5; (ﬁq_?/ Iep*) +cc.,

"does not influence the parallel motion of an electron (or ion) to leading order in &.
It says that a perpend1cu1ar helicity flux may influence the parallel electron (or ion)
motion only when cyclotron (O(e)) effects are 1mportant Therefore, near the ion
cyclotron resonance, when a perpendicular helicity flux is efficiently absorbed by the

plasma,8 2

only the ion mot1on is affected. This leads one to believe that current
drive by helicity injection may be inefficient. This conjecture is gen'erally'supported
" by the numerical calculations of Ref. iO; The result also agrees with that of Ref. 11,
where it may be verified that the electron contribution to the internal (polarizing)
force in the e1kona1 approximation is O(w/w,,), when the wave amplitudes are

averaged over a flux surface (using the mobility tensor of Ref. 18)."



Finally, we note that, had the term containing the helicity flux not cancelled

out, it would have been of the same order as the Landau damping term. Using

f;uu 3—z = - j‘:iul-' we have

aG ! a
A, 20 L 4_ic L
2z k,,mz €Ly u |u= ap/ky M g ) (fdu Gy ) o (e”ep c.c.) , 41)
or, assuming u ~ v, ~ &y/k,
%

e, ~ ———e, , 42)
I an]ftb)ce P

which is consistent with the ordering. Since ey appears in the term containing the
helicity flux, the perpendicular helicity flux is small, within the present ordering.
But, had it not cancelled out, the helicity term might have generated current
comparable to the Landau damping term. Thus, the cancellation of the helicity term
is not simply due to ey/e; = O(e). At O(e), we find terms proportional to the helicity
flux multiplied by gradients of the equilibrium, as well as a host of others.

However, these are small compared to the resonant term in Eq. (40).

VL. REAL SPACE AND TIME
It is possible to see the cancellation of the nonresonant terms without the
Fourier décomposition of the fluctuating fields. The derivation may be carried out

formally by defining the operator

d
L=C+ unyV). (43)

14



Then Eq. (21) becomes, with the neglect of the collision terms,

~

J L
LG = = V-FpGp) ~ 3 (@Gy). (44)

From V-B = 0 and Faraday’s law, we find, neglecting higher order terms,

Vv, = —L(E/IBO_I) DxBO ax o (45)
and
aV . 1/;o A
L(e x no) = —C_E— + uePp(Ex--x n), . (46)

~

, o '
Therefore, defining 8—t§ = €, we have

A

- £ 106 o - SR, @
- and so Eq (44) may be forrhally solved fqr G, yielding

=b ,,Bo-lco - c’g’ = (B 0 Gy - L& ,,) | @)
With this form fpr the perturbed distribution, Eq. (24) becomes

C(GO,GO) = <-v{¥ oleg, —(B Gy + L'l(“P‘_]

+ (E unob_L_ -ce Xb_L)GoBo_Z}



~
~

O [ i dG, .
+ a{—a”[, (all)'(,; - a”Cé’pa(Bo Go)
+ [;Z—E'l; - u(%ﬁo'VF_Lz +b.V 17”)

d - -
+ a—t(—%ub_LZBo‘l) + By My V(568 2 — ung(& xB)1B, G, }>. (49)

The term containing <-a, L@ P> is the resonant term describing Landau damping
and TTMP. Recall that this was the only term which survived in the analysis of

Sec. V. Our goal here is to see what form the other terms take. The terms on the

16

last line of Eq. (49) vanish for steady fluctuations and when the fluctuations are -

averaged over a flux surface. Consequently they do not contribute to steady-state
current drive. For the other terms not to contribute to current drive, they should be
expressible in similar forms. In this spirit, for example, we note from Faraday’s law

that

a5 o - SIL(EV X ) & voE OB
eb = z[at(§Vx§)+V(§xat)]. , (50)

The average of the first term vanishes for steady fluctuations, but the second term is

R VA T : .
finite if (§ x —2), is nonzero. This represents a transverse wave helicity flux.

ot
: . . . ~ 1/~ aGO
Cancellation of this term with part of V-{VDL' (a ”) g} occurs when we write

VoL@ = L) - LG, (1)

and use Eq. (47). We find
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F,L@) = LG, - Bi 55 £ x A

~

¢ .

— L (u.gp)a [p( X no)x (52)

If we further write

Sty = HEXDE - nono<af.x—§>+-—<¢no¢xno>} 6

- we see that the f1rst term of Eq. (53) partially cancels with the last term of Eq (50)

d
generating another term, 1< (€ x até)

m 2 x— (Bo ) We f1nd that this new term

cancels with yet another term. In this way, Eq. (49) may be eventually reduced to

| | 3y .. G
CGoGp = <~ 317, L@ =

—v zz‘”"D)—— + 2% —(B G LEE xno)}
oBo ZL(b.L)

1 q _

-3 S at{ c[g(ng)—V(élgxno)]+uB 15 2}
3G, . . N oo

| fBo”l agno-V{cBo‘l[uno-(é'xb)—Ec'EJ_Z] + Ei—cno-(&ixé‘)

0B, . ~
/.tC —(623'1 0) %b ‘#C(gan)Vb//}

-cB,p- V{— cny-(€ x L§) (BO'IGO)

A

0
+ [a”[fl(ué )( xno) + /.U:xbeo—l BO aGO}

(54)

7.



Except for the first term on the right-hand side, which is the resonant term discussed

earlier, and the second term, containing L@ ”“70), all terms vanish for steady
fluctuations (9/0¢ = 0), when averaged over a flux surface (n,'V = 0) and when
averaged over “azimuth” (p-V = 0). These nonresonant terms are reminiscent of
the conservative ponderomotive force.19:20 Although the second term rigorously
vanishes in the analysis of Sec. V, it remains to be shown whether this is true in

general.

VIl. CONCLUSIONS

In the first part of this study we presented a general form for collisionless
current drive which contains resonant-like and nonresonant (ponderomotive-like)
contributions. Standard quasilinear current drive is given by the former, while
helicity current drive may be contained in the latter. Although amenable to
numerical calculation, direct analytical comparison of the sizes of the two terms is
in general difficult. Therefore, a new approach was taken. We showed by solution
of the drift-kinetic equation that the standard resonant Landau damping/TTMP
quasilinear diffusion coefficient is the only contribution to the current drive to
leading order in e = p, /. All nonresonant contributions, including the helicity flux,
appear at higher order. Consequently, at wave frequencies @ << @, , a wave helicity
flux perpendiéular to the magnetic field does not influence the parallel motion of
electrons to leading order and therefore will not drive a significant steady current.
Any current associated with a wave helicfty flux is thus either ion current (and
therefore inefficient) or electron current stemming from effects not included in the

drift-kinetic treatment, such as cyclotron, collisional (@ ~.Vp), or nonlinear (i.e., not

quasilinear).

18
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APPENDIX: MOMENTS OF G(u, , x, t)
The use of the velocity-space coordinate 4 (instead of w) and the fact that the

velocity space coordinates (u, u) are defined relative to A (rather than ﬁo) may raise

questions concerning the validity of the analysis. In this Appendix, we show that,
because of the definition of G(u, b, x, t), there are no inconsistencies.

First we note that the density

0 = [Po v, x, B
= fdud,ud $Iu, 1, & x, 08w, 1, &, x, 1)
= Jaudp 3G, 1, %, Hgtu, p,x, 1) + O(e)
= fdud/.tG(u, M, X, 1) + O(éz), | | (A1)

where —o0 <4 < o0 and 0 < gt < %o, Then the equilibrium density 7,(x) can only be

given by

n(x) = _[dudyGo(u, wx), (A2)



which is consistent with Eq. (14). [It is interesting to note that because of the choice

of velocity-spaée coordinates, the Jacobian is always a function of (4, U1, x,t) and so

Go(u/ u, x) = J (u/ H, X, t)go(u; H, X, £).]

Furthermore, the parallel current is given by

(%, ® = qnix, HR(x, H-ulx, )
= gn(x, O [d% vftv, x, )
=q Jdav v”f(v, X, t)
=q fdudud CuJCu, u, &, x, )8, 1, &, x, )
=q fdudyu](u, 1 x, g, 1, x, £) + O(e?
= qfduduuG(u, w8 + O@d. . (A3)

Then the “equilibrium” current J 0(¥) is given by

Jp) = g<ni-u>,(x) = g fdud,uuGo(u, U, x), (A4)

which is again consistent with Eq. (14). This current is related to the net current

driven along the equilibrium magnetic field by

]”(0) = q<nﬁo-u>
= q<n(ﬁ—ﬁ)-u>

= ],p(x) - g<n- fdudqu(u, u,x,t)>, | (A5)

where fi =n - ﬁb and v = un + v + O(e). With the help of Egs. (16) and (17), Eq. (A5)

may be further reduced to

20
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7 = I;p(x)(l -1 ,12<b >By D) + Agenyny <& xb>B,2. (A6)

Then, to order 4, we find J //(0) = Jip(x). It may also be noted that the last term in Eq.
(A6) contributes no current when summed over species; it comes from the second-

order v, drift. Furthermore, it may be shown that the O(A?) terms in Eq. (A6)

contribute a current which is smaller than the Landau dampmg/ TTMP quas111near

~ current by a factor (an') 1, where 7, is the slowmg—down time of electrons on ions.
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