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ABSTRACT

The linear response of energetic particles to the TAE modes is calculated tak-
ing into account their finite orbit eﬁccursio‘n from the flux surfaces. The general
expression reproduces the previously derived theory for small banana width; when .
the banana width A, is much larger than the mode thickness A, we obtain a newv
compact expressioﬁ for the linear powér transfer. When A,,/A, < 1, the banana
orbit effect reduces the power transfer by a factor of A, / A, from that predicted
by the narrow orbit theory. A comparison is made of the contribution to the TAE
growth rate of energetic particles with a slowing-down distribution arising from an
isbtropic source, and a balanced-injected beam source whén the source speed is
close to the Alfven speed. For the same stored energy density, the contribution
from the principal resonances ([vul = v,) is substantially enhanced in fhe beam
case compared to the isotropic case, while the contributién at the higher sidebands

(foyl = v4/(2£ = 1) with € > 2) is substantially reduced.
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The confinement of alpha particles in an ignited plasma is of major concern to fusion
research. In particular a potential mechanism of particle loss can arise from the excitation
of toroidal Alfven eigenmodes (TAE) [1,2]. Recent high energy beam injection experiments
carried out on TFTR (3] and DIII-D [4] demonstrated that the TAE modes can indeed be
excited by energetic particles. Therefore it is highly desirable to have a proper theoretical
estimate of the TAE instability drive.

Existing theories have so far assumed that the excursion length A, of particle orbits from
the flux surfaces (the so-called “banana width”) is small compared to the TAE scale length,
which we denote by A,,. However this assumption is generally violated, as can be seen
from the following estimates. Roughly, we have the energetic particle diamagnetic frequency
Woq N mpv[Ty, L,, the mode frequency w ~ v4/2Rg, the banana width A, ~ gp, and the
mode scale length A,, ~ r} /msR. Here m is the poloidal mode number (the simplest
structure of a TAE mode in large aspect ratio tc;kamak consists of two poloidal components
m and m + 1); v is the typical particle speed; p is the corresponding gyroradius; r_, is the
mode location; L, is the energetic particle density gradient scale length; v, is the Alfven
speed; g is the safety factor; and s = rq’/q is the local magnetic shear. Hence we find that
with v & vy,

Ab 'SLOt (-U*a
o : (1)

m Tm @

From previous studies [5] we know that w,, 2 w is required for instability. If W wzl
form =1, L /r,, = 1, and s has a modest value, then Ay/A,, = 1 will be fulfilled for
higher m values. Therefore t§ interpret the experiments in which one obser\}es mocierately
high m ~rnodes, and to make a reasonable prediction about the behavior of alpha particles
. in a fusion plasma, the linear theory of TAE excitation has to be generalized to arbitrary
ratio of A,/A, .. We will show that when this ratio is larger than unity, the instability
drive from energetic particles is reduced by a scale factor of A,/ A, compared to what the

previous expression (Eq. (9) in Ref. [6]) would predict. This result follows from the finite
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orbit excursion that arises from the guiding center equations. We will indicate in the text a
heuris tic argument why the finite Larmor radius (FLR) effects are not essential to the result.
A calculation with the FLR effects is deferred to a future paper.

In addition, past theories have only analyzed the situation where energetic pa,rtlcles
form a slowing- down distribution from an isotropic source. With neutral beam injection,
the distribution is highly anisotropic near the injection speed and only isotropizes at lower
speeds. We will calculate the contributions to the TAE growth rate from energetic particles
for both isotropic and beam sources. In particular we show that for injection near the Alfven
speed, the contribution of the principal resonances with [vj| = vy (which occur at speeds in
a band that brackets v 4) is enhanced in the beam injection case compared to the isotropic
case, and that the contribution from reeonances at lower speeds, e.g., vyl = vy/3 is less in
'the beam case than in the isotropic case. From this observation it appears likely that, in |
recent experlments that claim to have observed the TAE modes for injection speeds slightly
below the Alfven speed a substantial contribution to the msta.blhty drlve comes from the
principal resonances.

The TAE growth rate is given by

-P, :
7—2—W£T=7a—’7d, R -(2)

where P, is the power transfer from the energetic particles to the wave, P, is the wave power
absorbed by the background plasma (which needs a separate self-consistent calculatlon [7-

9]), and WE’ denotes the wave energy. In this study we take Pd as given and only calculate
P, and WE.



We consider large aspect ratio tokamak with circular flux surfaces, for which the follow-

ing mode representation is appropriate:

§Ey =0; 6B = 0;
k
0, = _Bgﬁ: cos¥, ;s 6B, = ”cqu sinU_ . (3)
§E, = ——¢, sin¥,; 6B, = _heddn U
r w Or

where ¢, (r) is the perturbed scalar potential, ¥,, = nyp —méf—wt, and ky= R n—m/q(r)).
In Eq. (3) (and Egs. (8),(9),(12) and (14) below) a sum over poloidal mode numbers m and
~m + 1 is implied. Typically the relevant radial structure of a TAE mode in the vicinity of

an Alfven resonance radius r,, is of the form [7]

/ ' 2m [?T,jfvsg";‘; n) (4)

where o, = O(1), and A, ~ rZ/msR. (Though ®,, and «,, are functions of r, they are
slowly varying on the scale of A, so we treat them as real constants.) We shall also assume
that the mode width A, satisfies A, < r,. /ms.

The wave energy is given by

6B = w® 6B}
+
8w kfjvi 8

WE = /d(pd@drRr [ (5)

where the first term in the bracket is the field energy, and the second term is the kinetic
energy associated with the §E x B drift motion. For TAE modes we have w? kzv 4> so the

field energy and the kinetic energy are approximately equal. Using Egs. (3) and (4) we find

2 | &2 52
wE = Tl [q’"‘ + q)"‘“} : (6)

2l |8, T B
- with ®2 =(1 + a2,)®2,, and similarly for the m + 1 component.
Within the guiding center approximation the general expression for the particle-to-wave

power transfer, for waves with 6E'” = (, is given by

P, = /dcpd&a’rRr/de'v(—eavd-5E)f, (7)
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where v; = —v(sin 6 + cosf8) is the unperturbed guiding center drift velocity (v, =
(vi/2 + v})/QR, Q@ = e,B/mc), and f is the linear perturbation of the guiding center
distribution function. For simplicity we consider the limiting case w,, > w.

Since the majority of energetic particles in a large aspect ratio tokamak are passing
particles, we neglect the contr'ibutions from the trapped particles in the present study, and
consider all the passing particles to have nearly constant vy (this simplification is also releva.ﬁt
to the neutral beam injection). Since the magnetic moment is also conserved and B is
nearly constant, to a good approximation we can puﬁ Y| and v, constant separately. In
the limit when w,, >> w, the perturbed distribution function f in Eq. (7) can be calculated
by neglecting the perturbation in particle energy. With these simplifications, and using
the mode representation (3), we can write the linearized kinetic equation for the energetic
particles in the form (see Ref. [6]) | i

of Bf [ Of ;0 ek [m, o 8f 08, . 10f,
ot " vesinlgo+ 5o+ oag B(l‘ o ) |7 oSt = GE sy

where ¢ = v/R, and é = v/ Rq. The unperturbed distribution fo is an arbitrary function of
(v vL,7), where 7 = r — A, cos § (A, = Rqv,/v) is the maximum orbit excursion from a flux
surface). The particle orbit can be deseribed with good accuracy by setting ¥ = constant.
We can intuitively jﬁstifyv neglecting the FLR eﬂ"ect as follows. Imagine a gyrating particle
passing completely through a surface with a step-function potential change Agéexp(—iwt).
If'w = 0, the energy transfer to the particle is eA¢, independent of FLR,; if w < |v, -
n|/p, where n is the unit vector normal to the potential surface, the energy transfer is
e, A¢ exp(—iwt), insensitive to the gyrophase, when p K Ay, and 0¢/0r > me/r, a detalled
FLR theory (to be presented elsewhere) shows tha.t gyro-averaging produces an additional
“factor Jy(x) which multiplies the scalar potential ¢, where Jo is the Bessel function, and

X = wp[vysinf. Using w = v,/2¢R we have x = v,/(vq|A + A~!|sin8), where \ = vy /v



For vy /vy & 1 we have x < 1 except when sin 8 is small. To simplify our theory we therefore
treat J, = 1.

Changing the variable from r to 7, we can rewrite Eq. (8) as

of L .0f ;0f e (. Ry 1df,
5 T95, “’aa B(1 7 oF

: 09,,
[qum sin¥_ + 5 o v 1. (9)
Note that ¢,, is now a function of  through r = # 4 A, cos§, thus it can be expanded into

a Fourier series

G (T + Ay cos ) = Z Bpn g O £0. (10)

£=0

Using Eq. (4), the Fourier components ¢,, , can be evaluated explicitly, and one finds (the

£ = 0 component can be shown not to contribute in the final result)
@m . £
P = -—W(z +a,,)z" +cec., for £> 0, (11)

where z = —(z +1y) + [(z + 1y)? = 1]'/%, 2 = (F —r,,)/ Ay, y = A,/ A, and the branch of

the square root must be chosen so that |z| < 1. Substituting Eq. (10) into (9) we obtain

0f [ Of L 40F _ < (1 Rm\1df
at-{—cpa +080 55 (1—- o ) 75 ;(m+€ m,e SID(Y, — £0) (12)

where ¢ runs over all integers with the rule that ¢, _, = @, ,. Therefore the solution is

c 19/ . .
2Bw P aT‘O Z[lpmqu,l + \I’m+l¢m+1,l—1](m + e)

cos(\Ilm —£9) , B o — i 4 (m .
X [w S —y: + wsin(¥,, — £0)8( o+ ( +€)0)] .

f=

(13)

Notice that both m and m + 1 components have been included explicitly. We also have the

power transfer from a single particle
. 6¢
—euVy - 6E = —e v, [ sinfcos ¥ -+ qS cos@sinW_ (14)
The second term on the right-hand side is negligible compared to the first, which yields

~e, v, 0E = 2‘;3” [€8me+ (£ = 1)y eme] sin(T,,, — €6). (15)



- Upon substituting Egs. (13) and (15) into (7) we obtain the linear power transfer from the

energetic particles

_ ™ ce, _3 vﬁ 0f,
Fo = sz/d’"d”R—qz'é;—‘

()
XY (m+b(w =g+ (m + 0)8) (b + (= D]

We can recover the dominant part of the previously obtained result in Ref. [6] when we
assume A, > A;. In this case we expand ¢,,(r) in Eq (10) ina Ta.ylor series, and as only

_the first derivative is 1mportant we find
s o8 |
b (F+ Aycosb) = ¢, (F) + _dr-'—(r)Ab cos 8. (17)

(This result is also obtainable from Eqs. (10) and (11) by letting |z+iy| > 1in 2.) Therefore
in the sum of (10) only the first sideband, £ = 1, is present, whose amplitude is ¢, ; =
Ade,, /dr Using this expression in Eq. (16) we obtain

5 { [(m +1)8(w — ng + (m + 1)0) + (m — 1)5(.w - ng +‘( 1)6)] (djr )

dr

+

(m +2)6(w — ng + (m +2)8) + mé(w — n + mﬂ)] (ﬁﬂ—)z’ },
I | (18)
~which is the dominant part of Eq. (9) of Ref. [6] when mé,,/r < dé, /dr. It will be shown
below that, if we apply this result to the narrow mode case, we would over-estimate the .
power transfer by roughly a factor of A, /A,. |

~ We note that the resonance condition from Eq. (16) can be written in the form

o T A T2 | g, (2 | 1

where we have used w = v, /2Rq(r,,) for the mode frequency (g(r,,) ~ (2m+1)/2n =gq,,,),

~and 6 = ¢(F) —q(r,,). We also note from Eq. (19) that the speed of a resonant particle can
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be less than the Alfven spéed, because (a) £ takes on all integer values; and (b) even for the
principal resonances (£ = 0, 1), the spread of é¢q can decrease the resonance speed.

We now wish to evaluate the phase-space integral in Eq. (16) explicitly in the two
limiting cases A, > A, and Ay < A,,. The major contribution to the linear power transfer
comes from particles in the vicinity of the gap location, i.e., small §q. For resonances having
lvy| below the Alfven speed, we can assume that the distribution function is slowly varying
near the resonant velocity, and thus neglect §q in the resonance conditions. (When maximum
particle speed v, > vy, this occurs for all values of ¢; it also occurs for £ # 0,1 in the case
Vo < V4. The case of vy ~ v, and £ = 0,1 when such an approximation cannot be made will
be discussed later.) With this approximation we find that the 7 integral only involves the
Fourier amplitudes and can be calculated first, and the result for both limits can be written

conipactly as

m3ce, ) 3, vA df,
Fo = Bwqmn C /d 2E|3 oF Al

p_

Ay
A

m

(m+ £)8(vy — v/ (1 —26)), (20)

where p = 1,2 for A, > A, and A, << A, respectively. For A, > A_, we have taken
y — 0. This enables us to transform the 7 integral into an = integral which is independent
of the magnitude of the velocity, except for a factor A, as exhibited in Eq. (20). After

considerable algebra Cgl) is found to simplify to

166292 16(£—1)292,, 2 A,

(1) _ z - - -
CZ - 7r2[4€2 _ l] + 7r2[4(e _ 1)2 _ 1] - lAbI(l 6[,0)(1 6!,1)(am am+1)®m@m+1' (21)

For the opposite limit we used Eq. (18) for the power transfer. A straightforward calculation

yields

A

c = ;"—‘(«%1 +6,.0) +

A (Dm+1
27

6
A (64,2 + 84,0)- (22)

We choose f; to be of the form of a slowing-down distribution

30,8700 =v) )\ Axwy), (23)

fo= 16m2M 08 v3+ v}



where ©(v) is the step function, and

1 — A)/AN] + exp[—(1 + A)/A)]

g(n, an) = S

A1 — exp(—=2/AN)] ’ (24)
o A 14+ v3/v? _ S |

The phyéical meanihg of the constants A),, A, and v; is discussed in Ref. [10]. For an
isotropic source such as alpha particles in an ignited plasma, we have Ax\0 > 1,509 =1;
for a source from balanced-injected neutral beams we have A), << 1, hence AX < 1 for
v & v, and becomes larger as v decreases. At v < vy we have AA > 1 and g — 1, indicating
that the beam particles isotropize at speeds below v;. The distribution function (23) is
normalized so that 3, = (87 M, /3B?) [ d®vv? fy+ O(v3/v3) is the mean beta of the energetic
particles.

Consider first the i-sotfopic case where g = 1. For v; <« v, we can ignore v; in the

distribution function and obtain, for Ay > Am,
ctv m + Z
p=-Top i Z CO T - e &), (26)

where £, = v, /vg|l — 2£|. For the opposite limit A, << A,, we have

Po=-L85 Abozon Toal-t)+6+18 438000 ~¢), (20

where Ay = ¢,,,00/ Q. VWe note from these expressions that the contribution from principal
.resonances £ =0,1 (ie, |vy| = v,) vanishes continuoﬁsly as vy approaches v,, so higher
sideband contributions may actually become dqrrﬁnant.

For the beam case, the v integral is easily éa.rried out using the delta function, bﬁt
the A integral is more complicated; To be concrete we model the beam distribution as

two separate components: a Wea,kly scattered part with v > v, for which we have A\ =



AXg + (A/3)[(vr/v)® = (v1/ve)%] < 1, and a fully isotropized part with v < vy, for which

AX > 1. The weakly scattered part contributes mainly to the principal resonances, yielding

372 (v \PT (AL 1 —v,/vy Q) (r)
Py=——PFar> (z) (‘A—m-) [1 — exp <—W)] (mCg” +(m+1)C1”)O(vo—v,).
(28)

When |v, /v, —1| < 1, the factor in the square bracket gives a larger contribution compared

to the isotropic case, since

The contribution of other resonances is mainly from the isotropized component, and is some-

{1, | if AM(v,) < |1 —v,/v,| < 1;
(1 —va/v0)/AA(vy), if |1 —vy/ve] K AN(vy) < 1.

what difficult to calculate analytically. But qualitatively the scaling can be obtained using
the same methods as for the case of an isotropic source, and the result is (apart from a

numerical factor)

. 2 p+1 p~1 (») 2p-1
S (Vs Ay '(m +£)Cy” [vf|l - 24|
re-ns (%) (5) ST 9

m Vs
where the sum now excludes the principal resonances, i.e., £ # 0, 1.
In the case when v, is very close to v,, the principal resonances £ = 0,1 would have an
abrupt cut-off, unless we take into account the d¢ spread in the resonance conditions. For the

case A, > A, our calculation shows that for the isotropic case, assuming |vy/v, — 1| < 1,

vo/va — 1, if vo/vy — 1 > n (same as 6q = 0);
P, (isotropic) o< ¢ 2[n +vp/vy — 1], if Jvo/vs — 1] < n; (31)
~ 0, if vo/v, — 1< —n;

where 7 = 2ms(Ayo/Ty,)(1 + O(1/m)). In the last line of Eq. (31), ~ 0 means substantially
less than |v,/ v 4 — 1.|. For a beam injected‘distribution we find
1 —exp[—(vg/vs — 1)/ AN], if vg/vy — 1 > 7 (same as §g = 0);
P, (beam) o { 1= exp[~3(n+ /vy~ 1)/AN], i [opfvs — 1] <

~ 0, ifvgfvy, —1< —n.

10



The constants of proportionality can be obtained by comparing the top terms in Egs. (31)
and (32) with the principal resdnqnce contributions from Eqs. (26) and (28). Qualitatively
a similar behavior occurs in the A, /A, >> 1 limit with 5 replaced by 2msA, /r, .

We remark that there is an additional confribution frorﬁ particles that resonate at a
larger distance from fhe mode location than‘ the banana width. This contribution is of higher
order than our estimates, and can be estimated from the previously obtained formula [6] since
the mode structure is now smooth along the particle orbit. We also note that the sum over
£ should be terminated when [v)|/vy = v, /|20 —1|v, < (r,, /R)l/ ? because energetic particles |
become trapped. |

In conclusion, we have presented a relatively simple method to predict the linear power
transfer, taking into account finite banana orbit size from energetic particles that can resoné.te
with the TAE modes. We have applied our formulas to a sl&wing down distribution generated
either by parallel inj ected neutral beams, or b& an isotropic source such as internally prpduced
alpha particles. There is a significant difference in the response, Wifh the Beam distribution
giving larger contributions near the injection energy than what would bé obtained from an

isotropic source.
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