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In this dissertation, two magnetohydrodynamic (MHD) instabilities
are studied. A simple sufficient condition is given for the linear ideal instability
of plane parallel equilibria with antisymmetric shear flow and symmetric or
antisymmetric magnetic field. Application of this condition demonstrates the
destablizing effect of the magnetic field on shear flow driven Kelvin-Helmholz
instabilities. For the resistive tearing instability the effect of equilibrium shear
flow is systematically studied, using the boundary layer approach. Both the
constant-1 tearing mode and the nonconstant-i tearing mode are analyzed in
the presence of flow. It is found that the shear flow has a significant influence on
both the external ideal region and the internal resistive region. In the external

ideal region, the shear flow can dramatically change the value of the matching
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quantity A’. In the internal resistive region, the tearing mode scalings are
sensitive to the flow shear at the magnetic null plane. When the flow shear is
larger than the magnetic field shear at the magnetic null plane, both tearing
modes are stabilized. Also, the transition to ideal instability has been traced.
Furthermore, the influence of small viscosity on the constant 1 tearing mode
in the presence of shear flow is considered. It is found that the influence of
viscosity depends upon the parameter %‘:’:L(Od%, where V;(0) and B{(0) denote
the flow shear and magnetic field shear at the magnetic null plane, respectively.
Viscosity basically tends to suppress the tearing mode. Finally, the nonlinear
interaction of two near marginal tearing modes in the presence of shear flow s

studied. To find the time asymptotic states, the resistive MHD equations are

reduced to four amplitude equations, using center manifold reduction. These

amplitude equations are subject to the constraint of translational symmetry of

the physical problem. Bifurcation analysis is employed to find various possible

time asymptotic states.
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Chapter 1

Introduction

1.1 Overview

Plasma is a kind of matter in which charged particles (ions and un-
bound electrons) are sufficiently numerous to influence the behavior appreciably
(Van Kampen and Felderhof, 1967). Plasma is often referred to as the "fourth
state of matter”. Although our earth consists mainly of the other three states,
solid, liquid and gas, this cannot be sa,id‘about most of the stars and inter-
stellar matter. It is often said that ninety-nine percent of the matter in the
universe is-in the plasma state (Chen, F. 1984). Both planetary atmosphere
énd the gas-in the vicinity of stars are ionized due to radiation , while in the -
interior of stars the ionization is caused by enormously high temperature. The
full scope of :possible applications of-plasmas on earth is still unknown, but-
one of the most important possibilities is the application of plasma physics in
understanding thermonuclear fusion, which requires a very high temperature
(of order 10® degrees ), a temperature at which all matter is ionized. It is the
stimulus of trying to achieve controlled thermonuclear fusion which started the

rapid development of plasma physics. .

Plasmas are very good conductors due to the freely moving charged
particles. As a consequence strong electric currents can occur, and the in-
teraction of the magnetic field in plasmas is important. On the other hand,

freely moving charged particles gives rise to screening of electric fields, and

1



the effective length for the electric interaction is reduced to the Debye length
Ap = y/T'/4nne®. Thus on the scale L > \p, the plasmas can be consid-
ered as quasineutral and electric interactions are negligible. However, for rapid

phenomena, electrostatic interaction is important and give rise to, e.g. high fre-

4drne?
me °

quency oscillation of electrons at the so-called plasma frequency wye =
When n)} > 1, where n)} is the number of particles in a volume
with linear dimension A4, the thermal energy exceeds the electrostatic inter-

action energy. This is generally taken as the working definition of a plasma.

For high density plasmas, when m},ﬁ > 1/n'/3 is satisfied, i.e. the deBroglie
length is larger than the average distance between nearest electrons, the elec-
trons must be described by quantum mechanics. In such quantum degen-
erate plasmas, the Fermi energy Er is greater than the thermal energy, i.e.
Ep ~ h*(37%n)%/®/2m, > T. Plasmas existing in nature can be characterized
by a temperature vs. density diagram such as that shown in Fig(1.1) (from
Galeev and Sudan, 1989). We can see that the majority of plasmas fall into

the region of the ideal classical plasma, which is also the case of interest of this

dissertation. -

The charged particles in a plasma interact not only with external
electromagnetic fields, but also the fields created by the plasma particles. In
order to completely describe the particle created fields, it would be necessary
to know the position and velocity of every particle at all times. This is an
impossible task for a plasma with a huge number of particles (usually particle
densities are 10° ~ 102cm™3). However in order to describe the collective
nature of plasma phenomena, a suitable way to treat a collection of many

charged particles in the self-consistent electromagnetic field is presented by
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Figure 1.1: Classification of plasma types. WD: the degenerate electron gas in
white dwarfs; GD: the gas discharge plasma; I: the ionospheric plasma; MHD:
the plasma- in magnetohydrodynamic generators; MP: the plasma in pulsar
magnetosphere; S: the plasma in the center of the sun; SW: the solar wind
plasma; SC: the solar coronal plasma; TNP-L: the plasma under the condition
of laser thermonuclear fusion; TNP-M: the plasma in thermonuclear magnetic
traps; EGM: the electron gas in metals.



a kinetic theory. Taking moments in velocity of this kinetic theory leads to
continuum equations in three dimensional space and time, but these equations
are not closed. In the collision dominated limit, with low frequency and long
wave length asymptotic ordering, the moment equations are reduced to a set of

single fluid magnetohydrodynamic (MHD) equations (see e.g. Freidberg, 1982)

p(%‘ti +V.VV)==VP+]x B+ pvV?V (1.1)
QE+V-(V‘)—O (1.2)
bt pYI= '
8 P
—_ /. —_—) = .
(G + 7 V)5 =0 (1.3)

dB 2
W——VXE (1.4)
E+VxB=nqj (1.5)
T=tvxB (1.6)
I = '
vV.-B=0, (1.7)

where p is the mass density, V the fluid velocity, B the magnetic field, E
the electric field, P the scalar kinetic pressure, ; the current density, 7 the
resistivity, and v the kinematic viscosity. Equation (1.3) is the equation of
state for each separate fluid element following the motion. It is valid only
when heat flow is negligible. Note pﬂ., 1s related to the entropy per unit mass of
a fluid element. For adiabatic process v is 5/3, while for isothermal process v
is 1. The units used in the above equations are the CGS system with the speed
light ¢ set to unity.



Even though many assumptions are made in deriving the MHD equa-
tions, empirically it is found that many plasma phenomena observed in exper-
iments can be explained by the MHD model, especially the macroscopic prop-
erties of equilibrium and stability. In this dissertation the single fluid MHD
model is used to study two macroscopic instabilities: the Kelvin-Helmholz and

the resistive tearing instabilities. Both instabilities are long wavelength-modes.

1.2 Model Equations

For the sake of making the calculations easy and exhibiting just the
essential physics for the problems to be considered, the following simplifications

are made:

(i) We assume that the plasma is incompressible and that the mass

density p is constant. Hence in dimensionless form Eqs.(1.1)-(1.7) become

W 47 V7 = VP + (V% B) x B+ SPVHV
%"f—; ~SFIV % (V x B) + V x (7 x B) (1.8)
V-V=0
V-B=0.

The following scalings have been used in deriving the above equations

h - - ~ - - a =
7 afl, t = 7at, B—-BB, V — —V, P~ p(%)zP,

where a is a typical macroscopic length, such as the flow shear length or the

width of a current sheet. B is the measure of the magnetic field, 74 is the |
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Alfvén time 74 = f —, SrR = is the magnetic Reynolds number, and

Sy = % i1s the Prandt! number.

(ii) Simple slab geometry is adopted throughout this dissertation. For
the two instabilities considered, the essential physics is the same for different
geometries. Further, assuming that the problem is independent of the z coordi-
nate, the magnetic field and flow velocity can be represented by scalar stream
functions: B = # x Vx/;(z,y) +B,5,V=3%x ch(:c,y), where B, is a constant

magnetic field in the z direction. Thus Eqgs.(1.8) can be rewritten as

o0

vy =4+ V. V=B -Vj+S5;'V2Q+3.Vx F (1.9)
%f+v Vi = Splj — B, (1.10)

where () and j are respectively the vorticity and the current in the z direc-
tion, i.e. Q = (83:2 + % 3y 2V and j = V2 = (63;2 + 2 )zZv F and
E. are the external force and the electrical field respectively, Wthh are ap-
plied to compensate for the natural diffusion in the equilibrum state. For an
equilibrium state as shown-in Fig(1.2), the equilibrium magnetic field By(y)
and the equilibrium velocity field V5(y) are directed along the x axis. Let
b = 9o(y) +%(2,,1), ¢ = bo(y) + é(z,,t), where v;(y) = ~Bo, ¢ = —Vb,
and the subscript 0 denote equilibrium. Thus Eqs.(1.9) and (1.10) become

gf (v%¢> =L (z) +N(&¥), (1.11)

where

Lo (BT WWE BV - B )
Bo(y)az S§1Vi - %3_81. ’
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Figure 1.2: Slab geometry showing the equilibrium magnetic field Bo(y) and
the flow velocity Vo(y) along the x direction.

and
N(g,B) =2 (W ETde V"l) :

Here prime denotes differentiation with respect to y, 0 =Vig, 1 =Vig. In

later chapters, Eq.(1.11) will be our starting point. .

1.3 Organization of this Dissertation

In Chaper 2, we consider the effect of the magnetic field on the Kelvin-
Helmholtz instabilities. Kelvin-Helmholtz instability is driven by free energy
contained in the shear flow. The presence of the magnetic field has a dual role
for the stability of shear flow. It exerts a tension on the fluid which usually acts
as a restoring force on a disturbance, but on the other hand, the magnetic field
breaks the constraint of local consérvation of vorticity and therefore makes the

shear flow energy accessible. The actual influence of the magnetic field depends



on the specific profiles of both the magnetic field and flow. We have studied the
special case where the flow profile is antisymmetric and magnetic field profile
has parity; i.e. it is either symmetric or antisymmetric. A simple sufficient

condition is given to demonstrate the destablizing effect of the magnetic field.

In Chapter 3, the influence of equilibrium shear flow on the resistive
tearing instability is studied. The essential feature of resistive tearing insta-
bility is that resistivity allows a change of the magnetic field topology, and
in special configurations with a place where one component of the magnetic
field vanishes, there exists an instability with a time scale that is hybrid of the
magnetohydrodynamic and resistive time scales. The presence of shear flow en-
hances the inertial terms. Systematic calculations show that shear flow is not
only important in the resistive tearing layer, but is also important in the ideal
region. Depending on the specific profiles, shear flow can either completely

stabilize the tearing instability or destabilize it.

In addition to the influence of equilibrium shear flow, viscosity can
also be included in the resistive tearing instability. This is the subject of Chap.
4. Since the tearing instability produces vorticity, and shear flow can enhance
this production, the diffusive nature of viscosity should have a significant influ-
ence, one that depends on the equilibrium shear flow. It is found that generally

viscosity tends to suppress the tearing mode.

Chapter 5 is devoted to the study of nonlinear interactions of two
near marginal tearing modes with the presence of shear flow. To find the time
asymptotic states of the nonlinear evolution, the MHD equations are reduced
to amplitude equations for the two modes. The method of center manifold

reduction is used. The amplitude equations are subject to the constraint of



translational symmetry. Bifurcation analysis is employed to unfold the new
branches of time asymptotic states. Various type of solutions have been found,

and their corresponding parameter ranges are discussed.



Chapter 2

Ideal Instability of Shear Flow with a Magnetic Field

2.1 Introduction

Shear flow is a very common phenomenon. It appears in such diverse
. areas as In astrophysical jets (Begelman and Blandford, 1984), the magneto-
sphere (Burch, 1983), and rotating plasmas. Recently, experiments (Groebner
et al., 1989) in the DIII-D tokamak discovered that there is a substantial in-
crease in the perpendicular component of the plasma flow velocity associated
with the L (low) to H (high) confinement mode transition. Since shear flow
contains a source of free energy, it can give rise to the Kelvin-Helmholtz (K-H)

instability (Chandraseker, 1961, Drazin and Howard, 1966).

In order to focus on the shear flow driven K-H instability, we neglect
dissipation in Eqgs.(1.11). This is justified since usually the dissipation diffusion
time scale is much longer than the K-H time scale. We assume that the flow is
confined between rigid walls located at y = [; and y = [, and all the perturbed
field components have the form f(k,c,y)expik(z — ct). The normal mode
equations, ie. the linear part of Egs.(1.11), for the transverse displacement

w = ¢/(Vo —c) are
(Vo= ¢)* = BRYu!Y — B¥((Vo — ) ~ Blw =0 , (21)

where Vo(y) and By(y) are the (dimensionless) equilibrium velocity and mag-

netic field, respectively (One can interpret By(y) as the local Alfvén velocity).
10
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Since the transverse displacement vanishes at the rigid walls, Eq. (2.1) has
the boundary conditions w(l;) = w(lz) = 0. Equation (2.1) together with the

boundary conditions gives the dispersion relation ¢ = ¢(k?).

Note that for real c the eigenequation (2.1) is singular at places where
Vo(y) + Bo(y) = ¢. The singularity admits solutions with discontinuous deriva-
tives and continuous spectra in addition to well-behaved solutions with a dis-
crete spectrum. All these solutions are necessary to form a complete set, capa-
ble of representing an arbitray initial perturbation. Some care must be taken
in the-normal mode method because of the continuous spectrum, whose eigen-

functions usually exhibit singular behavior at the singular points. However

well behaved solutions can be obtained by integrating the continuous singular ...

modes over the entire spectrum (Barston, 1964). In this way it is possible to ob-
tain the asymptotic behavior of non-collective oscillating modes of continuous
spectrum, which results in a (dissipationless) damping proportional to the in-

verse power of time.” Also, the connection between the continuous spectrum for

spatially non-uniform plasma and the initial value problem (collective mode).

has bé-investigated (Drazin and Howard, 1966). It was found that the continu-
ous spectrum manifests itself in unstable plasma by yielding non-exponentially
growing modes (Kent, 1968), while for stable plasma, the continuous spec-
trum leads to the damping of propagating waves through phase mixing (Case,
1960, Sedlacek, 19;71, Tataronis and Grossmann, 1973, Grossman and Tataro-
nis, 1973, Ionson, 1978). ' |

Though the continuous spectrum is also important, we consider here
only the exponentially growing modes, and the normal mode equation (2.1)

is used in the following discussions. When ¢ is complex for a certain range
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of wavenumbers k, the shear flow is unstable. Since Eq. (2.1) is regular for

complex ¢, c(k?) in this case is an analytic function.

2.1.1 Review of Shear Flow Driven Kelvin-Helmhotz Instability

First we give a brief review of Kelvin-Helmhotz instability without
the magnetic field. setting By = 0, Eq.(2.1) becomes

(Vo = o)) = 7»2((% —o))w=0. (2.2)
Multiplying Eq.(2.2) by w* (complex conjugate of w) and integrating yields

l !
S Vo= ([ + & )y = o,

I

The imaginary part of the above equation is
Iy 112 2 2
o [T —e)(w| + # )y =0,
1

which implies that ¢, must lie between the maximum and minimum of V4(y).

Howard (1961) has shown that the growth rate is bounded by k¢; < tmaz ‘VOII,
k(maz 1A )
however, recently Gu (1990) improved this result, and obtained k¢; < \/—‘TI%L.
Rewriting Eq.(2.2) in terms of ¢ = w(Vp — ¢), we have

VI/

¢’ _k2¢_(%—c)

é=0, (2.3)

with the boundary conditions ¢({;) = ¢(I;) = 0. Again multiplying Eq.(2.3)
by the complex conjugate of ¢ and integrating yields

/ (8 + ¥ loP)dy = - e T 1ol dy. (2.4)
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The imaginary part of Eq.(2.4) gives
eV ‘
| 20:/ |Vo—i}¢| dy = 0.
Obviously a necessary condition for K-H instability to occur (¢; # 0) is that
V, must changes sign somewhere in the domain /; and /. This is called
the Rayleigh inflection point condition. Corresponding to the inflexion point
Vy (ys) = 0 is an extremum of the flow vorticity V,(y). The physical role of
the inflection point condition is explained by the conservation of vorticity (Lin,
1945): in order to release-the free energy contained in the shear flow there needs
to be a vorticity-extremum, since only then. does the restoringvforce against a
perturbation vanishes. In 1950 Fjortoft derived a stronger necessary condition:

_for instability. Combining the real and imaginary part of Eq.(2.4) yields

/1112 (Voly ?VO Vol i%) 16 d 'K(

|2)dy < 0.

2_‘}_}‘72

Thus instability. requlreS~».(%(y) - Voly:))Vy < 0 somewhere ‘in the domain.
(4, 12). In the case where V,(y) is monotonic and V" vanishes only once, the
necessary condition becomes (Vo(y) — Vo(,))Vs < 0 throughout the flow with
equality only at y = y,. This means that instability requires the vorticity to

have an extremum point.

The conditions discussed above are not sufficient to judge the insta-
e C o ‘ v,
bility of flows. Friedrichs (1942) has proven that when K(y) = "T/S'(Z)Q:%)G,—)
72/(l; — l,)?, there exists a neutrally stable eigensolution with ¢ = Vy(y,).
Later on Lin (1955) derived a theorem which states that near a marginally
stable wavelength k., the K-H mode becomes unstable when the wavenumber

decreases. Using this theorem, Rosenbluth and Simon (1963) derived a nec-

essary and sufficient condition for the stability of monotonic shear flow, by
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looking at the mode k=0. When k=0, Eq.(22) together with the boundary

conditions give
12 dy
F(c) = —_—=0.
@)= g ="

Then the Nyquist diagram method (see the Appendix) is used to derive a
condition for unstable solutions, i.e. solutions with ¢; # 0. It is found that for
monotonic profiles with only one inflection point in the domain [; < y < I3, the

shear flow is stable iff

P Iz dy _ 1 ]12 /12 VH'
I (% - C)z VO’(Ca - VO) h 15 Volz(% - cs)dy > 0’

where ¢, = Vo(ys), and y, corresponds to the inflection point, i.e. Vj (y,) = 0.
For profiles with more than one inflection point and with their vorticity gradient

expressible as
Vo (y) = —=K(y)(Vo — c,),

where K (y) is continuous, or piecewise continuous and non-negative, and c; is
some number, Howard (1964) has shown that the number of unstable modes

cannot exceed the number of inflection points.

2.1.2 Previous Related Works

As noted above, the presence of the magnetic field plays a dual role
for the instability of shear flow. The magnetic field exerts a tension on the
fluid which usually acts as a restoring force on a disturbance. So it is easy to .
imagine that the flow is completely stabilized if the magnetic energy overpowers
the kinetic energy everywhere (Kent,1968); i.e. B2 > V2 in the whole region,
where B, can be thought of as the local Alfvén speed. This condition need

only hold in some reference frame for stability to be established. It was also
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shown by using the semicircle theorem (Chandra, 1973) that the flow is stable
if |Bolmin > (Vinax — Vinin)/2. Chiueh et al(1986) and Tajima et al (1990) have
discussed the stabilizing effect of magnetic shear. On the other hand, sometimes
the magnetic field can destabilize the shear flow, since it breaks the constraint
of local conservations of vorticity and thus makes the shear flow free energy

accessible. In this case the existence of an inflection point is not necessary

for instability. Kent (1966) has shown that a stable symmetric low can be-

driven unstable by a symmetric magnetic field if, on the boundary By, = 0

and ‘V'V" — B’B” > 0, where prime denotes differentiation with respect to-y..

Stern-(1963) has also discussed the destabilizing effect of a piecewise continuous

magnetic field on:plane Couette flow. The actual influence of the magnetic field

depends on the specific profiles of both the flow and the magnetic field. Kent
(1968) has shown that a constant magnetic field stabilize some, while destabilize

other:monotonic flow profiles.

In the next section, we present a sufficient condition for instability,

by assuming that the flow is. antisymmetric and  that the magnetic field has.

parity; i.e: it is either symmetric or antisymmetric (Chen and Morrison, 1991).
A technique (Morrison, 1979) which is based on the use of symmetries and the
Nyquist method is used to obtain a simple formula. Though the symmetries
we assume may limit application to some practical problems, results obtained
from these special profiles provide insight into the physics and will be helpful
in more realistic situations. In many circumstances, the shear flow can be
approximated by antisymmetric profiles. An antisymmetric hyperbolic tangent

profile has been used to model the edge flow in tokamaks (Chiueh et al, 1986).

P ——
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2.2 A Sufficient Condition for Instability

Here we consider an extreme case with wavenumber k& = 0. If there
exists an eigenvalue where Im(c) = ¢; # 0 for £ = 0, then this is sufficient to
say that the system is unstable. Strictly speaking, the growth rate kc; is zero
when k = 0, but analyticity of c(k?) ensures a finite growth rate near k£ = 0.
This argument has previously been used by Rosenbluth and Simon (1960) and
Kent(1968).

Setting —; =l = [ and k£ = 0 in Eq. (2.1), integrating, and applying

the boundary conditions leads to

] dy
Fle)e /_ N Ll (2.5)

Without solving the above integral equation for the eigenvalue c, we can use the

Nyquist diagram method in a manner similar to the Penrose criterion ( Penrose,
1960, Krall et al, 1973) to determine whether or not there exist unstable modes
(see Appendix). The number of roots of an analytic function like F in the
upper half-plane (Im(c) > 0) is given by the number of times a polar plot of
F' encircles the origin as ¢ traces out the curve as shown in Fig. 2.1. Path 3-1
has a distance ¢ from the real axis so that the singularity on the real axis is
avoided. Thus F(c) is an analytic function. However, in order not to miss any
possible unstable modes, we take the limit ¢ — 0.

Along the path 1-2-3, ¢ = Re” and in the limit B — oo, F(c) ~
2le=%# |R?. The corresponding plot of F is shown in Fig. 2.2. Since we as-
sume that the shear flow is antisymmetric and that the magnetic field is'either

symmetric or antisymmetric, we have along path 3-1 in Fig. 2.1.

F(c, +i€) = F¥(—¢, + i€) ,
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Figure 2.1: Nyquist diagram in the C-plane

AMmF
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L .
2\ L Re F

Figure 2.2: Nyquist diagram in F-plane
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where “¥” means complex conjugate. Thus we have the following conclusions:

(1) Im F(0+1¢) =0,

(i1) ¥ Im F(er +€) =0, (¢, #0), then
Im F(—c, +1€) =0, and
Re F(c, +i€) = Re F(—¢, + t¢).

To determine the winding number (the number of times F(c) encircles the
origin), we can just count the points of crossing of the real axis. Denote crossing

points by n; associated with such points are two quantities:
{ 1, crossing of real axis with up direction
On =

1, crossing of real axis with down direction

and
1, ReF,>0
Ty = 0, ReF,=0
-1, ReF,<0.

Since the Nyquist diagram must be closed as ¢ traces the path of Fig. 2.1, this

implies the following conclusions:

(i) The total number of crossing points is even and ¥, o, = 0;

(ii) For crossing points ¢ and j with r; = r; and o; + o; = 0, there is cancel-

lation and thus no contribution to the winding number.

As an example note that the Nyquist diagrams of Fig. 2.3 and Fig. 2.4
produce the same winding number (Here the double arrows designate two cross-
ings). In both cases, the winding number is unity, and there exists one unstable
mode. For the present problem, if Re F'(0 + i¢) > 0, then the total number of

crossing points with positive and negative Re F are both odd numbers, and we
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| o
Vo | ¥ Re F

Figure 2.3: Nyquist diagram with 8 crossings. Double arrows indicate two
crossings.

Alm F

——
‘ I Re F

Figure 2.4: A Nyquist diagra.in equivalent to that of Fig.2.3.
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Figure 2.5: A Nyquist diagram having crossingspoints with Re F=0, and with
the net crossings on both sides of the real axis pointing in the same direction.
always have net crossing on each side of the real axis of F(c). Now we consider

respectively two possible cases.

Case [ In this case we suppose there are no crossing points with
Re F = 0. Thus the net crossing with Re F' > 0 and Re F < 0 must point in
opposite directions. Hence, the Nyquist diagram encircles the origin at least

once, and there exsits at least one unstable mode.

Case II: In this case there exist crossing points with Re F(+c, +i¢) =
0, which implies that there exist marginal modes with ¢ = +¢,. When this
occurs we can prove that the Nyquist diagram always indicates a none zero
winding number. In other words, it is impossible to have a Nyquist diagram
with the net crossing for Re ' > 0 and the net crossing for Re F' < 0 pointing
in the same direction. For the moment suppose this is the case. The Nyquist

diagram will be as shown in Fig. 2.5 and there exists no unstable mode. Now
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tImF

I S
2

Re F

Figure 2.6: The Nyquist diagram of Fig.2.5 with finite but small values of e,
instead of ¢ = 0.

we change the ¢ contour a little bit, so that € is very small but with finite
value; instead.of proceeding to the limit ¢ — 0. Since there exists no unstable
mode, there are-no-crossing points with Re F' = 0 along the-new contour.
Furthermore, we still have Re F(0 + i¢) > 0, since ¢ is very small.. Using fhe
argument of Case I, there exists an. unstable mode as the example shown in
Fig. 2.6 indicates. This contradicts our original assumption and thus-the proof

1s established.

From the above discussion, a sufficient condition for instability with
antisymmetric shear flow and antisymmetric or symmetric magnetic fields is
given by

. { dy .
F(0+ze)=[-1 T > (2.6)

where the limit ¢ — 0 from above is assumed. For the case of antisymmetric

shear flow with only one inflection point, the inflection point should be at y=0.
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When By = 0, our sufficient condition Eq. (2.6) reduces to that obtained by
"‘Rosenbluth and Simon (1963), and this condition becomes both sufficient and

necessary for instability because of Lin’s theorem (Lin, 1955).

2.3 Applications of the Sufficient Condition

In this section we apply the simple sufficient condition just derived to
two examples which demonstrate the effect of the magnetic field on the stability

of shear flow.

2.3.1 Plane Couette Flow

For a plane Couette flow profile V(y) = by, there is no vorticity
extremum and thus this flow is K-H stable (Case, 1960). Stern (1963) has
shown that the Couette flow can be destabilized by a piecewise continuous
magnetic field. Here we add a symmetric magnetic field Bo(y) = ay? to the

Couette flow equilibrium. The destabilizing effect of this symmetric magnetic

gives

F(0+1e) =

field 1s easily demonstrated from our simple sufficient condition. Equation (2.6)
(24 220, ’1 + Bo(1)/Va(D)

. 2.7
% \ 72 W) B [T= B/ Vel ) 27)
When the magnetic field at the boundaries is sufficiently strong; i.e. Bo(l)/Vo({) >
f, where f ~ 0.834 is the value at which F(0+:¢) = 0, F'(0+1%€) > 0 and there

is instability.
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2.3.2 Hyperbolic Tangent Shear Flow

For the second example, we consider a hyperbolic tangent shear flow
profile Vo(y) = Vptanh(y/d;). In the case without magnetic field, Eq. (2.6)
is both sufficient and necessary for instability; it indicates that the hyperbolic
tangent shear flow is unstable if and only if I/d; > 2.39. Now we add magnetic
shear, assuming By(y) = Boy/d,. When the magnetic shear is strong enough
so that By/dy > Vu/d,, the shear flow will be stable since the magnetic energy
overpowers the kinetic energy everywhere; i.e. Bg(y)? > Vo(y)? for all y. We
want’ to- know what happens -if the magnetic shear is not- this strong.. For
simplicity in evaluating the integral in Eq. (2.6), we approximate the hyperbolic

tangent profile by a piecewise continuous one.

Vo y > dy
Voly) = Voy/dr  ly| < dy
-V y < —dy .

With these assumed forms of Vy and By, Eq. (2.6) yields

: 1 (V'+ B'l/dy)(V' = B") 2 ,
F(0+ie)=1/d, <V’B’ log VB[V —Blj4  VE_E%) (2:8)

where V"= Vy/d;, B' = By/d,, and V' > B', | > d; are assumed. In order
to stabilize the unstable shear flow, it is necessary to-have F'(0 + ie) < 0.
When B’ > B, where B’ satisfies ﬁV’ > B> %lV’ , the necessary condition
is satisfied. However it is interesting to notice that when B’ ~ %lV’; ie.
Bo(l) ~ Vo(l), F(0 + ie) is always positive. A stable flow (I/d; < 2.39) can be
driven unstable by the magnetic shear in this range. Thus magnetic shear does

not always stabilize the K-H instability.



24

2.4 Summary and Conclusions

A simple sufficient condition was given for the linear ideal instability
of plane parallel equilibria with antisymmetric shear flow and symmetric or an-
tisymmetric magnetic field. We concluded from the application of this condition
that the magnetic field in the midplane tends to stabilize the shear flow, while
the magnetic field at the boundaries tends to destabilize the shear flow, espe-
cially when By(l) ~ V5(l). In the plane Coutte flow example By(0)/V5(0) = 0,
and this flow was destabilized by the magnetic field at the boundaries. In the
hyperbolic tangent flow example, the magnetic shear destabilizes the flow when
B’ ~ &V’ ie. By(l) ~ Vo(l). However, a large magnetic shear stabilizes the
flow. In this case, the stabilizing effect of the magnetic field in the midplane

overp‘owers the destabilizing effect of the magnetic field at the boundaries.

2.5 Appendix - Nyquist Method

The Nyquist method is a way to determine wether or not an analytic
function has roots (Krall and Trivelpiece, 1973, Penrose, 1960). We consider
a general function of a complex variable f(z) that is analytic within and on
a contour I' except for a finite number of poles within I'. At a zero z;, the

function can be expanded in a Taylor series

f(z) =ci(z —z)™ + coz — 2z;)™ 4 + -+,

where ¢; # 0,m; is the order of zero z; and m; > 1. The ratio J}J(f)l near z;
becomes
z m;
£ m
flz) z-—z

Obviously {;(%2 has a simple pole at z; with residue m;.
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At a pole 25, the function f(z) can be expanded in a Laurant series

o 4

CED TN

f(z) =

where dy # 0 and /; > 1. Near z; the ratio %zf)l becomes

Fz) l;

f(z) Tz -z

+e,
Therefore -f;((zf)l has a simple pole at z; with residue equal to —I;.
Since there are no other singularities off;—((:jl, we obtain from.Cauchy’s

theorem:

—E z=2m() m; — ;
=m0

where 3°;m; is the number of simple zeros and }_,/; is the number of sim-

ple poles of function f(z). If function f(z) is analytic throughout the region
enclosed by I', then }_; [; = 0. Alternatively We have

f(z)

Jrf(z)

In.the complex plane, arg.f(z)|r is the change of phase angle of f(z) or winding

dz = Inf(2)|e = arg £(2)r.

number around origin when z traces contour I'. Thus roots of the analytic
function f(z) inside a close contour I' can be detected through the winding
number of f(z). If the winding number is zero, then there exists no roots of

. f(z) inside the contour T'.



Chapter 3

Resistive Tearing Instability with Equilibrium Shear
Flow

3.1 Introduction

We have discussed the ideal instability of shear flow with magnetic
fleld in the last chapter. If the plasma is dissipative, usually one would think
that the growth rate will decrease since dissipation tries to diminish free energy
sources. However this is not always true. The introduction of dissipation can
eliminate constraints which prevent the plasma from relaxing to lower energy
states, and new types of instabilities will appear. In this Chapter we will

consider the instability due to resistivity: the resistive tearing mode.

In the ideal MHD model magnetic field is frozen into the plasma, and
its topology cannot be changed (see e.g. Van Kampen.and Felderhof, 1967,
Bateman, 1978). Resistivity allows the magnetic field to be broken and to
reconnect. The characteristic time scale for the resistive diffusion rate is Sg,
the magnetic Renolds number defined in chapter 1. Generally, Sg is very large,
ranging from 10° in magnetic confined fusion plasma to 102 in solar corona
plasma. Thus this natural resistive diffusion is a rather slow process. However
for a special configuration such as that shown in Fig. 3.1, where the current
is distributed so that the equilibrium magnetic field reverses direction, say at
y=0, the reconnection can occur on a much faster time scale, a scale which is a

hybrid of the resistive and Alfvén time scales. On this time scale the magnetic

26
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Figure 3.1: The basic tearing model

field will reconnect to form a magnetic island structure as shown in Fig. 3.2.

Dungey (1958) first suggested that magnetic reconnection could ex-

[P SU-

plain- the energy release in solar flares and other astrophysical phenomena. .

Later Furth, Killeen and Rosenbluth (1963, hereafter referred as FKR) devel-

oped a boundary layer theory of resistive tearing instability. They found that-

with a constant-i approximation in the resistive layer the growth rate scales

3/5 2/5

as Sg”'", and the width of resistive layer scales as Sg*°. When the constant-y
approximation is not satisfied, Coppi et al (1976) and Ara et al (1978) found
another resistive tearing mode with a growth rate scaling as 51;1/ % and the

width of the resistive layer scaling as Sﬁl/ %, Numerical techniques have also

been applied to the tearing problem (Killeen 1970, Steinolfson and Van Hoven,

1983), and both tearing mode scalings have been verified.

For the FKR tearing model to be applicable, it is required that v >

w > w., where v is the collision frequency, w is the mode frequency, and w.



Figure 3.2: The magnetic island structure

is the diamagnetic frequency. When this condition is not satisfied, the drift
tearing mode (see e.g. Hazeltine, 1977, Hazeltine and Meiss,1985) and the
collisionless tearing mode (see e.g. Drake and Lee, 1977, Drake, 1978, Porcelli,
1991) have also been treated. However, here we consider only the resistive

tearing mode.

The original FKR theory in slab geometry was extended to cylindrical
geometry (Coppi et al, 1966, Furth et al, 1973), and toroidal geometry (Glasser
et al, 1975, Glasser et al, 1977, Wesson, 1978), with the inclusion of important
pressure and curvature effects. For the tearing modes of interest in this disser-
tation, instability requires that A’ = ;11-%1- 31 > 0, where A’ is the logrithmatic
jump of the magnetic flux function at the magnetic null plane. However, the
stable modes can be forced unstable by perturbing the boundary surrounding

an incompressible plasma (Hu, 1983, Hahm and Kulsrud, 1985, Shivamoggi,

1987). Also, the magnetic energy released during tearing instability has been
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calculated for the constant 1 tearing mode by Adler et al (1980) and Bondeson
and Sobel (1984). It is found that the magnetic energy released is proportional
to A" In the case without viscosity, 1/4 of the released magnetic energy goes

into kinetic energy, and 3/4 into Joule heating.

In the above discussion, the current around the magnetic null plane is
assumed to be regular, i.e. By ~#(1). In order to explain the fast conversion
of magnetic energy in the solar corona, a singular current sheet model with
By ~ y~*/? has been proposed (Chiueh and Zweibel, 1987). This current sheet
was assumed to arise as-a result of global magnetic stresses associated with ideal
MHD instabilities in the corona:. In this model the tearing growth rate scales
as S’El/ ® and the width of the resistive layer scales as 5}32/ ®. Also the unstable:
band of wavenumbers is broader than in the regular current sheet. This model
was later studied numerically (Liewer and Payne, 1989, 1990), and scalings
that agree with the analytical results were obtained. In the above treatments,
only one magnetic null plane was assumed to exist. If there exsist more than
one-magnetic null plane, they will influence with each other-and make the
tearing mode more complicated. Prichett, Lee and Drake (1980) studied the
case of two magnetic null planes, termed double tearing.. It is found that double
tearing is very sensitive between the distance of the two tearing layers. When
the distance is large, the system behaves like the constant-i) tearing mode,
however when they are very close, it behaves like the non-constant i tearing

mode.

If in the equilibrium state as shown in Fig. 3.1, the external electric
field E, is not applied, then there exsits an equilibrium diffusion velocity V, =

%9—5;213) across the equilibrium magnetic field. Even though this velocity is very
0
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Figure 3.3: Steady state reconnection model

small, the time to cross the resistive layer (with width 51;2/ %) is ~ 5,32/ ® which is
comparable to the resistive tearing time (Dobrott et al, 1977). Hence the effect
of this diffusion velocity is not negligible. It was found that the growth rate
of the tearing modes are reduced, and the stability threshold is raised. Pollard
and Taylor (1978) generalized the problem and considered arbitrary flow, but
of the same order of magnitude. This generalized flow stabilizes the tearing
modes if it is in the same direction as the diffusion velocity, while destabilizes

the tearing modes if in the opposite direction.

Another class of problem assumes that the plasma is forced to flow
in toward the magnetic null plane as shown in fig. 3.3. An x-point forms and
magnetic field lines are reconnected in a resistive layer in the vicinity of the
x-point. This is called steady state reconnection. There are many steady state
reconnection models, but the major ones are the Sweet and Parker model and

the Petschek model (Vasyliunas, 1975, Sonnerup, 1979, Hones, 1984, Priest,
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1985, White, 1986). Using the idea that different models result from different
inflow conditions, Priest and Forbes (1986) developed a theory for an entire
family of incompressible models. Later on, Jardin and Priest (1988 a,b,) pro-
duced a family of incompressible models for the down stream region, which
can be matched to the previous upstream solutions. These coupled solutions
demonstrate how the overall configuration of the reconnection region responds
to changes in the external boundary conditions. They also showed how the
energy conversion in both the upstream and downstream regions depends on

the particular form.of the inflow (Jardine and.Priest, 1988c).

Strauss (1988) considered the reconnection rate in the presence of
tearing mode turbulence. Tearing mode turbulence in a three dimensional
sheared magnetic fields can produce an anomalous electron viscosity (Diamond
et al, 1984, Chiueh and Zweibel, 1986) and hyper-resistivity (Strauss, 1986),
which yield a reconnection rate proportional to the ratio of the magnetic fluc-

tuations to mean magnetic field.

Recently, in order to explain some new features observed in numerical
simulations, Priest and Lee (1990) proposed a theory for fast steady-state mag-
netic reconnection. In this new model, the magnetic field lines in the inflow
region are highly curved, instead of being almost straight, and a seperatrix
jet of plasma is ejected from the central diffusion region along the magnetic

seperatrix.

For the case where flow is parallel to the magnetic field, this problem
is of interest in rotating plasmas and in astrophysics, for example, in coronal
loops, the magnetopause boundary, in plasma streams in the solar wind, and

in extragalactic jets. Below we describe works related to that described in
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the remainder of this chapter (Chen and Morrison, 1990a). Assuming that the
equilibrium flow and magnetic field have approximately the same spatial profile,
Hofmann (1975) derived a dispersion relation in which the growth rate scales
like 551/ 2, Paris and Sy (1983) found that the scaling remains unchanged when
the flow is significantly below the Alfvén speed. Dobrowolny et al. (1983),
by using the “frozen-in” equation for the internal solutions, have shown the
possible existence of a number of scalings with and without viscosity. Bondeson
and Persson (1986) used the constant-1) approximation and Fourier transformed
the internal equation in order to study the problem with and without viscosity.
All of the above discussions pertain to the constant-i tearing mode. To our
knowledge, no one has studied the effect of shear flow on the nonconstant-1
tearing mode. Also, except for Hofmann (1975), the important effect of shear
flow on the external ideal region has not been considered. Einaudi and Rubini
(1986) have studied the problem numerically. They do not find instabilities
when the flow shear is large, in contrast to the results of Paris and Sy (1983)
and Bondeson and Persson (1986). Also Einaudi and Rubini (1986) and Wang
et al (1988) observed a transition to ideal instability.

In remainder of this chapter, we adopt the boundary layer approach
to study the resistive tearing mode in the presence of shear flow. Both the
constant-i and nonconstant-i tearing modes are treated. By introducing an
assumption similar to that of Dobrowolny et al , and carefully comparing the
orders of the parameters involved, we arrive at general conclusions. In Table I
we summarize the main conclusions that arise primarily from the affect of shear
flow on the internal resistive region. Also, this table describes the transition

to ideal instability. An additional main result of this chapter is the recognition



Table 1.

“constant-u" tearing mode “nonconstant-w” tearing mode
(a) The growth rate and scale (a) The growth rate and scale
length of the resistive region length of the resistive region
are respectively are respectively
o~ RIS A3 53/5, o ~ RISV,
€ ~ (QS)'Z/SA'I/S <1 € ~ (RS)-I/S <1
v° | <1 (h) The “constant-uw” . (b) In this limit. we have
B"O approximation is valid if e|A] > 1.
] < 1 L= W(0)/RY(0)? A0
(c) Small flow shear }//(0) (c) Small flow shear. \/J_(O)
destabilizes-the “constant-w" stabilizes the “nonconstant-v”
tearing mode tearing mode with sufficiently
large 4’
(a) The growth rate and scale (d) There exists a transition to
length of the resistive region ideal instability when 4’
are respectively. becomes negative through
v ~ (RIA])VE SR, A’ = co (which is made
€~ ()‘(5)—”3 <1 possible by the flow on the
! % / external region)
RO <1 | (b) I ROM(0) - BUO)B(0) ;
Bo(o) ~ A’ >0 instability. cmterxon is
removed :
(c) The “constant-y”
approximation is valid if
V(1 - W00 &% | <1
4
0
—!;Ll >1 stabilized stabilized
B!(0)
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that the presence of flow affects the analysis in the external ideal region. Flow
can drastically change the value of A’. We are able to explain the numerical
results obtained by Einaudi and Rubini, and Wang et al. In the present Chap-
ter, viscosity is neglected, but this possibly important effect will be treated in

chapt. 4.

In the next section, the basic equations are written down, and the
notations are indicated. Section (3.3) is devoted to the shear flow affect on
the external solutions. In Sec. (3.4), we discuss the internal solution in the
limits of slow growth and fast growth, which correspond to the constant-u
and nonconstant-y tearing modes, respectively. Also, we consider the limits of
small flow shear and flow shear that is comparable to magnetic shear at the
magnetic null plane. Comparisons are made with previous work. In Sec. (3.5),
we discuss the transition to ideal instability. This is followed by a summary

(3.6).

3.2 Basic Equations

The linearized equations, obtained by neglecting terms of second or-
der, with the neglect of viscosity in Eq.(3.11), and assuming perturbations of

tkx+~yt

the form ~ e , are

(7+ V) (8" — k*8) — ikVy'$ = ikBo (¥" ~ k™) —ikByp  (3.1)

(7 + ikVo)p — ikBog = S5* (v — k%) , (3.2)

where v is the growth rate. The above equations are conventional, except we

have scaled the growth rate v by 7z, the Alfvén time, rather than the resistive
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diffusion time, and velocity by the Alfvén velocity, rather than the diffusion

velocity.
Equations.(1) and (2) can be reduced to the form

Hnn

Sz [B3(y +ikVo)p™ + -] ~ BE [ By + (v +ikVo)?| +---=0.  (3.3)

The first part of Eq. (3) is introduced because of resistivity, and contains the
highest derivative, the second part comes from the ideal equation. Since re-

. sistivity is very small (Sp < 1), it is only important in a thin layer around

the ideal singularities. Thus one can separate the problem into two regions:

the ideal exterior region which is governed by ideal equations; and the resistive

interior layer around the singularity where resistivity is important. The solu-: -

tions in the two regions are then matched asymptotically to give the growth
rate (Wasow, 1948, 1953). This method was first developed in fluid dynamics,

and is called the boundary layer approach.

Defining v = 4/k + iVp and w = i¢/u, where w is the transverse

displacement, Eqgs. (1) and (2) become
(u*w) = KPuPw = — [Bo (4" — £*p) — Byy] (3:4)
u(p — Bow) = (kSg)™* (" — k*9) . (3.5)
In the case of ideal MHD (Sr — o0), and Egs. (4) and (5) reduce to
[(uz + Bg) w’]l —k? <u2 + Bg) w=0. (3.6)

Extending Eq. (6) into the complex y-plane, we note the presence of a singu-

larity that occurs at a point where
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2 |
u? + B = (% + z'Vo> + B2 =0. (3.7)

If we assume a magnetic null plane occurs at y = 0; i.e., Bo(0) = 0, then
by selecting an appropriate reference frame, we can always let the equilibrium
velocity be zero at y = 0; i.e., V5(0) = 0. In the case of very small growth rate
«, there exists a ideal MHD singularity near y = 0. For the tearing mode under
discussion, this is the only singularity of interest. Below, we adopt the boundary
layer approach and assume B{(0) # 0, and without loss of generality B5(0) > 0.
Also, we assume k S O(1), V§'(0)/B5(0) < O(1), and BY(0)/B5(0) < O(1).

3.3 External Ideal Region

Away from the singularity discussed above, we can neglect resistivity
(Sr — o0). This external ideal region is treated here with the assumption that

the growth rate scales as follows:
v~8z° (0<o<l).
Equations (4) and (5) reduce to

% — Bow =0 (3.8)
(B2 - V&) w] =¥ (B2 - V¥) w=0. (3.9)

Now consider the behavior of Egs. (8) and (9) as y — 0. Taylor
expanding the functions By and V4, keeping the leading term in Eq. (8) and
keeping terms to O (y*) in Eq. (9) yields

% ~ By(0)yw (3.10)
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{KBO(O) V(0) )y + (Bs(0)Bg(0) — V5(0)V5'(0)) v ]w’},

K [(Bo(0)* = V3(0)%) v + (B3(0)B5(0) = V5(0)V5'(0))5°] w ~ 03.11)

The reason we retain the term O (y®) in Eq. (11) is to resolve the behavior for
the case BE(0) ~ V3%(0).
Assuming Bj(0)? — V§(0)® # 0, the solutions of Egs. (10) and (11)

behave as follows near y = 0

Cg <1+ By(0)B5(0) — (0) V' (0)

i) <G

, BA0)BH(0) = Vi (0)510) ,
o~ By0o (1 + 2OBC=BILO, 1)) 4 5001y + -

Formally, this solution is the same as the case without flow (V;(0) = V;’(0) = 0),

thus we can still define the matching quantity A’

1 d’l,b Cl+ - O]__
%b dy Co

When- Cy # 0,A’ has finite value, and- the leading order of. i -around. the

A/

magnetic null plane-is the constant B{Cy, this corresponds to the ”constant
%" tearing mode; however if Co — 0,A’ — oo, and this corresponds to the

nonconstant 1 tearing mode.

Note that Eqgs. (8) and (9) have the same structure as those without
shear flow, although they differ by the presence of the term with V2. Thus the
shear flow can have as much influence on A’ as the magnetic field. This is not a
surprise, since in this region the magnetic ﬁéld is frozen into the flow. Hofmann

(1975) has made some general comments on the shift of the wavenumber kq
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defined by A’ (k) = 0, caused by shear flow. In Appendix A we consider two

examples that demonstrate the importance of shear flow when calculating 4A’.

To conclude this section, we obtain the constraint on the internal
solutions that is imposed by the external solutions. To this end, we assume
that the internal scale length is €, where ¢ < 1. In the border between the
internal and external regions, we obtain from Eq. (10)

N 1B{(0)e
7/k +1V5(0)e

Since the internal region is very thin, we can say that throughout, ¢, w, and &

¥ ~ B{(0)ew b . (3.12)

scale as in relation (12). This is something similar to what Dobrowolny et al.

(1983) called the “use of the frozen-in law for internal solutions.” In the case

of no shear flow, this reduces to

tkBg(0)e
v

which is the assumption adopted in FKR (1963).

¢~ ¢1

3.4 Internal Resistive Region

The internal resistive region is so thin that the derivatives of v and
¢ are very sensitive to the variation of ¢ and ¢ in this region. This suggests

the introduction of a stretched variable ¢, defined as

where, as noted above, ¢ is the scale length of the internal region. Using Egs. (1)

and (2), the rescaled internal equations become

( gl V5(0) . . 1.75°(0)

Pp . VIO),
kBé(O)é+ZBé(0)C+5zBé(0)ecz) 5 " “B0)?
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(C+1 Z10) 42> oy _ 20y 1 0() (3.13)

2" By0)“ ) 5e2 ~ "“By(0)

YY), | 1V0) 1BYO) o)

(kBs<o>e+ "By )C+5ZBG(0)€C) (“‘ BL(0) C)¢‘
-1 6%

(kBy(0)€*S)” ac2+o< ). (3.14)

Because of the difficulty in solving the above equations directly, we are going
to discuss them in different parameter limits. There are two parameters of
interest. The first is iﬁg’(o—)el, which. is the ratio of the local Alfvén time to
the anticipated growth time, 1/vy. Equivalently, this parameter is the ratio of
the growth “phase velocity” to the Alfven velocity in the resistive region. The

second parameter is |V{(0)/B4(0)|, which is the ratio of the flow shear to the
magnetic field shear at the magnetic null plane. We consider two cases: case A
has |v/kB§(0)e| <« 1. Here the growth time is assumed to be long compared
to the-local Alfvén time-scale. We refer-to this as slow growth. Case B has

|v/kB;(0)e| ~ 1 which we term fast growth. The case

>>"1,

2
'kBg(O)e

where the growth time scale is in the global Alfven regime, i.e.,

7

EBy0)e| ~ ¢

is not discussed here.

3.4.1 Slow growth; lkB, ol < 1.

As noted above, in this limit, the anticipated growth time scale is

assumed to be much longer than the local Alfven time scale. We expect that
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magnetic diffusion is going to be effective on this time scale. In the case of no
flow, this limit corresponds to the classical “constant-1)” tearing mode, which
has a growth rate that scales as S~%/5. Below we consider the problem in two
different flow shear limits. In both cases, since the quantity that we want to

match is ¥ ~ Co+Cuy = Co+Cie(, order € is the highest order to be matched.

Very small internal flow shear In this limit,

Va(0)

i |
B5(0)

S
kBy(0)e|’

which implies
kV5(0)e
¥

i.e., the internal shear flow velocity is smaller than the growth “phase velocity.”

<1,

We find it convenient to introduce a new variable ¢ defined by

AR 4
—<¢—Bé(0)"b>/ ('ZkBaw)e)' (3:19)

Using (12), the constraint imposed by the outer solution, implies ¢ ~ %. Now,

let
T =%, (3.16)

where 7 is the measure of 7, and ¥ is a factor of O(1). Equations (13) and (14)

become:

() (5% - -[C (1 - BF) RO

55(0)
25(0)

A

D

+e¢?

I

,‘?
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7\, B 5 8% .
<kB (0)e ) 1 —00)= Gmyeas e 7O (kBO(O) 6) . (319)

Using (

o~

Ql

2
) as a small parameter, we expand ¢ and ¥ as follows:

o=3 (kBo )zn%

n=0

C

os

b= Z(kB:/ >2n¢»n. (3.19)

n=0
Consistency at leading order requires that

7
(kB4(0))* eSr ~ o),

(ezie)

which implies the resistive skin diffusion time is much shorter than the antici-

or

<1,

[1¢5] ~

pated growth time.. For convenience, we-set

~

S S— (3.20)
(kB4(0))? €4S

Thus % is the growth rate for the flow free tearing mode. Inserting Eq. (19)

into Eqgs. (17) and (18) yields to leading order

B4
a¢?

hence, ¥ = Co + Ci(. It is evident from Sec. (3.4) that matching to the

= 0; (3.21)

exterdal solutions can only be achieved if

lim 1)y = const.
[¢|—o0

This implies C; = 0 and,



1o = Co = const. (3.22)

This is the so-called “constant-y approximation.”

In first order we obtain the equations

o (A +z'kV°l(0)€C> 9%%o _ 0%y € B3 (0)

T4 o = o i) BYO)

%o (3.23)

-~

3
kB}(0)e

2
3 (o = Goo) = 455+ 3.2

Let 4po = —h/4, ¥y = 1, and define

_ 550 _ %5(0) kBy(0)e  Vo(0)

AT ERO 5 By)

_ 4eBy(0)/By(0) _ 1 Bg(0)

"~ FeSr B4(0)

AF IRV
(kBé(O)*ﬁ)
Using the above definition Egs. (23) and (24) become
Or 1,
¥+ 1) = — — =4( — 2
(5 +030) 3 = 3¢ = 7 = Ar (3.25)
32¢1 1 1
== (44+=Ch). 2
3¢ " 4 (7 * 4Ch> (3.26)

These equations are equivalent to those obtained by Paris and Sy, which yield

the following updn enforcing matching to the external solutions

. T(1/4) \*/° , n\2/5 ~-3/5
= (orttr) (802" S5

I'(1/4 /s ) /5

¢ (27/2]((é/é)1)7f> (kBo(O)) 2/5A1/55R'2/57

7“——1——2'/\/\ + A2 —-{——7/\2 +0 (X3 3.27
5z F (16 50 F> ( )’ (327)
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where I'(z) is the gamma function. In the case where the internal flow shear
is very small, the internal analysis remains the same as that without flow, as a
result the scaling is unchanged. From the results of Eqgs. (27), Paris and Sy, and
Bondeson and Persson conclude that small flow shear destabilizes the tearing
mode. This conclusion does not necessariely follow since even though the flow
shear at the magnetic null plane is small, the flow in the external region could
be large, in which case there is a significant influence on the value of A') as

discussed in Appendix A.

Now.let us check our assumptions. For the expansion in Egs. (19) to

be valid, we require

2 . .

~ (kSg)™Y3 |A/IP° ~ A < 1. (3.28)

2l
kBy(0)e

For the boundary layer approach to be valid, we must have ¢ < 1; i.e.,

(kSR)~¥5 A" <« 1, (3.29)

which implies the resistivity must be very small. When A’ is very large, the
above-assumptions are not-valid. When k is very small, we assume A’ ~ 1/k
and Eq. (28) yields

k> SaM°, (3.30)

which is consistent with the limit obtained by FKR for the constant-y tearing

mode in the case of no flow.

‘Comparable internal flow shear In this limit we suppose |V5(0)/B4(0)] ~
O(1); i.e., the kinetic and magnetic energies are comparable in the internal

region. This limit has been studied by Hofmann with the assumptions V;'(0) =
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0, B§(0) = 0, and 1 —V{(0)%/B4(0)% > 0. But here we remove these constraints.
Equation (12) implies here 1 ~ ¢, and now in Eqgs. (13) and (14) the natural
expansion parameter is (k_B(;%JF)’ instead of (k_BZWY' Thus the equations
analogous to Egs. (19) are

b= Z(wo )wn

n=0

¢ = Z(kB, )> . (3.31)

n=0
This is the same expansion as that adopted by Hofmann (1975). Similarly, we

assume

(kB4(0)e2S)™ ~ O(1); i.e.,

|'7525R‘ ~ ’ ' <1,

2
kBy(0)e
- which implies the internal resistive skin time is much shorter than the antic-
ipated growth time. For definiteness we choose (kBg(0)e’S r)”"' = 1, which

implies that the internal scale length

e = (kB)(0)Sg)™"°. (3.32)

To leading order, the solutions that match to the external solutions,

are
V’( )
By(0)

To first order Eqs. (13) and (14) yield
V() s _ 5%y
By(0) o¢*  8¢?

=r7av¥o = ¢o = const. (3.33)

(3.34)

.. ( ¥5(0) Py
o it (ki -61) = 22 3.3)
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Equation (34) implies ¢; = V, ¢1 (generahty is not lost by dropping the two

integration constants). We insert this into Eq. (35) and obtain

.~ By(0) V(0)* 8%ty
Yo — i¢ V(0) (1 B1(0)? >¢1 a7 (3.36)

This is an inhomogeneous Airy equation, which has the following solution

(Udell and Luke, 1962):

Yy = e 4R\ Hi (— AT (e R (3.37)

where m-is an integer,.

= (B

and Hi(({) is the inhomogeneous Airy function. It is algebraic for large |¢| when -

;arg (ei2m"/3)\‘1§) l < 27/3. Choosing m = 0 if

(- 55)-

and m = =1 if

B0 VJ(0)2\ -
o (- 5ow) >
yields a solution that is algebraic in a sector that includes the real axis. For
large |(| the asymptotic behavior satisfies

Wy ~ Asg/"’ <1 +0 (;3» (3.38)
which is valid in the sector —77/6 < arg( < =/6, when

By0) [ VY(0)?
T3(0) (1 B Ba<0)2) <0

while if
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By(0) (,  Vi(0)
72(0) (1 B Bam)) >0

it is valid in the sector —7/6 < arg { < T=/6.

To second order, Egs. (13) and (14) yield

;Y0 (0) 82y B7(0), Y5'(0)
V5(0) 8%¢a _ O%bs ‘Bosr _ ¢ BeY T Be® (3.39)
By(0) o¢? a¢? ¢ - im (W"/(ojzy ¢ - szO'(O)e
. V5(0) : 1.« Va0, _ Bs(0) 0*bs
27 - = - = ——. (3.40

Note, we have kept the singularity at { = Z'W in Eqg. (39). Equation (39)

yields upon insertion of Eq. (35), and integration

® 1hy — 3¢1C

Vo(0) o 5%, 81y
0/ —2dt = —d
Bé(O) —co 8(2 C / 842 C+ -0 C zI;:V’ (0)e C
oo d 5(0)B{ (0 0)Vy'(0
[ K _BORO-KORO,
(wetie) ¢~ ' °
Now consider each of the integrals of Eq. (41):
% b, Oy 2 ’ Q.
[ G =52 " =/ (mam) (3:42)

where A’ is the matching quantity defined in Sec. (3.3). From Eq. (40) we

obtain

= 0% dc = / ¥5(0) %4,

—c0 O¢? B;(0) o¢* “
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= i, (3.44)
'/ (=i kvﬂok

where we take upper sign when 2 > 0, otherwise lower sign is taken. Using

V7 (0)
the results of Eq. (38)
® o — /\ 3¢1C / Yo — 3¢1C
oo g kV’(O sz' ‘

where [' is a contour in complex ( plane. If

BiO) (. V3O _
iﬂﬁ@'%@ﬂ<&

I' is closed in the lower half plane, while if

By(0) (. Vi(0)?
imﬁﬁ“wa>>“

I' is closed in the upper half plane. So if

ggnﬁ_xmf)%w>
%0\ B07) %)

<0,

then:
© o =A% ( .
. 7_———-—dC =0. (3.45)
Z T
We obtain from Eq. (41) upon insertion of Egs. (42), (43), (44), and (45)

B55(0)55(0) — V5 (0)V5'(0)

o
& = TR 0 — V(0)?

Since a pure imaginary A’ cannot be made equal to the external real A/, match-

ing cannot be achieved in this case.

If .

By(0) (| _ ¥5(0)* Re()
V5(0) (1 - 35(0)2) Vi) 0, (3.46)
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% 1hg — A3hi¢ ( Y )
-—-—-——d +2 0] 3.47
e 2o sz’(D) ¢ = £2mithg + R0 (3.47)

Je
where we take the upper sign when Bj(0)/V5(0) (1 — V;(0)%/ B4(0)?) > 0, oth-
erwise the lower sign is taken. We obtain from Eq. (41) upon insertion of

Eqs. (42), (43), (44), and (47)

0

= i(27rSR)"1/2J lkvof(o) (1 - Bon (A, - . B3(0)Bo(0) — VB’(O)V({’(O))’

By(0)? - V5(0)?
(3.48)

where the sign of the growth rate v is determined by Eq. (46). Obviously, the
above analysis is not valid when 1 — V(0)%/ B{(0)? = 0.

From Eq. (46) we see that only when
V3(0)? )
1 - >0
(-5

does there exist a growing tearing mode. When

(1 V’Eg ><O,

the kinetic energy overpowers the magnetic energy in the internal resistive
region, the'flow freezes the magnetic field and suppresses the tearing instability.
This is not necessarily accompanied by an ideal mode. Numerically, Einaudi
and Rubini (1986) solved the initial value problem for the following equilibrium
profiles: By = tanhy, Vo = Vptanh by. They found the same scaling as Eq. (48)
when [V{(0)/By(0)| ~ O(1). However, they also found that the tearing mode
could be stabilized at some value |V;(0)/B{(0)| < 1, instead of [V5(0)/ B5(0)] =

1. This can be explained by the influence of shear flow on the value of A’.

For the hyperbolic tangent profiles, B (0)B4(0)—Vy'(0)V5(0) = 0, and

the negative value of A’ can stabilize the tearing mode. In the first example
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of Appendix A, we evaluate A’ for a piecewise linear approximation of tanh
(cf. Eqs. (Al) and (A2)). Assume that Vj, the quantity that measures the
magnitude of the flow, is less than unity. From Eqs. (A7), (A9) and Fig. 3.3,
we conclude that when the flow shear length b is less than the magnetic shear

length, but
Vo(0)? _ W
Byoy B <

then at some value of b, A’ = 0. This qualitatively explains the stabilization

seen in the numerical works of Einaudi and Rubini (1975).

The result-of:Eq. (48) is different from that of Hofmann in that the-

second derivatives of the magnetic field and shear flow are included: This is far
from trivial since it removes the A’ > 0 instability criterion if B§(0)B{(0) —
VZ(0)V(0) 5 0. Paris and Sy, Bondeson and Persson arrived at a similar con-
clusion by neglecting V;’(0), but in their growth rate expression, they omitte_d
the very important factor of:1 — Vj(0)%/ B4(0)2. Thus their growth rate does
not stabilize when V5 (0)%/B§(0)? > 1. Einaudi and Rubini (1975) noticed the
discrepancy. between their.numerical results and the growth rate expression of

Ref. 4. Our result explains this discrepancy.

To end this section, let us check our assumptions. From Egs. (32)

S

The validity of our boundary layer approach requires € < 1; i.e., .

and (48) we obtain

v

(W <L (3.49)

(kSp)™° « 1, ©(3.50)
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which requires the resistivity must be small. Equation (49) is similar to Eq. (28),

it cannot be satisfied when |A'| is very large except in the case 1 — gi,:L((%))-z- — 0.

We consider the case of very large |A’| in the next section.

~1

i 7B

In this limit, the anticipated time scale is comparable with the local
Alfven time. In the case of no flow, this limit corresponds to the nonconstant-
tearing mode with a growth rate that scales as S};l/ ® (Coppi et al, 1976, Ara
et al, 1978).

Equation (12) implies in this limit that ¥ ~ ¢, assuming |V;(0)/B5(0)] <

O(1).
| Neglecting the terms of order O(e ) Egs. (13) and (14) become
¥ V5(0) . ) 0% -
(e + ) 7 =7 (331
v .V5(0) e 1 9%
(e B ) o= e 0
Defining
_ 7 . ¥5(0) 7 _ i
A= FEL0): +’32(0)C’ ¢=—
Egs. (51), (52) become
209 9
i (# c) N (3.39)
1 0%
Al — () = FBL(0)e5s BeF (3.54)
Integration of Eq. (53) yields
o _ b= —A26¢ +Co = X, (3.55)

¢ a¢
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where Cj is a constant and we have defined a new dependent variable X.
Substituting Eq. (55) into Eq. (54), we obtain

1 [ax_<g+3A/6C)%)<£]=Ax+C_(X_c'o). (3.56)

kBy(0)eSr |0cz \¢ T 4 A

In the case of very small flow shear, i.e., |V;(0)/B§(0)| < 1 we expand
X and v as

e o)l

n=0

y= Z%( gi) .. (3.57)

n=0

The leading order of Eq. (56) is

1 X, 20X,
kB}(0)e3 S

) EBY(0)e
5c? “Eac> R

This equation has been solved by Coppi et al (1976) in the case where A’ < 0.

2052 (X — Co). (3.58)

In Appendix B we treat the case where

A’ = o0, Eq..(58) has the solution

C’0 = 07 -XO = 6—42/21

Yo _ 1
7By (0)e _ kBy(0)eSn

To first order Eq. (56) yields
+ﬁ> Xo - ¢? <c+11-> Xo.
Yo Yo

X, 208X 0X,
L2 1—(1+C2)X1= 0+C<1
The appropriate solution to the above equation is

= 1. (3.59)

a¢t ¢ & ¢

Xy = =372, (3.60)

A’(kSR)‘1/3| > 1.. In the case where-
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To the second order, Eq. (56) yields

X, 20X,
¢z ¢ o

ik [—lce + ¢+ (§ - 13) ¢*+ 7—2} :
6 2 7 Yo

The appropriate solutions of the above equations are

_ Ll 3.4 3,

K=t -5t T %
Y2 _ 9 V
2 _Z . 3.61
: (3.61)

7o
Collecting the results of Egs. (59), (60), and (61) yields

V(0 V(0
7 =0+ i3 )71+< ()) Y2t

By(0) By(0)
ot ian2/3 a1/ 5V5(07
= (kB4(0))° 55 3( A ) . (3.62)

Thus we see that shear flow in this ordering tends to stabilize the A’ = oo

tearing mode.

For the case where A’ # oo, but '(kSR)"lfsA’

> 1, there is a cor-
rection of O (m) to the case of no flow (see Appendix B). Including a

small shear flow, the growth rate is

A

Yo

V5(0)? 1 V(0)
B0y * ¢ ((kSR)-1/3A/ 35(0)> ‘ (3.63)

oo Ot

For sufficient large |A’], we can say that the small shear flow is stabilizing.
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When V7(0)/B4(0) ~ O(1), the quantity A in Eq. (56) is still ~
O(1). The scaling should remain unchanged except in the case where 1 —
V3(0)Y By(0)2 — 0. When 1 — V;(0)%/ B§(0)? — 0, the scalings change to the
constant-i tearing mode scaling as we discussed in the end of last section. Thus
the tearing mode with I(kS'R)‘l/SA” > 1is stabilized when 1 —V7(0)%/ B§(0)? —
0~, approaching zero from below. It is reasonable to ascribe this result to the
idea that the flow freezes the magnetic fleld and suppresses the tearing mode
with |(kSg)=/24
with the numerical results of Einaudi and Rubini (1986).

> 1 when 1 — V{(0)%/B4(0)? < 0. This conjecture agrees

Our assumption‘ml ~ 1 is always satisfied if |eA’| > 1 and 1 —
V5 (0)% B§(0)* 4 0. This is seen by examination of Egs. (59), (63), and (B15).
The requirement of ¢ < 1 leads to (kSr)~'/® > 1, which requires very small

resistivity.

3.5 Transition-to Ideal Instability

Since-shear flow itself can drive Kelvin-Helmholtz instability, a po-
tentially powerful instability, the results of the preceding sections could be
overshadowed. However, the necessary condition for this to happen is that the
flow velocity not be bounded by the magnetic field everywhere, in any refer-
ence frame (Kent, 1968). For all of the tearing modes treated here there exist

velocity profiles that are Kelvin-Helmholtz stable.

An interesting case is where the Kelvin-Helmholtz instability is near
marginality, since here its growth rate can be comparable to that of tearing.
Also, the tearing analysis in the external ideal region corresponds to that of

marginal ideal instability, so here is a natural place to begin tracking the tran-
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sition from tearing to Kelvin-Helmholtz instability. In the papers by Einaudi
and Rubini (1986), and Wang et al (1988), this transition was tracked numeri-
cally as the appropriate values of the flow parameters were varied. The profiles
considered were B, = tanhy and either V, = Vpsech(y/b) or V; = Visech®(y/b).
In this section we track this transition analytically by expanding about the
ideal instability at marginality.

Foi.~ tractability we approximate the hyperbolic profiles by piecewise
linear profiles, as discussed in example 2 of Appendix A, although we have
changed frame so that V5(0) = 0. These profiles are linear in three regions:
lyl < b, y > b, and y < —b. Consider first the ideal problem with 6 < 1 and

|yl < b. For convenience we define

H = \/u? + Biw; (3.64)

hence, Eq. (6) can be rewritten as

2H W k2
—_— B2 e — | H = 0, 3.65
ay [ & —w?/ki’)z] (3.65)

where w = —.

Marginal solution are given by solving the equation

d?Hy

i K Hy =0 (3.66)

in the region |y| < b, and matching the solutions at y = +b and y = %1 to the

appropriately decaying solution as y — +oo. Equation (66) has two solutions:

HY =sinh ky (3.67)

I

with the matching condition & — tanh % + kB tanh & = 0; and
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HY = cosh ky (3.68)

with the matching condition 1 — ktanh k — k8 = 0. In the above expressions,
k and B are defined as in Eq. (A10). For the details of matching, we refer the
reader to Appendix A. Hereafter, we denote the quantities corresponding to

neutral solution by N, and fix the wavevector k.

From Egs. (67), (68), (A3), and (Al0), we see that HF® corresponds
to the external tearing solution for the case where A’ = oo; similarly, HY
corresponds to A’ = 0.

Now upon multiplying Eq. (65) by Hy and Eq. (66) by H, and sub-

tracting, we obtain

d [ dH _dHy Wk
L * NI - gt N I LN 3.69
dy[ Ny dy J [y? — w?/ k2] N (3.69)

Defining ¥ = w’/w, yields with Eq. (64)

1 dH Yy

g~ YW om

T (3.70)

Shortly, we will need to use-Eq. (70).-

Consider now, instability that is near to the neutral mode; i.e., H —

Hy and w = éw. Correspondingly, we assume the flow parameters
Vo = Vo + V4, b= by + 6b.

In the discussion below we neglect terms of second order.

Integration of Eq. (69) yields

bm bim Wi k?
=~ ————— HHyd .
—bt, /;bj:n (y2 __wz/kz)2H NGY, (3 71)

HHN<1 dH _l_dHN)

Hdy Hy dy
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 where the limit by, is the smaller of b and by. The upper and lower sign is used
to avoid the discontinuity at y = b,, as seen in Eq. (75). Using Eq. (70) and
the symmetry of the problem, we obtain

(L8 L)

bm

T o dy ) [v (57) - v (b7.)] - (3.72)
Since the solution Y(y) depends implicitly on w, and the flow parameters V;

and b, we have

)4 oY
Y(w7 b,Vo;y) —YN (OvbNa %N;y) ~ (y) w=0 bw + (y) w=0 6b
O Ow | sshy b | vhy
’ Vo=Von Vo=Von
Y (y)
+ . V. 3.73
a% bw=_bN o ( )
Vo=Von
Using Eq. (6), Y (y) satisfies the Riccatti equation
v ., (v + By
P2 -t
Y(+1) = Fk. (3.74)

(u* + BZ)Y is continuous, as seen by the integration of Eq. (74), but Y (y)
must have a jump at y = 6

v - (g-v)
2 — W k2

Y (57) = Y (5%). (3.75)
For |y| < b, we can write the solution of Eq. (74) as follows

v - (¢ -V
y? — w? k2

Y (w,5,Voi9) = f(wiy) — f (wib7) + )Y@ﬂ, (3.76)

where f(w,y) is a general solution of the equation

dY_ 9 2 2y
dy bt —yz—-uﬂ/k?Y'
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Assuming y? -V # 0 for b < |y]| < 1, M ‘ w=0 Is areal quantity up to
Wt
first order. Let
3Y oY (b7)
- 3.77
0w | 5% (3.77)
Vo=Von
Using Egs. (74) and (76), we have
Y (y) Vi N
2O )
Vo=Von
8Y (y). 2Von ( Vb%v) Y (y)
=Wy () (1o N 378
0=VoN-

where fy is defined as in Eq. (A10), and Yy <b}}) satisfies Eq. (A1l). Note,
Y (y) is independent of the parameter by for b < y < 1.

Combining Egs. (72), (73), (77), (78), the right-hand side of Eq. (71)

becomes p
T T g T ~ 2Hy. - - +
HHN(H dy ~ Hy dy\.> Ly = 2w (o) {9&1 7, B[k =AYy (5%)] 6

| 2 \ Y (b%;
+ (2—‘2—2—"11’ (%) - (1 - ‘23:) 5$/6N)) §Vo!. (3.79)

For the right-hand side of Eq. (71), we evaluate the integral by considering the

contour shown in Fig. 3.4. Assuming the imaginary part of w is less than zero,

we obtain

b Vi | 2ri? d [ HY
L= g [l

y=-w/k

sirkw for Hy = HY? = sinh ky,
—LirL for Hy = HY = cosh ky.
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Figure 3.4: Integral contour
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We insert Eq. (79) and (80) into Eq. (71). For the case Hy = Hy;, there is
no valid solution, since Eq. (80) diverges and Eq. (79) vanishes in the limit
6b = éw = §Vp = 0. This means the neutral mode corresponding to A’ =0 is

an isolated mode (at fixed k).

For the case Hy = Hf the mode is not isolated and we obtain the

following:

_ 2sinh2(kb) _VLZ;V ) )
bw = Likr —2 (sinh? (kby)) g x [ B k(& ﬁmYNV (%)) 8
2 a}/l'oo b+ ;
_ (%Yﬁ (6%) - (1 _ ‘25) v V(b N)) 5Vi] (3.81)

For the profile analogous to that studied by Wang et al, bisset to 1, Yy(y) = —k
for ly| > 1, and § =1 — V. Then Eq. (81) becomes |

4kVyn sinh? k
%ikﬂ‘ —2¢gsinh®k

bw =

oVo.

There exists instability when 6V, > 0, meanwhile §3 < 0. Now we evaluate
Von, the-flow parameter corresponding to the neutral mode for k = 0.45. This

is done in order to compare with Wang et al’s results. Using Eq. (A15) gives

k —tanh k&

— 2 3 = e —————
L= Von = fos ktanhk ’

whence, Von &~ 1.08. Wang et al. (1988) observed strong ideal instability at

Vo = 1.2. This roughly agrees with our above analysis.

For the profile discussed by Einaudi and Rubini (1986) V;.is fixed at
unity. Thus Eq. (78) becomes

~2%2k (k — fooYiv (b)) sinh? (k) 65
ikm — 2gsinh®(kb) '

bw =
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We see from Eq. (A12) and Fig. 1a that ‘Yﬁ" (b}})‘ < k,and |Bx| < 1. Thus the
instability appears when §b < 0, meanwhile §8 < 0, as a result of Eq. (A13).

In both cases, when the flow parameter is varied so that 3 is decreased
from fe, there exists instability. Using Fig. 3.3, we conclude that an ideal

instability appears when A’ becomes negative through oo.

When a small resistivity is included in the above problem, there is
no influence on the neutral mode corresponding to A’ = 0; while for the neu-
tral mode corresponding to A’ = co, the growth rate is increased from zero
to (kB()(O))r“/ 3 S,;l/ ®. When the flow parameters are perturbed further, the A/
value becomes negative and there exists a mixture of tearing and ideal instabili-

ties. This connection of the tearing and ideal modes is similar to that discussed

Ara et al. (1978).

3.6 S umméry

In this Chapter, we have systematically studied the tearing mode
in the presence of shear flow. It was found that shear flow has a significant
influence on both the constant-y and the nonconstant-i tearing modes. In the
external ideal region, the shear flow is as important as the magnetic field, some
flow profiles can dramatically change the value of the matching quantity A’. It
can change the scaling from constant to nonconstant v tearing. In the internal
resistive region, the tearing mode is very sensitive to the flow shear at the
,.magnetic null plane; i.e., V/(0). When V’(0) is very small, the scaling remains
unchanged for both tearing modes, while it stabilizes the nonconstant- tearing
mode with sufficiently large A’, but destabilizes the constant-v tearing mode.

In the case where V'(0) is comparable with the magnetic fleld shear, B}(0),
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the scaling of the constant-i tearing mode growth rate is changed from S—3/5

to SY/2. The scale length of the singular layer is changed from S~%% to

$=1/3 and the A’*> 0 instability criterion is removed provided V'(0)V”(0) —
B{(0)Bg(0) # 0. The scalings of the nonconstant-i) tearing mode still remain
unchanged. When the flow shear is larger than the magnetic field shear at the
magnetic null plane, the flow freezes the magnetic field and stabilizes the tearing
mode. Additionally, we have shown the parameter regions for the validity of
the constant-y and nonconstant-i tearing modes. Finally, since the shear flow
can- drive-ideal. instability, we discussed the transition from the tearing mode-
to-the ideal mode in two examples. It is found that this happens when the
value of the matching quantity A’ goes to negative through A’ = co, which is

similar to the'm = 1 tearing mode discussed by Ara et al. (1978).

The above results have further been tested numerically (Ofman et al,
1991). The figure below shows the growth rate scalings for two different flow
profiles: the "sech” profile V; = Vol(sech'(by) — 1) with Vo = 1,b = 2.5; the
"tanh” profile V; = Vhtanh by with V5 = 1,6 = 0.73. The magnetic profile-is
fixed at:Bg = tanhy. Forthe”sech” profile the flow shear at the:magnetic null
plane is zero, however the flow in the idea region change the matching quatity
A’ from finite to infinite, and the tearing mode has nonconstant % scaling. For
tile "tanh” profile the flow shear at the magnetic null plane is comparable but

smaller than the magnetic shear, and the constant 3 growth rate scaling is

changed from 553/5 to 5'1;1/2.
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10°

1073

10°4

Figure 3.5: Growth rate scaling vs. magnetic Renolds number Sg for "sech”
flow profile with V5 = 1,6 = 2.5,k = 0.5, the nonconstant ¥ case (the
squares are calculated points). The scaling for "tanh” flow profile with
Vo =1,b=0.75,k = 0.5, the constant ycase (the circles are calculated points).
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3.7 Appendix A - A’ Value in the Presence of Equilib-
rium Flow

Here we evaluate the A’ value in the presence of the equilibrium shear

flow. We assume the equilibrium magnetic field has the form

By =ly|l, ly|<1; By=1, y>1; By=-1, y<-1. (Al)
This piecewise linear profile can be viewed as a rough approximation of the
profile By = tanhy.

In the first example, we assume the equilibrium shear flow to be

-

This piecewise linear profile can be viewed as an approximation of the profile

V =V tanhy/b.

For convenience we define

Y

1]

wl
)
w

.and:
1- I tanh T1 — T1ZT9

f(z1,22) = (A3)

z1 —tanhz; + z1zo tanh

The reason for these definitions will become clear below. Consider first the

case where b < 1. In the region |y| < b, Egs. (8) and (9) become

Y =yw
" _ _ZE _ lc2w —_
which have the solution
sinh ky cosh ky

Y =Ax + Bx .
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Here the A, and B, are as yet undetermined constants for the solution in the
region 0 < y < b, and A_ and B_ are constants for the solution in the region
—b <y < 0. We have allowed for the discontinl‘lity at y = 0 that arises because
of the resistive layer. Thus A’ is given by
A=Y °*=k<éi_é;>_
(I B, B._

The constants Ay and By are determined by the boundary conditions at y =

+oo. To find these constants we must trace the solution for |y| > 1 through

the regions b < y < 1 and —b < y < —1. In these regions Eqs. (8) and (9) are

% =yw
2yw’
v =W
Equation (A4) has no simple solution, but it is transformed into a Riccatti

w” + — k*w = 0. ’ (A4)

equation by Y = w//w. We obtain
2yY

— L2 2 =
V=k-Y r—— (A3)
In the outer region, |y| > 1 the solutions are trivially given by
w ~ e,
From this we obtain two conditions Y(1) = —k and Y (—1) = k. We can

replace the two unknown quantities in A’; i.e., Ax/By by Y (&£b) = Y. These
quantities are in turn determined by solving the Riccatti equation (A5) subject
to the boundary conditions Y (1) = —k and Y (—1) = k. Matching at y = £b
yields
£5kb + kbtanh kb — gf tanh kb F 1

b+ £=btanh kb

4_'_‘=

which implies
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Ar  +k*btanh kb k — kbys

k'BI ~ XY.btanh kb — kb + tanh kb’

Using the symmetry of the Riccatti equation: Y — -Y; y — —y, and the
symmetry in the boundary conditions Y (£1) = Fk, we conclude that Y, =
—Y_. Finally we obtain the following expression for A’:

A’ =2kf (F, ), | (A6)

where the function f was defined above in Eq. (A3), and 8 = —2Y(b). The
complete determination of A’ has been.reduced to finding 3, which as noted

requires solving Eq. (A5). However, the qualitative nature of the solution

can be estimated. Assuming V@ < 1 and V§/b® < 1, it can be shown that

—o0 < Y(b) < —k. This implies
1< B < 0. (AT)
Moreover, as VZ/b* — 1, 8 — .
Similarly in the case - where b > 1 we obtain
A = 2kf(k, B),

J
where

1
== (1),

and Y satisfies the Riccatti equation
- dy 2y

—_— 2_ 2_.———.—.——.—
i A

Y(b) = —k. (A8)
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Assuming Vi < 1, we obtain from the above —k < Y(1) < 0. This implies
0<pB<l. : (A9)
Note, as b/ VE — oo, f — 1.
In the second example, we assume the equilibrium shear flow to be
V=0, pl<b V==V yl>bo
This profile is a linear approximation of the profile

V=V (sech% _ 1) ,

V=W (sechz% - 1) .

The linear profile has a discontinuity at |y| = b. Since (B2 — V@) w'(y) is
continuous, as seen by integration of Eq. (9), w'(y) must have a jump at y = b,

and therefore so does Y (y).

Following the procedure used in the first example, but accounting for

this jump, we obtain when b < 1

A =2kf.(k. ),

where k = kb,

Y (&)

- _% (1 - —62—> Y (5*), (A10)

R

]

|
| —
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and Y (y) satisfies the Riccatti equation for b* <y <1

day 2 2y
e

Y(1) = —k. (A11)

Assuming V& — 1 from above, we obtain from Egs. (All), —k <
Y (b%) < 0, which implies

B < 0. ‘ (A12)
Using Eqgs..(A10) and (Al1),.we obtain.
o Ve 1 V2 dY
%= 2 ) -3 %) & s

- % (1 - ‘;—32> [%Y (5+) - <k2 —y (b+)2>] > 0. (A13)

Asb— 0, — —oco. When b > 1,

A"=2kf(k,B),

where:

(2 - %2) e—2k - %26—2kb

= (2= VZ) e2k 1 VZe-2kb

<l
In all the above cases, A’ has the form
A’ = 2kf (k,6),

where k = kb if b < 1, otherwise & = k. In the above expression, k and

measure the influence of the shear flow. In the case of no flow, & = k and

B =1



63

At criticality A’ = 0, which implies f (l—c,ﬁo) = 0. This defines a

curve

Bo (F) = ———. (Al4)

Similarly, at A’ = o0, f (l?:,ﬂoo) = oo implies

k — tanh k

Both £ (E) and S (l_c) are monotonic decreasing functions of &, which are
shown in Fig. 3.6. Also the variation of A’ with 8 at fixed k is shown in

Fig. 3.7. Evidently shear flow can drastically change the value of A’.

3.8 Appendix B - Nonconstant-y) Tearing Mode with
EBLSEAA > 1
The case of the no flow tearing mode with A’ ~ O(1) and A’ < 0 was

analyzed by FKR (1963) and Coppi et al (1976). Here we just discuss the case
where |A’| > 1.

Let
(kBj(0))* €4S ; ro
——=1, A= , A\\2/3 o=1/3" (B1)
o . (kBp(0))™" Sr
- and rewrite Eq. (58) as
2 A
0*Xo _‘gaXo = 332X, 4+ ¢2 (X, = Cy), (B2)

92 (8¢

- r \*94
%o= ¢t -0 =~ (sio) 5+ O

where
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Figure 3.6: Sketch of functions Bo(k) a.ndﬂco_(l}); Bo(k) and B (k) are the
parameters at which A'(fo, k) = 0 and A'(Be, k) = o0, respectively.



(b)

Figure 3.7: Sketch of variation of A’ with parameter 3.
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The solution of the abbve that matches to the external solution should be

asymptotic to Co. We obtain from Eq. (B2)

/‘\3/2
We redefine L ox
(oo} __Q_d ]
A= [—oo_ec(fc_f (B4)

We find it convenient to convert this equation to a homogeneous equation by

differentiation (Waelbroeck, 1989)

X +12}£_l(;\3/2+t)6_X_%X=0, (B5)

55 T3E T 1 5t

Assume X = K [, e*v(z)dz, where K is a constant. C is the path decided

later. Substituting Z into-Eq..(B5) we obtain

VAL 5, A2 : . 1
-z (# - ) S (=55 - o| e bz (2 - 1) o) | =0
/c[ < 4>dz+<2 7y fdztzen(# - vle) | =0
Let
1\ dv 5, M7
22\ [ 82 AT —
[z(z 4>dz+(2z 4”)”] 0
which yields
1\ —(5+X2/2)/4 1\ —(5=3/2)/4
v=(:-3) (-+2) - (56)
Now we need to choose a path so that Eq. (B3) is satisfied and
1 1\ —(1+53/2)/4 1\ —(-33/2)/4
ze®t (22 — —> v(z) | = ze* (z - —) (z + —) =0.
4 c 2 2 c




-]
o

Figure 3.8: Integral contour

When 3%/2 > 1 the Path can be chosen from z = -1/2toz = 0. Bya
substitution

=__1=Y

T2l +y)

we get the solution obtained by Coppi et al (1976). For the case A3/3 <1,
2= ~1/2 becomes a singular point. In order to extend our solution to include

A3 < 1, we modify our path as in Fig. 3.8. Thus

. 1\ —{5+33/2)/4 1\ —(5=33/3)/4
X=K/;e”<z—§) <z+;) ds



, 1 ~(5+2X3/2)/4 1 ~(5=-33/2)/4
=K e? (z - -—) (z + -) dz
Cs 2 2

. ~(5+33/2)/4 1 —(5-33/2) /4
—1 4 gmin-Rm) [ ° g <z - l> ( _> BT
+K< e ) -1/2+5{3 2 z+2 (B7)

Now consider the case where ’l - :\3/2| <« 1. Define (1 - :\3/2) /4 = o, and
rewrite Eq. (B7) as

. 1 =3/2+0c 1\ ~1-°
XzI{Cez”<z—-2—> <z+—> dz
§

2
0~ 1 =3/2+0c 1 —-l-c
aro kK % ( - —> <z —> dz. BS
+27TO'&/_1/2+56 z 5 +2 (B8)
When ¢t — oo,

. 0 -5/2

X ~ —iK/ e” <l> (2mio)dz = 27/27r¢7£. (B9)
—1/2+46 2 i

Comparison with (B3) yields

5\3/200 ‘

b= 57

(B10)

We choose the radius § of Cs so that 1> § 2 0. Let z+1/2 = §e* in Cj, then
1 -3/2+0 1\ ~1-° . N\ —3/2+0 )
zt _ = = zt (- i6 -0 —tcl J/
/Gde (z 2) <z+2> dz /Cde ( z+5e) §7%e7*7°d(120)
=2re”2' + O(0). (B11)
For the second term of Eq. (B8), we estimate the order of magnitude as

© et oY LY emio)| S 200 [ AN
/_1/2+5 € (Z - 5) <z + 5) z(27i0)| S 270 /_1/2+5 <~ + 5) >

~olné ~ O(o). (B12)
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Substituting Egs. (B11) and (B12) into Eq. (B8), yields

. X32Cy , .
=~y (<4 +00). (B13)
For definiteness, we choose
/‘\3/200

Substituting Eq. (B13) into Eq. (B4), we obtain

i

13/2
A= 4oe Vi1,

or

v & <1 - 2y7
3 (kBy(0)Sr)

The above analysis requires \(kB(’)(O)S R) TR A

— A,) EB ) S (Bls)

> 1.




Chapter 4

Effect of Viscosity on Resistive Tearing Mode with
Equilibrium Shear Flow

4.1 Introduction

In this Chapter we generalize-the work of the previous.chapter by in-
cluding, in addition to equilibrium shear flow, viscosity in the resistive tearing
problem. Generally, viscosity is described by a complicated tensor (Braginskii,
1965). However, since plasma motion tends to exhibit transverse gradients -
near the magnetic null plane, the dominate viscosity comes from the transverse
component (FKR, 1963, Dobrowonlny, 1983, Porcelli, 1983, Einaudi and Ru-
bini;.1989). Thus the viscosity in our model equation should be understood
to be transverse. Since this viscosity is often comparable with the resistivity
in laboratory plasmas (FKR, 1963) and much: larger than-the-resistivity in-
astrophysical plasmas, such as those that occur in the solar- wind and active
coronal regions (Dobrowonlny, 1983), one expects this to be an important effect.
Moreover, as noted in the introduction, since the tearing instability produces
vorticity, and equilibrium shear flow can enhance this production, the diffusive
nature of viscosity should have a significant influence, one that depends upon

the equilibrium shear flow.

Previously, the effect of viscosity on the resistive tearing mode without
flow was treated (FKR, 1963, Porcelli, 1983). These authors found that the

growth is suppressed while the width of the singular layer is increased. Also,

75
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Dobrowolny et al. (1983) have given scalings in the case where it is assumed
that the viscosity is comparable with the resistivity. Assuming that the viscous
term dominates the inertial term in the singular layer, and that the shear flow
is small, Bondeson and Persson (1986) solved the constant i tearing mode
problem by making use of Fourier transforms. Recently, Einaudi and Rubini

(1989) have investigated this problem numerically.

Here we generalized the work of Bondeson and Persson by allowing
the equilibrium shear flow to be large (Chen and Morrison, 1990b). As in
their work, we Fourier transform the internal singular layer equations in order
to derive growth rate expressions. We find that for small viscosity there is a
general tendency to diminish the growth rate. Also, when the viscosity becomes
comparable with the resistivity and the flow shear is larger than the magnetic
field shear at the magnetic null plane, and there is no constant i tearing mode.
Matching in this case cannot be achieved. Another result of this paper is to

justify the constant ¢ approximation.

In Sec. (4.2) the basic equations are set up and we briefly discuss the
role of viscosity in both the external region and the internal singular layer. In
Sec. (4.3) the internal singular layer equations are discussed in two shear flow

limits. Finally, in Sec. (4.4) we summarize.

4.2 Basic Equations

Including the viscosity term in Egs. (3.1) and (3.2) results in the

following linearized perturbation equations:

(14 ikVo)(¢" — k2) — k"6 = ik Bo(s” — k) — ik Bl + gv--g‘; (4.1)
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(v + ikVo)p — ikBog = glg(w" _ k) . (4.2)

We assume that both the resistivity and viscosity are very small; i.e., Sy >
1, Sp > 1. For convenience, we choose a reference frame such that 4(0) = 0,
where as before y = 0 is the location of the magnetic null plane. Only the
tearing mode is considered. Unlike the case without viscosity, the small resis-
tivity and viscosity are not only important in the internal singular layer, but
also important in a thin layer at the external physical bdundary (Drazin and
Reid, 1982; Currie, 1986). This boundary ia,yerrwﬂl affect the matching quan-
tity A’s-which is defined by A! = %% ’ . However, if the boundary is-far
away from the singular layer, this effect is negligible. In the internal singular

layer, the viscosity influences magnetic diffusion by diffusing the vorticity pro-
duced during the tearing instability. We discuss this problem in the following

section. Without loss of generality, we-assume B4(0) > 0. Also, we assume

[V5'(0)/B5(0)] £ O(1), |B5(0)/ Be(0)| S O(1), and k S O(1).

4.3 Internal Singular Layer

Denoting that the scale length of the internal singular layer by e, we
consider Egs. (1) and (2) near y = 0. Using the stretched variable { = y/e,
Egs. (1) and (2) become

L RO, 1RO ) P )
<kB'(> * Bo0) ¢ T2 By(0) C) 5t " B0 °
(i 1 BRO) o\ 0% BH0) 844
- (43 RO ) T B PR O @9

PR LRO) )y [ L B
(kBa<o>e+ SOIRER Bo<o><>’” (“ Bo<o><>¢
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0 2
—0—52:-2-+C9(6), (4.4)
where D and C are defined by
1
b= immes,
C=— (4.5)
~ kB4(0)e3Sg ]

The quantities D and C' measure respectively the diffusion of the vorticity
and magnetic fields in the singular layer. When the viscosity is very small
compared with resistivity; i.e., 2 & 1, magnetic diffusion dominates vorticity
diffusion. In this case the viscosity only alters numerical coefficients of the
tearing mode growth rate; the scaling is unchanged. Here we omit this case,
but consider the more interesting case where viscosity is comparable or larger
than the resistivity and the constant 1 approximation is assumed. As discussed
by Chen and Morrison (1990a), the constant i approximation requires that

——7———' < 1. This implies that the anticipated growth time is much longer

kB4(0)e

than the local Alfvén time at the magnetic null plane. Also we consider the

problem in two shear flow limits. One is the very small shear flow case, where
flow shear is much less than the magnetic field shear at the null plane. In the

other limit, the flow shear is comparable with the magnetic field shear.

4.3.1 Very small shear flow
V5(0)

By(0)| ~ |EBy(0)e

small that the convection terms are at most comparable with the inertia terms.

< Y

~

Assuming , which implies the tlow shear is so
From the constraint imposed by the external solution, we have the ordering

@~ E_‘;‘Y(_d_)_g % in the internal singular layer (Chen and Morrison, 1990a) and
0
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chap. 3. Thus even though the viscosity is much larger than the resistivity, the
magnetic diffusion still dominates the vorticity diffusion. In order to facilitate

comparison of the orders of various terms, we replace ¢ by a new variable ¢

defined by
— -7
v ¢/ (’Z kB{,(O)e) : (4.6)

and rewrite Egs. (3) and (4) as

- () (0r28) 3200 () 25

(C +_B"<;:Cz> b B0) +O<€ v ) wn

2 By(0 D) 1 B5(0)e
~ ) kVO'(O) V "0) 2
EBL(0)e Kl S ) Y- “”] B0) < ¥
9% v

In order to find the solutions matching the external solutions, we must have

Sy ISR
DV ~ Y5

instead of il C ~ 1 as required in the case of zero viscosity (FKR, 1963,
kBy(0)e

Chen and Morrison, 1990a). This implies that the viscous term dominates the

the scaling:

inertial term in Eq. (7), and the width of the internal singular layer scales as

Cen (kBO 0)\/:9?5—‘,)_1 o C(4.9)

The natural expansion parameter in Egs. (7) and (8) is ( - B’Y( 0)61/ SR ), in-
0

stead of (

2
) in the case of no viscosity. This implies the following

2
kBs(0)e
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expansions
_ Y Sr
v=3 (rEmelss) »
S
Sl E e

Inserting Egs. (10) into Eqs. (7) and (8), the leading order of Egs. (7) and (8)
yield ¢ = const., as expected. To the first order, Egs. (7) and (8) yield

Sy 0%z, . 0%y e BI(0)
D/ == = - 4.11
\/; o = (B ) B0 (4.11)
Sh 6%
o — Cwo—C\/—R 8421 , (4.12)
kVa(0)e €

where @, = g — 1 ———— 1)y — ——?— (1pg. We reduce the order of
v 2 (kBg(O)e V E\B} )
Egs. (11) and (12) by Fourier transformation

Wy = /_ °°°° ey (B)dk

%o =/_oo e Bo(k)dk .

The transformed equations are

SV o) = i (i e B”(O)
¢05(k)"i‘£‘lk‘¢o(k) = —C\/?H%( ) - (4.14)

Integration of Egs. (13) and (14) gives

Zo(0F) — Bo(07) = —itho (4.15)
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o+ _ B"(O)
K2y (B)| = : 0 o (4.16)
o= (kB{:I(O)e \/%ﬁ“) Bo(0)
Using Eq. (14), Eq. (16) yields
d d _ 1 Bj0)

After Fourier transformation, the matching quantity A’ becomes

;o Ldge W e Eh(O)
A S B U T B0 L. a %
| _ . 7¢Sn (dBy(0%) | d(07)

Combining Egs. (15), (17), and (18), we have

<g_' Z.Ba'm)) soo(O“’)_(A’“Bé’(O))soo(O')  aySee. (419)

m  By(0)) =l T \'x T Bg(0) ) 2eel)

When k ## 0, we-obtain from Egs. (13) and (14)

@B (k)

2 — DCk*py(k) = 0., (4.20)

with the boundary condition that $,(k) vanishes at infinity. Equation (20) is a

special case of Eq. (Al) which is solved in the Appendix in terms of Kummer

+
functions. Applying Eq. (A6) yields the quantities %o(—-;— {?J)) , which are then
dk
substituted into Eq. (19), yielding
2
11l >1’3 r(3) _2/3<Sv>1/6 :
7= (18 kBY(0) F(g)ZSR =) A (4.21)

Neglecting the small shear flow in the corresponding result of Bondeson and

Persson (1986) produces a growth rate equal to that given in Eq. (21).
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Now we check the validity of our assumption < 1, the

_7 /5=
EBy(0)eV Sy

assumption that implies the constant ¢ approximation. Equations (9) and (21)

A
kBé(O)E SV

verifying the assumption. The form of the above is the same as the case without

give

~ e <1,

viscosity, however, viscosity increases the scale length of the internal singular
layer. Obviously, our approximation is not valid when A’ — oco. This case is
the regime of the no constant-i tearing mode. We do not consider this case

here.

In the case without viscosity, the small flow shear V;(0) contributes
a destabilizing correction to the growth rate of O ((VH(O)/B{,(O) / m> 2)
(Paris and Sy, 1983, Chen and Morrison, 1990a). When viscosity is included
and it is assumed that the viscous term dominates the inertial and convection
terms, not only are the scalings changed, but also the correction to the growth
rate due to V(0) is changed to O(V5(0)/B§(0)), and thus neglected. In the
numerical work of Einaudi and Rubini (1989) and Ofman et al. (1991), the
scaling of Eq. (21) is obtained in the limit V5 (0) = 0, and so does Ofman et
al (1991). We also want to emphasize that even though the flow shear at the
magnetic null plane is small, the flow in the external ideal region could be large,
which can significantly change the matching quantity A’. For the profile (5b)
of Einaudi and Rubini (1989), where V5 (0) = 0 and the flow scale length is
small the |A’| value is too large for the validity of our constant 1 assumption.
In this case a mixture of tearing and Kelvin-Helmholtz instabilities occurs, and
it turns out (Einaudi and Rubini, 1989) that small viscosity has no significant

influence. However, a very large viscosity will stabilize the instability.
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rrTTT

Figure 4.1: Growth rate scaling with viscosity parameter Sy. The other pa-
rameters are Sgp = 10%,V, =0,k = 0.5.
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4.3.2 Comparable shear flow

!

In this limit, we have the ordering ‘jg(((()))) ~ O(1), and ¥ ~ ¢ in
0

the internal singular layer (Chen and Morrison, 1990a). Thus the convection

term now dominates the inertial term, and the vorticity diffusion is greatly en-
hanced. The relative magnitude of resistivity and viscosity becomes important
and decides which diffusive effect dominates in the singular layer. We consider
the case where viscosity is comparable with the resistivity. Thus in Eqgs. (3)
and (4), we assume D ~ C ~ 1. This gives the scale length of the singular
layer

e ~ (kBy(0)Sr)™Y/° ~ (EBG(0)Sy)™*/? (4.22)

and the appropriate expansions become

. 7 n /
v=2 (kBsm)e) b

= (e

Inserting the above into Eqs. (3) and (4), the leading order leads to

Vs(0)
B5(0)

¢0 = ¢0 = const ,

which means in addition to the “constant 3” approximation, we have a “con-
stant ¢” approximation in this limit.
To first order, Egs. (3) and (4) yield
iD 84?’;1 + ‘/;),(O) Cazal _ € VO”(O)
4 7 2 7
o "0 ¢ () BA0)
- (1 VO'(O)"’) (T p WO e Bi(O)
Bi(07) © 0 T B4(0) B0 (gt Bo(0)

%o

bd4.23)
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2
bo—ith =052, (424)
= ¥(0) 1 e V5(0)B5(0) — B;(0)V5'(0)
here ¢, = ¢1 — —; 1+ = -
whe ¢ ¢ BO( ) Tl’ + 9 (kB(:/(o)C)C B (0) "bO

Equations (23) and (24) are similar to Eqgs. (11) and (12). Again,
Fourier transforming and following the same procedure as in the previous limit,

vields the equations analogous to Egs. (19) and (20),

A" . Bi(0)By(0) - Va(0)Vy'(0)) $:(0%)
<7“” V3(0)? = By(0)? >—ﬂ——d%£*’

B (é/ . By(0)BY(0) — V’(O)V"(O))-a(o—) = —2veSp; (4.25)

r GOP=B07 ) T
when k # 0, ’
By =1 3,5 _ Vi0) D4 C ;[
C dk? _ By0) C dk
v:(0)
+ (Dk“ — 2k BO(O)> F.(k)=0, (4.26)

with the boundary condition that @, (k) vanishes at infinity.

Equation (26) is exactly the same-as Eq..(Al) in the appendix with -

_ %) YVa(0)?
When

~ By(0) By(0)?

that satisfy the boundary condition. Thus no constant ¥ tearing mode exists.

{4 2
When g((g)) < 1, applying Eq. (A6) to Eq. (25) yields
0

=5 R o - 0] R (-2

> 1, there are no appropriate solutions to-Eq. (26)

23 [0 (LG=36)  T(G+3
SR [A (F(%—%5)+F §+§5)>
By(0)Bg(0) — V5(0)V5'(0) (T(53-36) T(3+196)
V(0 — By(0)? (r(g_%g) —p(§+%5)>} , (4.27)
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where

__ 0)/B0)(Sr = Sv)
V(02 Ba(0)*(Sn — Sv)? + 45 Sv

6] < 1.

The above result is very different from the case without viscosity,

but if g((g)) = 0 the growth rate expression for small shear flow, Eq. (21),
0

is obtained. The assumption

& 1 requires [eA’| <« 1 as before.

( )e
’( ) .
0,( 0y —+ 0 needs to be discussed.

It B/(O)BH(O) ( ) ( ) # 0 and Sr # Sv, there is a singular-

Va(0)? . Va(0)?
B’( ) = 0 for the growth rate; i.e. as 1 — BL(0)?

above), the imaginary part diverges, while the real part approaches zero as
Ok
By (0)?

of A’, due to the large imaginary part of the growth rate.

However, the special case 1 —

ity at 1 — — 0 (from

1/3
) . The “constant %" approximation is not valid for any values

If By(0)Bg(0) — V5(0)Vy'(0) = 0, or Sg = Sy, there is no imaginary

part of the growth rate expression, and the “constant ¥” approximation is valid
V5(0)?

————= — 0.

By(0)?

Einaudi and Rubini(1989) have not explored this limit in detail. Qual-

for all values of A’ when 1 —

itatively, their results agree with ours, in that the growth rate is suppressed
when viscosity is comparable with resistivity and Z;Egi O(1). When the
viscosity is much larger than the resistivity, vorticity diffusion dominates mag-
netic field diffusion. In this case there is streamline as well as magnetic field

reconnection, and the viscosity enhances the growth rate. This has been shown

in the numerical work of Einaudi and Rubini (1989).
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4.4 Summary and Discussion

We have investigated the effect of viscosity on the constant-” tearing
mode, with the presence of equilibrium shear flow. This problem has been
treated in two shear flow limits. When the flow shear is much smaller than the
magnetic field shear at the magnetic null plane magnetic diffusion dominates
vorticity diffusion and the scale length of the internal singular layer is changed
from S'E?/ ® to (SrSv)~Y/8, while the scaling of the growth rate is changed
from S5%° to S5*/° <.gY.) 1/6. The influence of Vjj(0) is negligible, however,
the flow: in the-external ?deal region can be large and significantly change the

'matching quantity A’. When the flow shear is comparable with the magnetic

shear, and the viscosity is comparable with the resistivity, vorticity diffusion: -

is as important as magnetic diffusion in the singular layer. The scaling of the

2/3

growth rate is changed from S’ﬁl/ ? to S5*/® and the scaling of the singular layer

remains as 5'};1/ e Moreover, the A’ > 0 instability criterion, which is removed

in the case of no viscosity and V;(0)Vy'(0) — Bg(0)B5(0) # 0, is restored. When
Va(0)?

W > 1, there is no constant-1 tearing mode.
: : V5 (0)°
We have also discussed the special case where-1 — W — 0. In
0
this case, if V5(0)V'(0) — By(0)Bg(0) = 0, or Sy = Sg, the “constant ¥”

approximation is valid for all values of A’; and the growth rate goes to zero

VI(o)Z 1/3
with a factor <1/— B2(0)2> . While if V5 (0)Vy'(0) — B{(0)B5(0) # 0 and
4 2
Sy # Sg, there is a singularity at'1 — B? Eg)) 5 = 0 for the imaginary part of the
0

growth rate, and the “constant 1” approximation is not valid for any value of

A'. Thus our calculation is not valid in this case. However, we can still conclude

. e s (0)2 .
that the tearing instability is totally suppressed when 1 — lB/QI—E—Og—z — 0, since
0
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1002
there is no tearing mode when -go;—((%))—z > 1, and the growth rate has a factor of
0
V(0 /3 V2(0)?2
1— . 1
(-Eor) ™= o<

Finally, in the case V(0)/B§(0) ~ O(1) with viscosity much larger
than resistivity, vorticity diffusion dominates magnetic field diffusion and vis-

cosity enhances the growth rate (Einaudi and Rubini, 1989).

4.5 Appendix — Solution of General Second Order Sin-
gular Layer Equation

Here we consider the equation

A1 d&f AD+0C) ,df y _
T g K+ (DF —24R)f =0, - (A])

where A, D, and C are real parameters and D > 0, C > 0. We seek solu-
tions of Eq. (Al) subject to the boundary condition Ikllim f(k) = 0, allowing

discontinuity at k£ = 0.

Equation (Al) is similar to the equation discussed by Bondeson and

Persson (1986). In terms of the variables

3

JAX(D — C)2 +4DC
z= k

A% 1
di=l( A(D +C) il)
~ 2 \JA(D -C)+4DC
g=eif, (A2)
it becomes
z%+[§iz]j—z+[i%+§a]g=o, (A3)
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where
_ AD-0)
\/A%(D — C)2 +4DC

6] < 1.

It is easily seen that the signs of dy and d_ are opposite if A2 < 1, and the

same if A% > 1.

Equation (A3) is Kummer’s equation (Abramowitz and Stegun, 1970).
When A% > 1, there is no solution which satisfies the boundary condition.

When A% < 1, the appropriate solution is

/
f=e2U (%-%5%,2) , (A4)
if £ <0, and
1 1.2
— pO+2 - 25 2 2
f=eU (545652) (45)
if £k > 0. In the above, U is'-the Kummer function.
Using the expansion of Kummer’s function for small arguments
N T 1 1—b 1
Ula,b2) ~ {m Te—bTl) ° T(aTE= b)} !
0<b<1.
We obtain from Egs. (A4) and (A5) ,
1/3
£(07) _ TG -4) 1 A2
4 TETGE -39 \32,/a2(D - 0)2 +4DC
1/3
£09) _ TRITGE+9) 14 A6
G DTG +396) \32,/42(D - C)2 + 4DC

The above results are used in Sec. (4.3).



Chapter 5

Nonlinear Interactions of Resistive Tearing Modes in
the Presence of Equilibrium Shear Flow

‘5.1 Introduction

In the previous chapter we have assumed in Eq. (1.11) that the per-
turbations are very small that higher order nonlinear terms are discarded. In
this chapter, we consider the case where nonlinear terms are important. For
the nonlinear evolution of shear flow driven K-H instability, a lot of work has
been done, e.g. Horton et al. (1987), Tajima et al. (1991). Here we are
only interested in the nonlinear evolution of tearing modes in the presence of

equilibrium shear flow. Center manifold reduction is employed.

For resistive tearing mode, the nonlinear evolution of a single mode
has been treated before. Rutherford (1973), White et al (1977) found that
when the width of the magnetic island exceeds the width of the singular layer,
the growth of constant ¥ tearing mode slows down from exponential to alge-
braic, finally saturating é,t a steady state. However the non-constant ¢ tearing
mode continues to grow exponentially even in the nonlinear phase (Waddell et
al, 1976, Hazeltine et al, 1986). After a sufficiently long time, Thyagaraja and
Haas (1990) shown that there exists a saturated m=1 tearing mode in a toka-
mak when the toroidal current density of the unperturbed equilibrium has a
maximum within the m=1 resonant radius and parameter dloga(r) 3 sufficiently

dlogn(r)

small. These authors used the nonlinear critical layer analysis (Benney and

90
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Bergeron, 1969, Haberman, 1972, Thyagaraja, 1981). Numerically, Steinolfson
and Van Hoven (1984) found that a secondary flow vortices, opposite in di-
rection to the linear vortices, generate a new magnetic island centered at the
initial x-piont. Saramito and Maschke (1985) applied bifurcation theory for
compact operators to the general problem of the nonlinear solution of the 3D
incompressible visco-resistive MHD equations; they proposed that there exists
a saturated tearing mode state when Sg is larger than a critical value, where
the original equilibrium loses stability. Recently, Grauer (1989) has studied the
nonlinear interactions of two tearing modes near marginal stability. Applying.
center manifold reduction, the resistive-MHD equations are reduced to four
amplitude equations, which are significantly easier to analyze. Compared with

the usual small amplitude expansion (Stuart, 1960, Waston, 1960) , the cente:rww
manifold reduction has two advantages (Guckenheimer and Knobloch, 1983).
Firstly, it has been rigorously shown to be locally attractive (Sijbrand, 1985,
Crawford, 1990), i.e. any solution which stays sufficiently close to the original
equilibrium must eventually converge to the center manifold: Thﬁs for local
time asymptotic states, such as steady state and periodic solutions, the center
manifold reduced equations give a complete answer. Here "local” means that
the solution is close to the original equilibrium. Secondly, unlike the usual small
amplitude expansion in which the dependence upon small parameters must be
specified, in center manifold reduction the order of magnitude of all variables is
naturally expressed in terms of the (small) distance from the marginal equilib-
rium state. However, the calculation of the coefficients in the center manifold
reduction is as tedious as the small amplitude reduction, and usually numerical

evaluation is required.
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If the model considered possesses certain symmetries, the reduced
equations can be discussed in general terms without knowing the coefficients.
Even though the presence of symmetry may complicate the problem by forc-
ing the marginal modes to have a multiplicity larger than unity, it can greatly
simplify the reduced equations by allowing only the terms satisfying symmetry
constraints (Golubitsky et al, 1989, Crawford and Knobloch, 1991). Recent
studies of mode interactions for systems possessing symmetries have been very
successful in explaining complicated behaviors in some experiments; for ex-
ample, Taylor-Couette flow (Golubitsky and Lanford, 1988), and the Faraday
experiment ( Crawford et al, 1990). The model used by Grauer possesses O(2)
symmetry: the rotation, elements of SO(2) act by translation of X—X+X),
and the reflection, elements of Z(2) act by flipping X— —X. This O(2) sym-
metry is common for systems with circular or periodic slab geometry. Features
of O(2) symmetry-constrained amplitude equations have been well studied by
Dengelmayer (1986) and Ambruster et al (1988). In those references it is shown
that such systems can saturate at various types of symﬁetry-broken states de-
pending on different parameters domains. The predicted states of a mixed
mode, traveling and standing waves have been observed in Grauer’s simula-

tions (1989).

In many circumstances plasma equilibrium is not static, for example,
in recent Tokamak experiments, shear flow plays an important role in the tran-
sition from Low to High confinement mode. When shear flow is present, the
reflection [Z(2)] symmetry in Grauer’s model will be broken, while the transla-
tion [SO(2)] symmetry remains. Consequently shear flow is expected to affect

the nonlinear evolution of tearing modes. In recent numerical simulations,
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based on straight cylinder reduced magnetohydrodynamic equations, Persson
(1987), Persson and Bondeson (1990) have discussed nonlinear oscillating is-
land states for the evolution of tearing modes, which are driven unstable by
shear flow. They also found that these oscillating island states remain when

the spectrum is limited to only the modes m/n = 2/1 and 4/2.

Here, we study the nonlinear evolution of tearing modes in the pres-
ence of shear flow. We consider an analytical slab geometry model , in which
two modes with wave numbers k and 2k are near marginal, while all ‘other
modes are stable. Thus the nonlinear evolution of this model is dominated by .
the interaction of the modes k and 2k. The slab geometry is adopted for simplic-
ity and to be consistent with our previous linear calculations. Since magnetic’
reconnection occurs only in a very thin layer, slab geometry provides a physical
picture for understanding other more complicated geometries, such as cylindri-
cal and toroidal. To find the asymptotic states of the nonlinear interaction,
the dissipative MHD equations are reduced to four amplitude equations, using
center manifold reduction. The model which we will use is similar: to the one-
used by Grauer. However, the breaking reflection symmetry by the: presence-
of shear flow allows the coefficients of the reduced equations to be complex.
Thus the dynamics of the reduced amplitude equations are more complicated.
Employing bifurcation analysis, various structures in addition to the oscillat-
ing island states have been discovered. Also the roles of the new parameters

introduced by flow(imaginary part of the coefficients) are identified.

In Sec. (5.2), the model is described and results of linear calculations
are briefly reviewed. Sec. (5.3) is devoted to the center manifold reduction, in

light of the constraints of symmetry on the reduced equations. Solutions of
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the reduced equations are discussed in Sec. (5.4). Finally Sec. (5.5) contains

discussion and a summary.

5.2 Model and Linear Problem

Assuming periodic boundary conditions in the x-direction, the per-

turbed stream functions can be expanded as
znk:z:
P(z,y,1) Z% (y,)

é(z,y,t) Zé (y,t)e™* 4+ c.c. (5.1)
where k = L , and L is the period in x direction.

The linear tearing mode problem with shear flow has been studied
in previous chapters. In the region away from the magnetic null plane (the
external ideal region), the magnetic field is frozen into flow, hence as noted
several times now, global flow can dramatically change the matching quan-

tity A, = 1—#—1—;(8#’15;0” - 3"”’350—)). In the region around the magnetic null

plane(the singular layer), the tearing mode is very sensitive to the flow shear.

LB v, (0)
1/kBg(0)e| < {—EZ(—O)

, Where v is the growth rate , and ¢ is the width of
the singular layer, i.e. convection dominates the inertia term, the scaling of
the tearing mode will change. Hence near marginal stability, even small flow
shear will cause significant change (Persson and Bondeson, 1989). It has also
been shown that the stable tearing mode can be driven unstable by strong
shear flow (V;(0)/B,(0) ~ O(1)) provided V;(0)V, (0) — By(0)Bq(0) # 0 and
S71/Sz < 1. In this case the condition of A" > 0 for instability is removed.
Such shear flow driven unstable tearing modes have been found numerically

(Persson and Bondeson, 1989).
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Suppose magnetic field and flow are characterized by parameters such
as, their magnitudes, shear length etc. Here we want to find the critical pa-
rameters where two modes with wavenumbers k and 2k are marginally stable,
while all other modes are stable. Then the nonlinear evolution near these crit-
ical parameters is studied. There are many situations where we can find such
critical parameters. One example is a piecewise continuous magnetic‘ﬁeld with

a separated double jet flow

1, y>1
Bo(y) = Y, ly| <1 )
-l,y< -1

0, lyl<1

In the above profiles, flow only exists in the external ideal region, and the
tearing mode is unstable only if A' > 0. With the assumed profiles, A is equal

to zero at wavenumber kg when

(l - /{,‘0 tanh(ko))
ko

V02 + (2»._ Voz)ezko(b—l)
—V02,+ (2 _ %2>e2ko(b-—1)'

=(1-7)

Assuming 1 < VZ < 2, then there exists two solutions for ko. By choosing
appropriate values of V; and b, we are able to get A; = 0 and A, = 0, while
A, < 0 for n > 3. Thus the above profiles meets our requirements: there
exits critical parameters V5 and b where modes with wavenumber k and 2k are
simultaneously marginal stable while other modes are stable. Another example
can be constructed from a magnetic profile where the tearing modes are stable,
ie. A < 0 for all n, by including shear flow that drives the tearing modes
unstable. This is the case treated in Persson and Bondeson’s numerical simula-

tions. Again by choosing parameters V'(0)/B’(0), V"(0)/B"(0), and S;'/Sz!
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appropriately , the modes k and 2k can be driven simultaneously unstable while

the other modes remain stable.

Below, we consider the nonlinear evolutions for parameters near to
the critical values. To find the possible asymptotic states of the nonlinear
evolution, the dissipative MHD equations are reduced to the four amplitude

equations by center manifold reduction, to which we now turn.

5.3 Center Manifold Reduction

Center manifold reduction and related theorems can be found in many
references ( Marsden and McCracken, 1976, Guckenheimer and Holmes, 1983,
Crawford, 1990). So here we just give a brief description. For simplicity and

clarity, let us first look at an ordinary (finite) dynamical system

X = AX + N(X,Y), (5.2)
Y = BY + M(X,Y), (5.3)

have respective marginal and stable linear eigenvalues, M and N are nonlinear
terms, and M (0,0) = 0, N(0,0) = 0. Thus (X,Y) = (0,0) is an equilibrium
state (fixed point). For the equations linearized about (X,Y)=(0,0), there exists
an invariant center eigenspace spanned by the eigenvectors of A, i.e. Y=0.
When the nonlinear terms are included, the main center manifold theorem
states that there still exists an invariant subspace called the center manifold.
The center manifold is tangent to the center eigenspace at (X,Y)=(0,0), as
shown in Fig. 1, and has the same dimension as the center eigenspace. Thus

center manifold can be expressed as a "graph of a function”, i.e.

Y = h(X,Y), (5.4)



AY

h(x)

Figure 5.1: Center manifold depiction
with
h(0,0) =0, Dxh(0,0) =0. (5.5)
Also, if M and N are differentiable to order r, then h is differentiable to order r-1.
As mentioned earlier in the Introduction , center manifold is locally attractive.
and so-for the purpose of finding the local time asymptotic states, the system-
can be reduced to lower dimension, the dimension of the center manifold. The

dynamics on the center manifold are expressed as.
X = AX + N(X,h(X)). (5.6)
It now remains to calculate h(X), which is achieved by pluging Eq.(7) into
Eq.(6). we have
R(X)(AX + N(X, k(X)) = Bh(X) + M(X, h(X)). (5.7)

In most cases Eq. (10) cannot be solved exactly for h(X)(otherwise an exact

solution of the original equations would been found). However h(x) can be
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approximated as a Taylor series near (X,Y)=(0,0), satisfying the conditions
Eq. (8). Usually only a few terms are needed to unfold all of the local asymp-

totic states.

Center manifold reduction can also be extended to partial differential
equations (Marsden and McCracken, 1976). However, the main center manifold
theorem can not be applied directly to our present problem, since the modes
k and 2k are not exactly on the imaginary axis, but this difference can be
overcomed by shifting parameters. Let Z, denote the distance of the parameters
from the critical values discussed in the last section, and expand the dynamical

system by adding a new equation
Zo = 0. (5.8)

Since the modes k and 2k are near marginal, Zy is very small. Taking the
equilibrium state of the enlarged system as (:Zl> =0, Zy = 0, the spectrum
1

of this new equilibrium with wavenumber k and 2k lies on the imaginary axis.

Analogous to Eq.(7), we have in the center manifold

($)eti= T 2.0 (5) e+ 0.0+ harw 20 20 ), 59
' n=1,2

where (j;”c) with n=1,2 corresponds respectively to the critical linear marginal
eigenfunctions of modes k and 2k, Z, are their amplitudes, Z, is the complex

conjugate of Z,,, and the function & is subject to the following constraints

h
h(z,y,0,0,0) =0, A =—(z,%,0,0,0) =0,
Ooh h
a_Zn(may’Ova) - 0’ 6_20(3:73’)0,0’0) = 0.
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Pluging Eq.(12) into Eq.(3) results in the following reduced amplitude equa-

tions (see the appendix for details)

Zl = fl(Zl, Z—la Z2, Z_2a ZO)

ZZ = fZ(ZhZ—IaZ27 Z_2,Z0) (510)

with f1(0) = 0, £2(0) =0, 2£(0) =0, ££(0) =0, 2£(0) = 0 (n=1,2 and

i=1,2). For the nonlinear evolution with |Z| small, the functions in Eqgs.(13)

can be Taylor expanded. One needs only expand to some finite order to unfold

the new branches of solutions. However, just third order the number of terms

is very large; calculation of all of the coefficients is a tremendous amount of
work. Fortunatly, in the present model many terms in the expansion will
vanish due to the constraint imposed by the symmetry of the system. Thus
the reduced amplitude equations are greatly simplified and can be discused as
to their possible solutions‘ even without knowing the coefficients . As noted
in the case without flow, this model possesses O(2) symmetry, and Eqs(3) are

"equivariant” under the following transformations.

Txo <,:ii> 1(‘7;7 y7t> = (zi) (3) + .’L’(),y,t),

(3 o= () oo

ie. if <;Zl> (z,y,t) is a solution of Egs.(3), then so is Te, (3)1) (z,y,t) and
1 1

Z (:Zl) (z,y,t). Inclusion of shear flow breaks the reflection symmetry, how-
1

ever the translation symmetry is preserved. Thus the reduced amplitude equa-

tions are equivariant under the following operations:

Teo(21,22) = (eikz° 2z, e2F%0 Za).
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The basic polynomial invariants for the above operations are |Z; [*, | Z|?, 712 Z,,

Z2Z,. Thus the expansion of Eq. (13) must have the form:

Zl = ()\1 + iwlc)Z1 + a]_ZlZg + b]_Z]_'lez + 61Z1[ZQI2 + 0(Z4)

Zz = (/\2 -+ iQ)gc)Zz -I- GQZ]? + ngz‘Z1 |2 + CgZlegI2 + 0(Z4), (511)

where \; + iw;, (i=1,2) are the linear eigenvalues of the near marginal modes,
w; are the eigenfrequencies at the critical values Z, = 0, and A; = ¥(Z,). For-
mulas for the coefficients of Eqgs.(14) are calculated in the appendix. Breaking
reflection symmetry allows the coefficients a,b and ¢ to be complex. Similar
equations have been discussed by Knobloch and Proctor (1988) for studying
interactions of two oscillators with 2:1 resonant frequencies. However, these
authers mainly discussed the equations near a special degenerate parameter
regime, where the pure mode (c.f. Sec. (3.4)) solutions has double zero eigen-

values. Here we are interested in more general parameter regimes.

Furthermore, the inessential nonlinear terms Z;|Z;|* can be removed
by a near idendity SO(2) invariant coordinate transformation Z; — Z;, Z; —

Zy — %Zf Equations (14) become

Zi= M+ +aliZe+aZi|Bf +0(2Y  (5.12)

Zy = (Mg + 1w3e) 2y + 0222 4+ bZ5|Z)* + caZ4| Za ) + 0(Z%), (5.13)

where b = b, + 2b;, and the small modification of coefficient a, is neglected.

Now let a1 = pae™®, a; = pse'®™, b = pe®, ¢; = p1e', ¢y = prei®?, and

assume |ajazcy| # 0. We can reduce the number of parameters in Eqs(15)

and(16) by the following rescaling

-2 %Zl, Zy — ﬁc-wszz, t— _/.’Zt,
4

P2 P2 A3
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The rescaled equations are
Zy= (M +01) 21 + 2125 + 511 24| Z,P +0(2%) (5.14)
Zy = (g +@00) 2 + ef?zf + 5ye’® 2| 212 + €92 25| Z,* + 0(Z2%), (5.15)

where § = 03 + 04) /\1 = %/\17 /\2 = %/\2, Lblc = %wlc’ (:JZC = %L‘JZC) ,51 =

2.,y = £2£2. For convenience we drop "the tilde " in the following discussion.

p2p4

In the next section, bifurcation analysis is employed to find the possible time
asymptotic states, i.e. branches of nonlinear solutions of the reduced amplitude

equations that evolve from the linear dynamics...

5.4 Solutions of the Reduced Equations‘.

Bifurcation analysis is the natural technique for finding the possi-
ble time asymptotic states when parameters Z, are away from but still near
to,. their critical values. There are two types of bifurcations (Guckenheimer
and: Holmes, 1983): "local” and "global” . Local bifurcation is-recognized
by a change in the stabﬂityi of: a-solution.. Depending on how the stability
is changed, the local bifurcations are again divided into "Steady State” and
"Hopf bifurcations”. If stability is changed because an eigenvalue traverses
zero, the bifurcation %s of the steady state type; if the stability is changed be-
cause eigenvalues are pure imaginary at criticality, the bifurcation is of the Hopf

type, and the new branch of solutions are periodic. As for the global bifurca-

tion, it’s existence is not revealed by local analyses and will not be of interest

here. We are interested in the local bifurcation near the original equilibrium
( Z1,22,2Z4 = 0). This problem has been reduced to the four dimensional

amplitude equations (14) and their complex conjugate derived above.
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In polar coordinate Z; = rye*!, Z; = rye*?, and Eqgs.(17) and (18)

become

1 = (1 + r2cosp + pycoshiriiry (5.16)

o = pory + cos(p — 0)r? + pycosfyriry + cosfyrs (5.17)
2

o =06—(sin(p — 0)—:—1- + 2stniory) + ppsinbyri + dr2 (5.18)
2

where p; = Rek;, Bi = ImA; (1 =1,2), § = woe+ Fr —2{(wic+ 1), ¢ = @2 —2p1,
and d = sinf; — 2pysind;. Since the frequencies w;, arises mostly from Dopler
shifting, and such Dopler shifts are cancelled in the combination wy. — 2wy, §
is a small parameter. In the case without flow, § = sinf = d = sinf, = 0, and
hence these are the parameters introduced by flow. Note that what matters
in the nonlinear evolution is the phase difference, not the individual phase of
each mode. Thus, the original four amplitude equations (17) and (18) and
their complex conjugates are reduced to three independent eqs.(19)-(21). The

variation of individual phases of each mode is governed by
1 = wie + P + siners + ,0132'7”&917'3,
: : r? . .
By = wo, + P2 — sin(p — 0)7'— + ppsindyr? + sinfdyri.
2

Bifurcated solutions of Egs.(19-21) have a magnetic flux function near

to the magnetic null line (for constant 3 tearing mode) given by

- 1,
(VRS —-§B0(0)y2 + ricos(kz + wit + ¢1) + recos(2(kz + wit + 1) + ), (5.19)
where w; = wy, + By + rasing + rip,sinf;. Note in the above expression

we haven’t take into account the rescalings of coefficients, but this does not
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change the qualitative physical picture. If wy = 0, the solution is a steady state
island, while if wq # 0, the solution is a traveling island state. It is interesting
to note that a pure mode solution r; = 0,7, % 0 still solves the nonlinear
interaction equations, even if higher order terms are included. This is due to
the symmetry which has forced many nonlinear interaction terms to vanish.
However, a pure mode r, = 0,7; # 0 is not a solution. A contour plots of
Eq.(22) with wit + 1 = 0 and ¢ = 0 is given in Fig.(2). If the stability of
the bifurcated solution changes, a secondary bifurcation can happen. However,
é secondary steady state bifurcation is not of much interest, since it' does not
change the magnetic field structure. What is interesting is a secondary Hopf

bifurcation. When this happens, Eq.(22) become
- 1,
P = —?2-_30(0)3/2 + (710 + r11c08(wot))cos(kz + wyt + @) +
(ra0 + ro1cos(wot))cos(2(kz + wit + ©1) + @o + w11cos(wot)),  (5.20)

where wy is the Hopf bifurcation frequency. In this new magnetic field structure,
the amplitude and phase-differences between two modes oscillates. If it is not
far away from the-secondary bifu;cation, then |py1| < 1, and Eq.(20) is close
to a modulated traveling wave state, or the oscillating island state observed in
the simulations of (Persson, 1987, Persson and Bondeson, 1989). Below we will
discuss the parameter domains for the pure mode, and the mixed mode solution
with its secondary Hopf bifurcation. Since only the stable time asymptotic

states are practically observable, we also discuss the stability of the solutions.
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Figure 5.2: Contour plots of magnetic flux function with (a) r; = 0,7, = 0.02,
(b) 11 = 0.02,r; = 0.02, (¢) r; = 0.02,r, = 0.01.
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5.4.1 Pure mode solution (r; =0,r; # 0)

In this case, the amplitude equations decouple from the phase equa-

tion. Eqgs.(16-18) become
=0
r'2.= fiaT2 + cosfars (5.21)
P2 = wye + Py + éin92r§,

which have the solution

2 lu’2 if lu’2

ry = ~0sby’ c0sbs < 0. (5.22).

Generally this solution is a traveling wave state with phase velocity (ws. + B2 +

s1n0yr2) 2k = (woe + B2 — i’ﬁzyg)ﬁk, which differs from the steady state when

cosby

there is no flow. The contour plot of magnetic flux corresponding to the pure
mode is shown in Fig. 5.2a. Observe, there are two magnetic islands in one

period length. From Eqs.(16) and (17), stability of this solution is determined-

by the eigenvalues —2p, and p1+,/— 723 cosp—222%% - Since phase difference

cosf,

 is arbitrary, pure mode is stable when u; > 0, 41 < 0, and gy + \/7“;92 < 0.
A secondary bifurcation occurs when the stability changes. The first stability
eigenvalue changes at y; = 0, which already gives the bifurcated pure mode
solution. The second eigenvalue comes from the perturbations of the mode k,
thus its secondary bifurcated solutions will be & mixed mode solution, which

will be discussed next.
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5.4.2 Mixed mode solution (r;r; 5 0)

Equations (16)-(18) yield

cospry + prcosbir: = —p, (5.23)
ocos( — 0)ry + (pycosbyo + coshy)rz = —pu, (5.24)
—(osin(e — 0) + 2stnp)ry + (ppsinbyo + d)r2 = -4, (5.25)

where ¢ = r}/r? denotes the ratio of the amplitudes of the two modes. Let
us first look at the stability of the solutions. Stability is determined by the

solutions of a third order polynomial
/\3 - dl/\2 + dg)\ it d3 = O, (5.26)

where dy = —2(acos(p — 0) + cosp)ry + 9(r2), dy = [(0 — 4sinpsin(p — 6)) —
22 cospcosty|ri+9(riry), ds = 2(ocosp+2c0s(ip — 0))riry +9(r2r2) +9(orirs).
A stable solution requires that dy < 0, dy > 0, d3 < 0. If three eigenvalues are
real, the above conditions are also sufficient. If two eigenvalues are complex,
then did; — d3 < 0 guarantees stability. For dy > 0, and dijd; — d3 = 0,‘
there exists pure imaginary eigenvalues A = +i+/d;. Thus a secondary Hopf
bifurcation could occur along dyd; — d3 = 0. Due to the exchange stability
principle (Iooss and Joseph, 1980 ), the Hopf bifurcated solution is stable on
the side did; — d3 > 0, while unstable on the side did; — d3 < 0. The side
on which the Hopf bifurcated solution appears depends on the sign of the

coefficients of higher order terms.

Eqs.(23)-(25) are still very difficult to solve directly, so we consider

several special cases: § = 0, § = 7 and § = 7/2. For the cases § = 0 and
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0 = m, we discuss the difference made by the flow induced parameter §; while

- 6 = /2 is the case only possible with flow.

(i) 8 =0 In this case, Eqs.(23)-(25) imply

Gt ) 4 8

= YERTEPEC L )
241 + po
cosp = — + 9(ry) (5.27)
V(@1 + p2)? + 6
sinp = d + J(rs).

V(2 + p2)? + 82
In the case without flow, the solution requires that phases differences of the
two modes ¢ must be either 0 or 7. Here ¢ can be any value depending on the

ratio (2pq + u2)/6.

The coeflicients in the stability eigenvalue equations (26) become
dy = —=2(c + 1)cospry + 9(r3),

4rs 2
dy = (0 — 4sin2go 2 cospcosly)ry + 19(7‘?7‘2%
o
ds = 2(0 + 2)coseriry + 9(rird) + 9(orirl).

Thus a stable solution is possible only if cosp ~ ¥(rs), either ¢ > 4 or ¢ < 1
with —4 — %costpcoseg'> 0. The secondary Hopf bifurcation is possible also
only if the above conditions are satisfied. From Eq. (27), cosp ~ 9(r;) requires

l”‘—;"‘i ~ ¥(rq) < 1. Since § is the parameter introduced by flow, there exists

no stable solution and secondary Hopf bifurcation in the case 0 = 0 without

o flow.
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(ii) = 7. In this case, there exists a special amplitude ratio ¢ = 2, at which
the phase difference ¢ can be any value even in the case without low. We first
consider the special case where o = 2. Equations (23)-(25) yield
. 2p1 + po

2p1c080; + 2pycos0y, + cosl,

)
_—
2pb3in0b +d

2
T, =

0
cosp = —% + d(ry) = —:—:2 + J(rp).
The coeflicients of the stability equations (26) for § = = become
di = 2(0 — 1)cospry + 9(r2),

dy = (0 + 4sinp — ﬂcasgacosﬁg)rf + 9(riry),
o
d3 = 2(c — 2)cospriry + 9(rird) + 9(orird).

Thus a stable solution with ¢ = 2 requires cos¢ < 0. A secondary Hopf

bifurcation can occur when cosp ~ J(r;), which requires

2#1 ~ K2 ~ 1)
2p1 + p2 21 + po

- Now for the case o # 2, Egs. (23)-(25) yield

. \/(2p1 + pa)? + 62

Ty = (0—2)2 (1 +19(7'2))
cosp = + 2+ fa + 9(r2) (5.28)
V(2u1 + p2)? + 62
sine = d + 9(rs).

\/(2#1 + 2)? + 62
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If |-I2-] « 1, the solution is stable only if either ¢ > 2, cosp < 0 or

cosy

o <1, cosp > 0. Equations (23)-(25) yield in this limit

T9 T2

r=—tl(149(—2), o= L2+ a(T) +9(—).  (5.29)

cosey cosp 73 cosy cosp

The assumption |-f2-| <« 1 requires that Imﬁﬁ%ﬂ < 1. A secondary Hopf

cosyp

bifurcation can only occur for ¢ < 1, which implies from Eq. (29)

_E2 o,

H1

Obviously flow induced parameters are not important in this limit.

If cos ~ 9(ry), similar to the case discussed in § = 0, it is re-
quired that 2432 ~ 9(r,). A secondary Hopf bifurcation is possible when

4 — (4ry/c)cos pcos b;.

(iii) § = r/2. This case is only possible with flow. The coeficients of the

stability eigenvalue equations become
dy = —2(osing + cosp)ry + 9(r2),

dy = (o + 28tn2¢p — 4—;-2-003(pco.592)7'f + d(riry),
ds = 2(ocos ¢ + 2sinp)riry + 9(rird) + 9(orird).
When ¢ > /2, the solution is stable only if sing > 0, cosp < 0, -—&/2 <

tany < —1/0, and o +2sin2p > 0. When o < /2, the solution is stable only if
sing < 0, cosp > 0,—0/2 > tane > —1/0, and o+ 2sin2¢ — L2 cospcosf; > 0.

Assuming o > 1, Eqgs.(23)-(25) give

2+ ) + 82

g

2
Ta
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cosip ~ — d (5.30)
NETETn
Stnp X — £

V(@u1 + pa) + 67
Egs. (30) implies that |24} < 1, or |4| <« 1. A secondary Hopf bifurcation can
occur when |tanp| ~ 1/0 <« 1, which implys that || <« 1.

From the above calculations, we see that in the case without flow,
a secondary Hopf bifurcation can only occur with § = 7, ¢ < 1 or o = 2.
Thus shear flow plays an important role in driving the oscillating islands with

(¢ > 1) as in Persson and Bondeson’s simulations.

5.5 Discussion and Summary

The nonlinear evolution of plasmas can saturate in time asymptotic
states, or a transition to turbulence may occur. Generally the governing par-
tial differential equations are analytically intractable and so we are unable to
predict these asymptotic states. Even though there are some methods for sim-
plifying nonlinear partial differential equations and make them solvable, such
as inverse scattering method (Drazin and Johson, 1989), which reduces non-
linear equations to linear ones, and similarity methods (Ames, 1967), which
reduces partial differential equation to ordinary differential equations, these
methods are only applicable to a limited set of equations. However, in recent
years studies of nonlinear finite dimensional systems have been successful. Very
complicated behavior, even chaotic states, have been found in finite dimen-
sional systems. Since finite dimensional systems appear to possesses solutions

as complicated as those expected for plasma evolution, it is natural to attempt
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to model the dynamics of plasmas by some finite system. This is also reasonable
physically, since in many situations only a finite number of degrees-of-freedom
is excited. For example, magnetic island coalescence (Finn and Kaw, 1977) can
be modeled by the interaction of two modes with the wave numbers k and 2k.
In this case the model equations are the same as Eqgs.(14) with the restriction
that the coefficients be real. Given the pure mode state, i.e. that there are two
magnetic islands in one period length, the analysis in part A of Sec. (5.3) tells
us that we have stability only if g2 > 0,41 < 0 and gy + \/:To—% < 0. For the
magnetic pr;ﬁles chosen by Finn and Kaw, p; > 0 if gyo > 0. Thus the given
pure mode is unstable and will evolve to a mixed mode state; i.e. two islands
in one period length will coalesce, as shown in Fig. 5.2. In another example,
Parker et al. (1990) studied the nonlinear evolution of tearing modes without
flow, using the period length as the bifurcation parameter. When the period
length is short, only one tearing mode is excited, then the finite time asymp-
totic state is the usual saturated state of e.g. White et al, 1977. When the
period length becomes longer, more modes will be excited (from the linear cal-
culation of Parker et-al), and we can model the situation with the interactions
of two, three or more modes. The sjrmmetry (O(2)) will limit the nonlinear
terms in the model amplitude equations, and enable us to discuss the solution
in general terms. The two mode interaction with O(2) symmetry has been well
studied by Dangelmayer (1986), Ambruster et al (1988) and Grauer (1989).
Even though the above suggested reduced models are not rigorously justified,
they give some qualitative insights into the problem. The interaction of near
marginal modes, the model can be justified by using either small amplitude
or center manifold reduction. Strictly speaking these reductions are valid only

close to the original marginal equilibrium, however, very often results are valid
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well away from marginality.

In the present chapter we have studied the interactions of two near
marginal tearing modes with wavenumbers k and 2k in the presence of equilib-
rium shear flow. Employing the center manifold reduction method, the resistive
MHD equations are reduced to amplitude equations. In this reduction method,
a good knowledge of the linear problem is required. The model which we used
is similar to the one used by Grauer (1989). However the presence of shear
flow in our problem breaks the reflection symmetry, and allows the coefficients
of the reduced equations to be complex. The most important parameter in-
troduced by shear flow are § and sinf # 0. Bifurcation analysis was used to
find possible time asymptotic states in different parameter regimes. Various
states such as traveling and oscillating magnetic islands were found, and their
observable parameter domains were discussed. It was shown that shear flow
plays an important role in driving the oscillating island state with ¢ > 1, i.e.

the mode k dominates the mode 2k.

5.6 Appendix - Calculation of Coefficients

Let L = L.+ AL where L, corresponds to the linear operator at
criticality, and AL = %[ Zo=0Zo. Here for convenience we denote Z; and Z,
by Z3 and Z,, respectively. The function h(x,y) in Eq.(9) is expanded in powers
of the amplitudes

h(z,y) = 54: Zm(t)Zn(2) (i::)+ i Zom (2) Zn(t) Zp (1) ($ZZ:>+

m,n=0,4 mn,p=0,4
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Inserting Eqs(9) into Eqs.(1.11), and equating terms of order ¥#(|Z|) yields the

linear problem

2
) (B)e
The corresponding adjoint problem is
L 2 71
B ()
with )
L.L — (S‘;lv‘1 ¢0V§. 88.1: " 2<ZS0 Bay aa:r: ¢0 8z ) )
‘ %Vﬁ. ai + 2% aay ai Sp'Vi- ‘150 oz

The normalization is defined as

(Bher Vi) + (Vs ne) = [ [ (B2 bne + Biiothee) do dy = b,

To order 19(|Z|2) we obtain
¢mn —3 V_qumn ¢1nh
B o () iomren (= (3] 0
with

A2

— 72021 + a1Z122)v?1_¢1c (Z ZoZy+ G2Z2)V_L¢2c + c.c]

I 0bme Qe Obme One  Obme Ofne
> Z"‘Z”1+5m,,[ax dy 8y 0z 8z Oy

1<m<n<4

8'I#mz: a.711.c oL

ay e + terms interchanging m and n] mzl 57, —— 2 Z0Pme
A
Yinh = [( ~ZZi + i T + (7 22 ZoZs + 0227 ibae + c.c]
1 8¢mc a’lﬁbnc 8¢mc awnc
+ Lmdin -
15n§ng4 1+5mn[ 0z Oy Oy Oz

L
+terms interchanging m and n] Z ; 7 ZoYme-
0
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Counsidering, respectively, terms with ZyZ; and ZyZ,, one can obtain

the following through the Fredholm solvability condition:
Mo -, 0L - 0L
o= [[Ghggbi+ bz dedy

/\2 . T4 aL -1 3L
7= //(¢2°B_.Z()¢2° + ¢2c'5-2';¢2c) dz dy.
Actually if we had already solved the linear problem, A; and A5 could be written

down immediatelly. For terms with Z, Z,, rewrite Egs.(A3) as

2
ZlZ?[Lc <zzz> — wy <V%:i32)] = [i(wz - 2!.01) <V1j;:i32>

2 -—
+G1 <v¢¢1c> + . ']Z]_Zz.
1c

Since (232> + <lec is also a solution of the above equations, the gauge is
32 1

defined by (8L, V2 ¢32) + (i, %32) = 0. In the linear problem, the eigenfre-

quencies arises mostly from Dopler shifting, so w = wy —2w; is a small quantity.

Applying the Fredholm solvability condition to the above equation yields
001 0V3 dae 09 OV 1, Oy OV b 8 ¢ OV b1e
4y = // FL(— ¢1 192 G2c OV 1 4 9% 192 P2c OV 61

9y 0z Oy oy Oz 6y oz

Oth1c OV 1o, i Opae OV2 i, n Oth1. OV g n Otbac avﬁ/’u
dz Oy Or Oy Oy Oz Oy

( _a¢1c a11’2(: a¢1c a¢2c _ a¢26 a'@L'lc + a¢2c 6¢1c
Oz Oy Oy Oz Oz Oy Oy Oz

-+

)+¢‘1c

Ndzdy +0(w) (A4)

Similarly, we obtain

o= [ [ OO 060V OOV

Oy Oy Oz 0z Oy

?}é}_c_ BV?L ¢1c a¢1c a¢1c aQslc a'(/)lc

5y oz T V(g 5y " By oz ) drdy+0w) (A5
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So a; and a; are determined by linear marginal eigenfunctions to order 0(w).

Continuing the procedure, coefficients of order 9(|Z|°) are calculated:

- : it 8¢11 aQSc 6stll aQBc a'Ql’ll ajSC 87,[)11 aj.’ic
— L _ _
b = //[¢1°( 0r Oy dy Oz - Oz Oy + dy Oz

+a¢13 anc _ 6¢13 aﬂlc _ a")L"13 ajlc a1#13 6j1¢)
0z Jy Jy Oz Jz Oy dy Oz
a¢11 6¢3c 641511 6¢3c a¢13 a"»blc 692513 67/)1c

ol
e dz Oy - Oy Oz + dz Oy - Oy Oz ) dz dy (AB)

foo1 0012003, 0612003, Ot12 0jac . Oth12 Ofac
_ 10012083, 0915 Ol Oth1o
b= [ 185 5z By Oy 9z 9z by T Oy oz

+a¢23 aQ1c 6(2523 anc 67,[)23 ajlc a1,b23 6jlc

dz Oy dy oz Oz Oy dy Oz

061309, 861300 _ 01 0 | Ot Oze
Oz Oy Oy Oz dz Oy Oy Oz

B¢12 81,/)36 _ 5¢12 a"#SC 6¢23 a",blc _- 6¢23 aﬁl:blc
oz Oy Jy Oz dz Oy 0y Oz

+5¢13 Obze  O¢13 Otpac
- Oz Oy dy. Oz

iy (

\dzdy (A7)

-1 ,0012004 061200  Oth12 0jsc | 0%h12 Ojsc
— 1 — -
a= / / (3. dz Oy dy Oz dz Oy + Oy Oz

+5¢24 084, _ Oaq O _ O34 0j1c | Othaa Oj1c
Oz Oy Jy Oz Oz Oy dy Oz

+a¢14 aQZc _ a¢14 aQZc _ a¢14 a.7‘2c 8¢14 6j2c)
Oz Oy Oy Or 0z Oy 0y Oz

+1/_)J.(3¢12 6¢4c _ 6¢12 6'Ql)‘h: 6¢24 a'lec _ 6¢24 ad"lc
b 9z Oy Oy Oz 0z Oy Oy Oz

+3¢14 Ohre 04 Otpse
0z Oy Oy Oz

Jldedy  (AS)




-1 ,0ba2 00y  Obag Oy  Othgg 0Jsc  Otog Ofac
o = / / [BL( Ba2 0824 B2 0824 "2 OJ4 122 014

8z 0y Oy Oz Oz Oy Oy Oz

+8¢24 08y, _ Ohas 0, _ O%24 Ojac | Othaa 3j2c)
oz Oy Oy Oz oz Oy Oy Oz
6¢22 a¢4c 84522 61/)4,: a‘ﬁ24 6¢2c a¢24 8¢2c

- _ ~
el Oz Oy Oy Oz + 0z Oy Oy Oz J1dz dy.
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