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ABSTRACT

When the Mach number M, of the poloidal rotation in a tokamak approaches unity,
the poloidal variations of plasma density and potential appear to have the characteristics
of a shock whose front lies on a plane (ribbon) of a fixed:poloidal angle 7. The shock
first appears, when 1 — M, < /€ (e is the inverse aspect ratio), on.the inside of the
torus at a shock angle ny.> 7 if the plasma rotates couﬁterclockwise poloidally. As M,
increases, 7o moves in the direction of the poloidal rotation. At M, =1, 770 = 27. When
M, — 1 < /€, the shock angle is at 7o < 7. The parallel viscosity associated with the
shock is collisionality independent, in contrast to the conventional neoclassical viscosity.
The viscosity reaches its maximum at M, = 1, which is the barrier that must be overcome
to)have a poloidal supersonic flow. Strong up-down asymmetric components of poloidal
variations of plasma density and potential develop at M, ~ 1. In the edge region, the
convective poloidal momentum transport weakens the parallel viscosity and facilitates the

transition from L-mode to H-mode.

PACS numbers: 52.25.Fi; 52.55.Fa.
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I. INTRODUCTION

Since the observation of the transition from L-mode to H-mode,! many theories have
been proposed to explain the phenomenon.?~% Theories based on the radial electric field
E,. seem especially in accord with the available experimental data.*~® The main thrust of
these theories is that the anomalous transport fluxes are influenced by E, and dE,/dr.
Here r is the minor radius. Sudden changes in these variables trigger the L-H transition,
which subsequently suppresses turbulent fluctuations and improves plasma confinement.
Experimental measurements in CCT and DIII-D, motivated by the theories, show that
indeed E,. and dE,/dr change suddenly at the onset of the transition and are related to the
change of the poloidal flow velocity V,.7® A bifurcation theory of poloidal rotation has been
developed based on the nonlinearity of the parallel (or poloidal) viscosity.® The main reason
for the bifurcation is the existence of a local maximum in the parallel viscosity. However,
both theoretically predicted and experimentally measured poloidal E x B velocities are in
the range of M, ~ 1. Here M, is the poloidal Mach number, defined as V,B/{v;B,C;)
with B the magnetic field strength, B, the poloidal magnetic field strength, v; the ion
thermal speed, and C, a numerical constant of the order of unity. With such large values
of V, it is important to take the effect of compressibility into account.

The present work is devoted to this more realistic theory of rotational bifurcation, in-
cluding compressibility. The most important new physics introduced by the compressibility
is the development of a shock as M, ~ 1.1%*! This paper extends the previous results from
the weak shock limit |1 — M,| < 4/€ to include the strong shock |1 — M,| < +/€, with € the
inverse aspect ratio. Thus, we provide a more detailed description of the evolution of the
shock as M, approaches unity.

The evolution of the shock proceeds as M, varies, and its consequences can be tested
experimentally. The shock first appears at a shock angle 7y 2 7 inside the torus, when
|1 — M,| < v/¢ if the plasma rotates counterclockwise poloidally.!® The shock angle is the

poloidal angle at which the strongest variations of plasma density and potential occur.



When M, increases, 7 moves in the direction of poloidal rotation. At M, = 1, o = 2m.
When M, —1 < /€, the shock angle is at 7o < 7. The parallel viscosity associated with the
shock reaches its maximum at M, = 1; this maximum constitutes the barrier that must be
overcome to have a poloidal supersonic flow. Strong up-down asymmetric components of
poloidal variations of plasma density and potential develop at M, ~ 1. In the edge region,
the convective poloidal momentum transport weakens the parallel viscosity and facilitates
the L-H transition. |

The remainder of this paper is organized as follows. In Sec. II, we derive the local
(to the magnetic field E) force balance equation, parallel to the magnetic field B , includ-
ing the parallel viscosity. as the main dissipation mechanism. We assume electrons to be
isothermal and ions adiabatic. The linear solution and the shock solution to the local par-
allel force balance equation are-given in Sec. III. A prescription for obtaining the general
solution to the local parallel force balance equation is given in Sec. IV. In Sec. V, we derive
the evolution equations for both poloidal and toroidal rotation in tokamaks; these equa-
tions include fluxes such as ion orbit loss or anomalous viscosity that are not intrinsically
ambipolar. The parallel viscosity and the convective poloidal momentum transport are
evaluated with the linear and shock solutions in Sec. VI. The implicalions of the results

for the L-H transition are discussed in Sec. VII. Concluding remarks are given in Sec. VIIIL.
II. LOCAL PARALLEL MOMENTUM BALANCE EQUATION

The variations of plasma density and electrostatic potential within a flux surface in
axisymmetric tokamaks are governed by the local parallel (to magnetic field B ) momentum
balance, if the effects of heat flow are neglected. In the conventional neoclassical case of
slow rotation, the temperature gradient is crucial in allowing even slow poloidal motion.
However, in the rapidly rotating regime considered here, the temperature gradient has

no dramatic effect. Summing momentum balance equations over plasma species, and



neglecting the time-dependent term, we find the parallel momentum balance equation

-
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where P, and P; are electron and ion plasma pressure, respectively, II; is the ion viscous
tensor, N is the plasma density, M is the ion mass, and V is plasma flow velocity. The
contribution of electrons to the viscous force is neglected since it is smaller by a factor of
the order of \/W, with M, the electron mass.

We assume the electron temperature to be constant along B owing to the rapid electron
motion along the magnetic field line. Ions are assumed to be adiabatic because of the large

poloidal flow velocity.!? With these two assumptions, we have
1 = : 5 = =
EV—B-V(P,;-E—Pi): Pe—i—gPi B-V(lnN) . (2)

We use conventional tokamak flux coordinates (1,6, () with

l><

'vgxwuvg , (3)

™

B =

N

where 8 is the poloidal angle, ¢ is the toroidal angle, ¥ is the flux surface label, x' is the
poloidal flux density, I = R2B - V(, and R is the major radius.?® The poloidal magnetic
field B, is B, = x'V¢ x V4 /(2n).

The convective term B - V - VV can be rewritten as

-v*_—_%é-V(V.V)HVxE)-(vX17) . (4)

<4

B.
If we assume d(ln ®)/dvy > d(In N)/di, where @ is the electrostatic potential, we have
V x B=c®Vy, (5)

where ®' = d®/dy and c is the speed of light. From V - (NV) = 0, we can express the

plasma flow velocity V as
V= R—ﬁlé — Ncd'R?V¢, (6)



where K = NV .V9/(B - V8) is a flux function ¥ only. Substituting Eqgs. (5) and (8) into

Eq. (4), we obtain

D1 "_l 2D i 1., N2 D _L
B.-V.VV = KB v<N2> s1(e¥)B- V{5 ) - (7)

Employing the Chew-Goldberger-Low form of the viscous tensor = (P = PL)(nn —

o d

I /3), we obtain the parallel viscous force B - V - ﬁ,

- 2~ B.VB
B.V.I= §B.V(p” —P,)— (P - Py) = - (8)

The subscript for plasma species is negiected for simplicity in Eq. (8). It shall appear
that the second term on the right side of Eq. (8) is smaller by O(e) than the first term;
we therefore neglect the second term in constructing the local parallel momentum bal-
ance equation. Other contributions to ion stress, such as gyroviscosity, are smaller by at
least one power of the small gyration radius. The pressure anisotropy (/) — P.) in a
poloidally rot;a,ting tokamak plasma,,,-calcula.ted from the drift kinetic equation with mass

flow velocity,'* is

— P, = 2wl ,K —_ — 2 (InN ,
P” P \/—[p KMv.B [59 (InB) 3 ag(lnj )} (9)

where v, = /2T;/M and T; is the ion temperature.’®!® The integral I,, in Eq. (9) is

1 /= e 1 32\® v
Ip3=;A d:z:a:ze [-ldy <'2‘—’—2"> U42+l/2 ’ 5 (10)

where v = vp/(v;/ZB - V8/B), U, = G, [y + (Vg + Wn) - V6/(v4/TB - VB/B)], Grisa

geometric factor, Vg is the E xré drift velocity, ¥} is the mass flow parallel to the magnetic
field line. ¢ = v2/v?, v is the speed of the particle, and v7 = 3vp+vg as defined in Ref. 13.
In cases with M, < 1 and M, > 1, G, = 1; in the case of |1 — M, S e G.=1/2. The
effects of the heat flow are neglected in Eq. (9).

Substituting Eqs. (2), (7), and (8) into Eq. (1), we obtain a local paralle]l momentum

balance equation,
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BV K= Y
S5_(B) o, 21 _
+3(N5/3>MN +3<N>M(P” P)| =0. (11)

ITI. LINEAR SOLUTION AND SHOCK SOLUTION

To solve Eq. (11), we integrate along the magnetic field line to obtain

e (- () o - (3) - Fyoan -
5
3

(By—-P)=0, (12)

where the angular brackets denote the flux surface average. The integration constant has
been determined by noting that the flux surface average annihilates the left side of Eq. (9).

The poloidal variation of the (1/N) factor in front of B - V(P — P.) is neglected, since it

yields only an O(e) correction. It is convenient io define an independent variable
x =In(N/N) , (13)

which from the Boltzmann relation is simply

ed
X = E-': ) (14)
where @ is the poloidally varying part of the electrostatic potential and N = (N)(1 -
(x?)/2) is a convenient normalizing constant. Employing a model magnetic field (B/B,) =

1 —ecosf, assuming x ~ O(+/€), and keeping only terms up to O(¢) in Eq. (12), we obtain

a differential equation for x:

d
% :1,% + (1= M2)x +24'(x* = (x*)) = ¢ [(M} + 2C) cos + Dsinf] (15)

where D = (84/7/3)I,,K By/(2Nv:C?), M, = KB,/(Nv:C.), C = I*(c®')?/(202B2C?),
A'= M2/2+(5/18)/C?, and C? = [(5/3) + T./Ti]/2.

r
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In the linear regime, where either M, <« 1 or M, > 1, we can neglect the nonlinear

term (x* — (x?)) in Eq. (15) and solve’ the linearized equation

%D%+(1-—M:)x=e[(]§/f§+20)cos€+Dsin0] . (16)

Expanding x = x,sin -+ x. cos §, we obtain the linear solution to Eq. (16),

3 2D? 3 !
Xs = €D [5(1 - M2)+ M7 + 20] [—-3—— +5(1- Mj)z} : (17)
3 2D? 3 -
Xe = € {-2-(1 — M2Y( M +20) - Dz] [T + 5(1 - Mj)z} : (18)

These results are consistent with the linearization because when either M, < 1 or M, > 1,
3(1 — M2)?/2> 2D?%/3.and x is of the order of € (note that D = 4/mlp, M, /3.)

We note that when Mj > 1, then ]\/f: ~ 2C and Egs. (17) and (18) imply x, ~ 0 and
xe =~ —2¢. This result can be understood from Eq. (11). Because M, > 1, Eq. (11) can

be written, to the lowest order in (1/M,), as

5.v %Kzfrz - %,(vaz =0. (19)
The solution to Eq. (19) is
e [((fv//?)): - <%3‘>] = G (wmr) (20)

Because M?2/2C =~ 1, and, in the linear regime, N = N(1 + x), we obtain from Eq. (20)
x = —2¢ecosf (21)

as in Eq. (18), for M, > 1.
When M, ~ 1, we find from Eqgs. (17) and (18)

3 (M2 +20)

X3 = 56 D b) . (22)
Xc = —ge . (23)



We see from Eq. (22) that x, 2 6¢ for relevant parameters M? ~ C’I 2 D, and the linear
solution becomes invalid when ¢ < 1/6. Theref,c’)re, one must take the nonlinear term
(x* — (x*)) into account for typical tokamaks.

When |1 — M,| < +/e and 2D < M2./¢, we can solve Eq. (15) approximately to obtain
a shock solution. The procedure described here is an extension of those in Refs. 10 and
11. We first simplify the right side of Eq. (15) by defining an angle ¢ so that tané =
D/(M? +2C) to obtain

e[(M2 +2C)cos + Dsinf] = e\/(M; +20)2 + D2 cos(f — £) . (24)

Changing the variable from § to n = § — £, we can write Eq. (15) as

2 _dyx , ,
37 " (1= MZ)x +24'(x* — (x*)) = 2¢G cosm, (25)

where G = [(M2 + 2C)? + D?]*/.
When dissipation becomes weak, i.e., D < A'\/e, we can neglect the dx/dn term in

Eq. (25) outside the shock region, and obtain

—(1 - M2)+ \/(1 — M2)? + 16A2([(X?) + (G cos 7/4")]

X = YT (26)
Because x is real, we must have
(1— M2)? + 164" ((xz) + -f,- cos77> >0 (27)
for all n. This requires
) > 4G U M) (28)

164"
But we cannot have (x?) > [164'¢G — (1 — M?2)?]/(16A4"), because then Eg. (26) would

allow (x) = 0 only in the presence of an even number of shocks, which is prohibited by the

thermodynamic law.!® Thus,

s 16A4'¢G — (1— M2)?
(x%) = 1647

(29)



Substituting Eq. (29) into Eq. (26), we obtain

(1-M32) \/G
X=—""7m + A7(1+cos1;) .

In order to have (x) = 0, the shock solution for the subsonic flow, M, < 1, is

_(142:")+\/A,1+c0s17) O<n<m
1-M
_(‘;—yL)_\/ZT(l‘I'COST/)a ™ <1 < Mo

(—lmﬁ—k (1+cos77), N <7m <27

P
|

where 7 is the shock angle determined from the condition (x) = 0:

Mo _ T 1“M§
sm(2> T8 VoeCA

with (7/2) < (70/2) < 7. The shock solution for the supersonic flow M, > 1 is

1-M?
——ar — /€ Ag(l+cosn) 0<n<mno
1-M2

X =4~ +tyeq(l+cosn), mo<n<m

1-M?
ey Ui \/er(l—‘rcosn), T<n < 2w

The shock angle 7o for M, > 1 is again determined from the condition (x) = 0:

Mo ™ J\'Ig -1
sm( > = ————/__—— s
2 8 V2eG A’

where 0 < 19/2 < 7/2. The jump of x across the shock angle 7q is

I3

AX X|7]—)17 X|17—>17 = 277

(30)

(31)

(33)

(35)

where v = \/e%(l + cos 7). To find the structure of the discontinuity at the shock angle

79, we solve Eq. (25) inside the shock region,

2 _d
ED%E 4 (1- 1) x + 24 (68 - (7)) = 2G cos o

(36)

with the boundary condition that x = —(1—M2)/(44") at 7 = mo. The solution to Eq. (36)

Y= 1-M vexp[(GA’v/D)(n — o)) — 1
44 exp((6A'y/D)(n —m) +1

9

(37)



It is straightforward to show that when (5—ng) — oo, the solution in Eq. (37) connects to
the solutions in Eqs. (31) and (33). The results in Ref. 11 for M, ~ 1 are also reproduced
in Egs. (31), (33), and (37).

As the poloidal rotation speed increases from 1—-M, < /e to M, ~ 1, and from M, ~ 1
to M, —1 < /€, the shock angle g and the variations of plasma density and potential also
vary. When 1 — M, =~ /¢, 7o is close to (but larger than) 7 and the variations of plasma
density and potential are almost up-down symmetric. At M, >~ 1, 79 is at § = 0 or 27 and
the variations of plasma density and potential are up-down asymmetric. As M, approaches
1 + 4/, the shock angle 7, is close to (but smaller than) 7 and the variations of plasma
density and potential are again almost up-down symmetric. A schematic diagram for the
solution [x + (1 — M?2)/4A'] vs angle 7 as the poloidal rotation speed changes is shown in
Fig. 1. The symmetry property of the poloidal variations of plasma density and potential
can be measured experimentally when the poloidal flow velocity V; is in the range of the

sound velocity v:B,/B.
IV. HOPF-COLE TRANSFORMATION AND GENERAL SOLUTION

Here we return to Eq. (25) to consider its exact solution. Thus, we apply the well-

known Hopf—Cole transformation’”’

D Z

X=3a47 (38)

and find that Eq. (25) is reduced to a homogeneous equation,

1__M2 N 2
Z"+_é_ﬁlz’_[<(§z—> >+%cosn]z=0 ) (39)

where F' = D/34' and b = ¢G/2A4'. Indeed, Eq. (39) is a linear ordinary differential
equation, despite the apparently nonlinear term ((Z'/Z)?). The point is that, from partial
integration, ((Z'/Z)?) = (Z"/Z), as is required by consistency of Eq. (39). Therefore, one

10



can replace the nonlinearity by an unspecified constant without affecting the content of

the equation.

As discussed in Ref. 17, at M, =1, Eq. (39) becomes a Mathieu equation,*®

e [((2))+ o] 20 ”

It is the periodic Mathieu function of order zero, ceq,'® that satisfies the conditions that
x must be finite and periodic. We thus obtain the exact solution at M, = 1,

D <dceo> 1 (a1)

X'Z@ dn /) ceg

It is obvious that (x) = 0. For typical parameters A ~ C ~ D, 2b/F? ~ 36e > 1 for
€ =~ 1/4, the solution in Eq. (41) approaches a shock-like solution. Therefore, we conclude
that the shock solution is a good approximation when M, ~ 1.

Bécause X and thus Z are periodic functions, the general solution for Eq. (39) can be

obtained by Fourier series expansion,®’

Z =ay+ Z (am cosmn + by, sinmn) . (42)
m=1

Substituting Eq. (42) into Eq. (39), we obtain a set of linear equations:

and for m > 2,
1— M2 [ z\?\] b /a a

4 2 < _ v m—1 m<+1 —
A F Mm | ™ <<z>> o =77 (5 T3 )=0,

1— M? [ /7 7\2\ ] b [bp_y b,
[ ((2) Yo (e B 0




The eigenvalue ((Z'/Z)?) is determined by the solution of the determinant of the
coefficients of Eq. (43). A similar set of equations has been solved numerically in Ref. 17

for a differential equation

NopZ"+ 2" - (Aopcosn+Box) Z =0 (44)

2Ny

where Nox, Aok, and Box are numerical constants. As the relative magnitudes of Nor and
Ao change, the solution of Eq. (44) can have either a sinusoidal-like solution or a shock-like
solution, similar to the situations discussed in Sec. III.

We employ the results of Ref. 17 to discuss the relevance of the shock solution for

1— M, S /e For M, =0.65, (1 — M2)/A' =1 and we can write Eq. (39) as

2bcosn+2F2<<—ZZ—) >} =0 . (45)

N2
Comparing Eq. (45) with Eq. (44), we find F = Ny, 2b = Aoy, and By = 2F? <<Z7> >
For this case, Agx = 2b 2 4e =~ 1 for € ~ 1/4, and Nox = F = D(34') £ 0.33 for 4 2 D.

1
FZu Z! —
* 2F

With these values of 4¢; and Nyj, we find from Fig. 6 of Ref. 17 that the exact solution
has the characteristics of the shock solution when 1 — M, ~ 0.35 < /e ~ 0.5 for € ~ 1/4.
Note also that the shock angle in Fig. 6 of Ref. 17 is located in the range m < 7y < 27, as
discussed in Sec. III and Ref. 10 for 1 — M, < v/e.

V. EVOLUTION EQUATION FOR POLOIDAL AND
TOROIDAL ROTATION

The evolution equation for poloidal rotation in tokamaks has been derived by several
authors.'®1? The version derived here includes the nonintrinsically ambipolar flux so that
it can be employed to model the radial electric field in the edge region. Because of the
steep potential gradients frequently observed in this region, a rather delicate ordering is
required.

. Let us denote the poloidal and toroidal flow speeds by
12



We assume that

Vo ~ Vr ~ (By/Blor (46)

with B,/B < 1. This conclusion is consistent with E x B motion in a steep electrostatic

field,

V&~ B0y (47)

1t is also conmsistent with neoclassical. predictions provided we assume that toroidal:or
parallel damping prevents rapid toroidal flow; see, for example, Eq. (5). Note that Eqgs. (46)

and (47) are consistent only if

TV~ V/ppi- (48)

On the other hand, other plasma quantities, including the pressures and temperatures of
all species, are assumed to vary slowly on the poloidal gyroradius scale:

-

VP ~ P/r & P/ppi,etc. (49)

We will refer to the ordering described by Egs. (46)—(49), - which dep#rts from conventional
small gyroradius theory, as the sheath ordering. Notice in particular that Eq. (6) for
the plasma flow appears, in the sheath ordering, as a consequence of small B,/B; in
conventional theory it is obtained from small pp; /7.

Following the procedure in Ref. 19, we take the dot product of Eq. (6) with R>V( to
obtain

<R2v<; ' NV) = KI - c®'(E’N) . (50)

13



Note that K is a function of % only. Substituting Eq. (50) into Eq. (6), we find

. - N .
NV = —— |(R®V({-NV) - KI|R*V( .
KB+U?M[WVM]V) Adeg (51)
We combine Eq. {50) with the general plasma acceleration law
MN6¢+MNVWW+VGQHM+Vi1£=lfxﬁ—%MMWﬂ (52)
c

ot

in which an effective damping frequency veg is used to model momentum loss associated
with charge exchange and anomalous momentum losses, and the force = to model the

momentum source or sink associated with ion orbit loss. The result is

a5 ((5) - m) (52

I 8, . . 4 _- 1/B.v.n 1 /B.E

- = NVN—(B-V.¥UV) - —( — =\ _ [ =

(mm&mVCN><BVV> M< N >.M<N>
(53)

- Ueﬂ'(B ‘ 17> .

The contribution of electrons to Eq. (53) is neglected. The relaxation of the toroidal

-

angular momentum is governed by

2 ((W5¢ 7)) = B (9T B) - e (5. 7)
_<szg.v.ﬁ> _ <RZVC'NT7-VI7>
> . <jorb‘V'¢‘> . (54)

[

1 I =
'M<ﬁ3' ~ M

Here, Jocb is the radial current associated with the nonintrinsically ambipolar particle flux
T's driven by the force = and is defined as (Jor, - V) = e(T'z - V4b) = ¢(V4 - B x E/B?).

We employ {R?V{ -V -1I) in Eq. (54) to denote the classical and neoclassical viscosities,

14



be expressed in terms of 8(E - V1)/8t from the charge continuity equation to obtain!®
1 <6E - ¢> | (55)

—_—

which are small and will be neglected.’?> The plasma current density (R2V( - J x B ) can

2 7.8\ _/7. _
(woc.78) = (7.79) =L (2
Substituting Eqgs. (54) and (55) into Eq. (53), we obtain the evolution equation for the

)

{

poloidal 1.'ota.tion,20 A
DAY YS N ST
B N (R®N) | ot (N) (R2N)cM4n \ Ot
— I T 2 — —
TGl (Tors - V) + T3 (R*v¢ Nv.vv>
. 1 /B-v.T
—(B-V.VYV) - —
(B-7.vi M& e >
! “.e>
(56)

)

1'2
‘ <<<RZN)MBZ - NM

— Vep <E,, . 1>
The(8E/8t-V1) term is a factor of V2/c? smaller than the 8((NV - B,)/(N))/8t term and

can be neglected in general. We note that because Vi = —(2#R2‘/Ix')§"x-ép, (Jorb * V)

can also be interpreted as the poloidal component of the torque el x B.
The inertia enhancement factor Meg = ((N)/(Bf,)) (B?/N) — I?/{R?N)) in Eq. (53)

(57)

can be calculated to obtain

2,
Mg =1+¢° <2 + - (x cosf) + ?(X2>>
(58)

1
+ o (x2 +x3)]

In the linear regime, we obtain
2¢?

Mg =1+¢ [2+*E"Xc
In the M, < 1 limit, we reproduce the well-known result Mg ~ 1 + 2¢®. In the M, > 1

limit, we employ Eq. (21) to obtain Mg = 1 + ¢*. In the case of |M, — 1| < /¢, we {ind,
(59)

2

from the strong shock solution,
Mg=1+2L
€

15



for A" ~ C. In the range of M, of interest, the inertia enhancement factor is generally
large, Meg 2 ¢ > 1.

It is appropriate to comment here on the rotation damping term in (52). It serves to
account for turbulent viscosity, as well as atomic physics effects, such as charge exchange.
The small parallel plasma velocity commonly observed in tokamak experiments indicates

that damping may dominate the {lux-surface averaged, parallel momentum equation,

<M <%) NV||> +M(NB (V- V7)) +(B-V-1) = —veeld (NBV)  (60)

thus forcing

(NBVy) =0. ' (61)

Notice that the other terms in Eq. (60) are quite small—the parallel pressure gradient
terms, in particular, have been annihilated by the average—so that Eq. (61) does not

require veg to be large. Indeed, Eq. (61) pertains for the experimentally consistent case,

Veff ~ Ve, (62)

where v, is the Coulomb collision frequency. For this réason, and because of the shock
ordering N /N > r/R, rotation damping does not dominate the lowest order, unaveraged
equation, (11). Therefore, the lowest order shock structure of Eq. (15) et seg. is unchanged.

On the other hand, rotation damping indirectly alters the description of the shock.
The point is that Eq. (61) forces the parameter X, describing the poloidal velocity, to

have the value

d dip

The result is to simplify many of the formulae in Sec. III, primarily by allowing the sub-

— e (NVI/(B? ~ ¢ {22 ¥ Ry/Bs . (63)
R p—r ‘

stitution
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20 — M2. (64)

Thus the shock description of Sec. III, which pertains for a general flow of the form (51),
is straightforwardly specialized to the strongly damped case.

VI. PARALLEL VISCOSITY AND CONVECTIVE
MOMENTUM TRANSPORT

If there are no nonintrinsically ambipolar fluxes, such as Jo;p, and no anomalous
momentum loss mechanisms, the evolution of poloidal rotation is governed by the parallel
viscosity (B -V - ﬁ/N) and convective momentum transport (B -V . VV). With the linear
solution:and shock solution givenin:Sec..III; we can evaluate (E AV ﬁ/N), (B V. vV,
and (R?V( NV . VV).

From Eq. .(8), we find

B.v. O 2\ /B-V(P - P,) (Py—P.)B.VB _
<—ﬁ_>:<§>< N >_< N B > (65)

Integrating by parts, we obtain, from Eq. (53), the parallel viscosity,

BV ﬁ . (P/—PL) [= 2=
<——-N——-> —-—< I B-V(lnB)—BB-V(lnN) . (66)
Substituting Eq. (9) into Eq. (66), we obtain a: positive definite form for the parallel
viscosity,
B.v.m\ _ B-ve\ [ 20 2
<T> = 2-\/;1},,1.{ ]%vtB < (——‘jv-—) [55 (lnB) - g“a—‘e- (11'1 N)j' > . (67)

To the lowest order in the large-aspect-ratio expansion, we can neglect the density and
magnetic field variations in the factor (B - V#/N) inside the angular brackets in Eq. (67).
Substituting the linear solution in Egs. (17) and (18) into Eq. (67) and employing
0(ln B)/86 = €sin f, we obtain



B.vg
N

=/l KMv;B

B.v.1I
N

(3 e ()]

When |1 — M,| < /€, we can calculate the parallel viscosity approximately with the shock

>M,,>1,M,,<<1
solution in Eqgs. (31) and (33) to obtain

B-v-I B.-v.I J7 B.va\ [(MZ+20
< N >_< N >h k+9KMvtIpa<B N >6< A -

where the contributions from the shock region to parallel viscosity are

é.v-ﬁx 2 5 T\ - K
_ = —Mv?{-+= /B-VB A'y = 7
< ¥ o 37 (3+%) (Bwo) vy o)

We have neglected the contribution of 9B/08 to parallel viscosity in Eq. (69) because
it is formally a factor of ¢ smaller than that of AN/86. We have also approximated
G~ ]\/I;‘f +2C. We note that the shock viscosity in Eg: (70) is independent of collisionality,
in contrast to the conventional neoclassical viscosity. For M, — 1 = O(e!/?), Eqgs. (32),
(34), and (35) show that the right side of Eq. (70) is proportional to

/2
N m\2 (M2 1) ’
{1 F20 - (5) E{1+(5/903)]} '

Hence, the shock viscosity reaches its maximum at M, = 1, which is the irreducible
minimum that must be overcome to have a supersonic poloidal {low. The contribution
from the region outside the shock, the second term on the right side of Eq. (69), depends
on the collisionality just like the conventional neoclassical viscosity. It vanishes as the ion
collision frequency approaches zero.

The convective momentum transport associated with the term (B-V-VV) and (R2V(-
NV . Vﬁ) are driven by the coupling between the variations of mass flows with those of

10,22

plasma density and magnetic curvature. From the elementary vector identity, we have

(B-V .- VW =(V%B-VxV) . (71)
18



Employing the adiabatic law for ions, realizing V x B = ¢V P;/(Ne)+cV®+cMV -VV /e+
cV- 7 /(Ne), we find

(37 :57) - [ 5 o) ()

and

2 5oL Tl
<szg-Nx7'-vv>—3°I 8K<B v H>, (72)

T 2¢ B? 8y N
for |1 — M,| < v/e. When |1 — M,| < /¢, the convective poloidal momentum transport is
a factor of p,i/L, smaller than parallel viscosity in the bulk region of the plasma. Here,
L, is the radial scale length of V,. However, in the edge region p,;/L,.~ 1, the conveciive
poloidal momentum transport becomes as important as the parallel viscosity. In the edge
region, the convective poloidal momentum transport weakens the parallel viscosity and

facilitates the I-H transition.
VII. IMPLICATIONS FOR L-H TRANSITION-

The-measured poloidal Ma;:h numbers M}, in the edge regions of CCT, JFT2-M, TEX-
TOR; and DIII-D are either close to or higher than unity.”'8?3:2% According to the theory
developed here and in Refs. 10 and 11, shocks should exist in these devices. Shocks are
characterized by strong variations in poloidal plasma density and potential at the shock
angle 79 and by the development of up-down asymmetric poloidal density and potential
variations at M, ~ 1. When 1 — M, < /¢, the shock angle Mo is located at o X 7. As
M, approaches unity, tHe shock angle moves in the direction of the poloidal rotation, as
shown in Fig. 1. At My =1, 7 is at 2. When M, —1 < V/€, the shock angle is at 7y < .
Furthermore, the closer M}, is to unity, the stronger the up-down asymmetric components
of the poloidal variations of density and potential are. Both the movement of 7y and the
magnitude of the up-down asymmetric components of the poloidal variations of density and

potential as M, varies can be measured experimentally. Figure 2 is a schematic diagram
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that describes the evolution of the poloidal variation of the plasma density for different
values of A, (from M, < 1 to M, > 1) based on the theory developed in this paper.

The relevance of the concept of a viscosity barrier to the L-H transition has been
established both experimentally and theoretically. With the development of the shock
theory, a further quantitative comparison of theory and experiment can be performed. In
particular, in the bulk region, the effect of the convective poloidal momentum transport
is weak and plasmas are rather collisionless, i.e., v,; < 1. Then one expects the shock
barrier, which is the shock viscosity at M, = 1, to become the relevant force barrier that
must be overcome for supersonic poloidal flow. With an external poloidal torque, one can
test the magnitude of the shock barrier experimentally.

With the shock theory developed here, one can easily modify the theory of the L-H

transition proposed in Ref. 5.
VIiII. CONCLUDING REMARKS

We have solved the parallel momentum balance equation with parallel viscosity as the
main dissipation mechanism. For simplicity, we have neglected the effects of heat flow. We
find that for parameters relevant to experiment the solution has the characteristic feature
of a shock when the poloidal Mach number A, is close to unity. The shock angle ng moves
in the direction of the poloidal low from 79 2 7. to 2, and then to 7o S 7 as M, increases
from 1 — M, < /€, to |1 — M| & /€, and then to M, — 1 < +/e. Also, strong up-down
asymmetric components of poloidal density and potential variations develop when M, ~ 1.
All these features can be tested experimentally during the L-H transition.

Plasma parallel viscosity and convective poloidal momentum transport are calculated
based on the shock theory. We find that there exists a colllisionality-indefendent shock
viscosity when |1 — Mp| S v/e. The shock viscosity reaches its maximum at M, = 1, which
is the critical value that must be overcome to achieve a supersonic poloidal flow. The

convective poloidal momentum transport is usually smaller than the parallel viscosity by a

20



factor of ppi/Lp. However, in the edge region pp; ~ Lyp; therefore, the convective poloidal
momentum transport weakens the parallel viscosity and facilitates the L-H transition.
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FIGURE CAPTIONS

Fig. 1. The variation of potential [x(1 — M?)/4A'] vs angle 7 for three different values
of Mach number M,. As M, increases, the shock angle 7o varies from m < 79 < 27 for

1-M, <e(a)ton =2rfor M, =1 (b) and to 0 < 7o < m for M, — 1 < /e (c).

Fig. 2.  Schematic diagram of the variation of plasma density with angle n for seven
different values of Mach number M,, as M, increases from (a) My < 1 — /e to (b)
1 — M, ~ /e at the onset of the shock to (c) 1 — M, < +/e for shock angle 7, in the
range ™ < 19 < 2w to (d) M, = L formo = 27w to (e) Mp —1 < y/efor 0 < m < 7 to
(f) My — 1 ~ /e {for no = 7 to (g) M, > 1 + \/e. For simplicity, we assume that there
is no dissipation in the-system. Note that in cases (a) and (g), the density variations are-

approximately simple sine-and cosine functions described by Eqgs. (17) and (18).
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