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Abstract

The power-law energy distributions are observed in space and fusion plasmas.
The power law decay of the two-time velocity correlation function and the
corresponding frequency spectrum of the correlation function are shown to be
related to the power law distribution of the time interval of acceleration, which
produces a power-law energy distribution. In particuiar, the two time correlation
function, the distribution of acceleration duration, namely the distribution of the
trapping time of the quasi-trapped orbits in the vicinity of the magnetic null such
as the geomagnetic tail configurations are shown to produce a power law energy
distribution function. The statistical property is applicable under conditions
given here to the energy spectra of cosmic rays, electrons in laser-plasma
interaction and the radio-frequency heated confined plasmas.

I . Introduction

Power-law energy distributions of charged particles are observed and
theoretically predicted in many fields of physics as diverse as cosmic particle
energies of the solar flare! and the extra-heliospheric origin,2(see Fig.1) gamma-
ray busters,3 magnetospheric energetic particles,4 laser heated plasma electrons5
and ion cyclotron resonance heating of tokamak plasmas.6 In this work we show
how the statistical properties resulting from Hamiltonian chaos of charged particles
in electromagnetic fields can produce power-law energy spectra.



As an example, we consider the acceleration mechanism of the charged
particles that are quasi-trapped in the earth's magnetic field on the night side
where it is stretched into long-thin magnetic field loops and where there is a
dawn-to-dusk electric field. The electric field Ey is driven by the solar wind
velocity Vsw across the ambient north-south magnetic field, Ey=Vsy B, and
varies in strength with the degree of magnetic activity arriving from the sun. We
use this system where the orbits and velocity correlation functions have been well
studied to develop a statistical model of a general acceleration mechanism
(theory) that produces power-law energy distribution functions. The acceleration
model developed here is related in its statistical assumption to a recent theory of
Per Bak et al.7 on the distribution of the strengths of earthquakes.

I . Temporal Correlation, Life-Time Probability and Particle Energy Spectrum

Let us assume that a charged particle is accelerated by an external force which
is independent of, or a period function of time. When a particle is not scattered by
particle-particle collisions or the orbit stochasticity, the particle may be
accelerated monotonically by a static field or the resonance with the Rf field.
When the duration of the monotonic acceleration T is given, the energy gain of

the particle can be represented by
A T=1¢, (T, OF, 1

where F is an effective acceleration force, £+ (T, ¢) are free flight paths between
subsequent scatterings for acceleration (+ sign ) and declaration (- sign) cases
and ¢ is the particle energy before acceleration.
We assume that the distribution of the lift time T of such a particle is given by
the probability density
P {(eleo)_”T} =4 (Ae)P+ [(s/eo)—oT} +6(=2e)P _ [(e/ eo)ﬂT}
were P+ and P. are for acceleration and deceleration processes respectively. In

this case, we introduce a transition probability from e to ¢ + Ae ; W (e, Ac), and the
function W (¢, A¢) can be given by

W(e,Ae)dAe:P{(e/so)‘”T}(e/eo)_”dT , (2)
where P(y) satisfies
I ) Py)dy=1
Equation(2) is rewritten to °

oT

W(e, &¢) =P{(e/eo)""T}(e/eo)"’/[



The Chapman-Kolmogorov equation (8, 9) for energy distribution function f (g, t)
may be given by

e, t)

p [ d AW =-Ac;he) f (e=2Ne)

-j d (As)W(s,Ae)f(é)-f—C{f(a, t)}, 4)

where C {f (¢, t)} is the collision operator for internal interactions.
Note here that the mean free path of a non- relativistic particle is given by

@

<&, (T, e)>= J vTPi_ {(s/so)—”T}(s/ eo)'”dT

0

=v(e/eo)'7f yP _ (5 dy, (5)
0 £

where v is a velocity of the particle which is proportional to Ve .

For Coulomb collision of a high energy particle whose energy is much higher
than the plasma thermal energy kgT, the mean free path is proportional to e2.
Therefore, Eq (5) indicates 7 =3/2." |

Theequation (4) is rewritten by using Eq. (2) to yield,

o @- - =7
5:-[0 dT[(s-— Ae)/ea} P H(e— As)/eo] T}f(é—As) '

..] dT(e/eo)"’Pd[(e/so)"’T}f(e)+C {f(e, t)} ()
0 :

When the external acceleration is strong enough, the internal collision term can
be neglected in Eq. (6). In this case, the temporal evolution of the energy
distribution f (e, t) is described by

—-Ad )
fle,t)= Za‘.(e)e b .(7)

i=1
where Ajis an eigen value of the integral equation

® -7 =7
[ dT{(e—As)/e J PH(E-Ae)/E ] T}a.(s—Ae)
0 [+] (o] i

- jo dT(e/eo)"”P{(e/eJ"’T}a‘.(e):-Aiai (e) (8)



Here, we may require boundary conditions 2;(©)=0 and a;(0)=constant. The
eigen function for the zero eigen value (A,=0) corresponds to stationary energy
distribution function.

For an example, let us assume that P{(e /¢ )"T} has a power law probability

for

TS(/e) "TST,

-7
P{(e/eo)"’T}=Po[(s/eo)-’7T/To] , (r=>0). (9

Note that (e/e))’T, can be chosen to be the Coulomb collision mean free time
which is proportional to (e/e;)*2. In this case, 7 =3/2
This is the one observed in the vicinity of the KAM surface in the standard map
and in the problem of the geomagnetic tail particle life time (see the next section).
The stationary distribution is given by
fs(e) =ao(e) @ (e / €g) 77D, - (10)

This result means that the power law distribution of the period of coherent motion
yields the power law energy distribution of the accelerated particle.

The life time distribution function P{e / e,)" T} is related to the two time
correlation function of the particle velocity in the direction of the acceleration
field. The time correlation of v(t) ; C(z) is given )

@

C) =< v(twit+o> =<v’> [ B(T—r)P{e/eo)—qT}(e-eo)-” ar. (11
0

where §(T - r)=1 for «<T and otherwise 0. For P{e/¢))” T}=Pole/¢,)7 T/ To}7” .

Eq.(11) leads to
C@ = <v?> P T (e )7~ D1 = (/7 Y17 (12)
o 0% -1 o
This means that the power-law dependence of the correlation function is directly
related to the power-law energy distribution.
By the Fourier transform of Eq. (12), the frequency power law spectrum of C(z)

1s obtained as

@

S(f)=2Re[ C (o) & gz
0

yp T 1 2-y @ )
=2Re {<u2> PT (e/s > . < > [ y1_7e‘7dy}
o o °/ y=1 2””0 0

«(1/p%7 (13)

Let us summarize the above result. We have shown that this power- law
spectrum (13) and the power law decay of the two-time correlation function (12)



are connected to the power-law energy distribution (10) of the accelerated particle
in an external field.

Another example of the acceleration is the energy diffusion process by random
acceleration and deceleration. Assuming |Ael <€ ¢, the Chapman-Kolmogorov

equation (4) can be reduced to the Fokker- Planck equation,
2

of a (% a[® Ac ' 3
-_= — dDe) De W (e, Ae) + — d(Ae) — W (e, Ae)| Xfle) + — [R (&) f(e)],
at de - 85 - 2 de

where the last term is the Coulomb drag force and R (¢) =R, (¢ / ¢, )-1/2 for high
energy particles. Assuming

J dBe)Ae Wi, Ae)=0,

the stationary distribution satisfies
3
%{A (e)f(e)}+R(e)f(e)=const. (14)

Using Egs. (1) and (3), and assuming €(T, ¢) =€, Ve / ¢, (T /To) because a velocity v
«V'e for a nonrelativisic particle, we obtain (
AE =4, /e )" (15)
where
A =(F%2T?) j dyy2 P(y).
0 .
Since fle)— for e— , the integral constant of Eq (14) is zero. Therefore, the
stationary distribution is given by

R- e |
_ ~27-1 0 ~27-32
fl&=C(e/e) T exp {— a [ (e/e) 7 dé , (16)

This result indicates that the energy distribution will be a power law distribution
as far as 7= -1/4 in the high energy limit.

Il. Review of Orbit Analysis in Geomagnetic Tail

The ion and electron orbits and their two-time velocity correlation functions
and the energy distributions have been investigated by Currant and Goetz10
(1989) and W. Horton and T. Tajimall (1990). They discussed the particle orbits
in the geomagnetic tail, where the magnetic field structure during the
reconnection is as shown in Fig. 2. The storm-time electromagnetic fields can be
represented by a two-dimensional magnetotail modell2 by the vector potential

A=Ay, A=A +A,



A =—=aB lInicoshz/al + B x:-weeeeees
o X0 2

A == ¢ (&) cos (kx). a7

Here -9 A/dt=Ey the inductive dawn-dusk electric field. During the quiescent
time, Ey is constant. However, ¢, (t) grows like ¢,ert during the storm time.

Particle orbits in the electron magnetic field given by Eq. (17) are described by
the following equation of motion,

dx
= - 18
=’ 18
UV =w U (19)
8 zy
q g 0
v ==—=—=cos(k x)+w v tanh(za) -~ w v (20)
Y m at z zz z'z
v.=~-w U tanh(za) (21)
z Ty

where w;=q9B,/m and w;=qBx /m. Without an external electric field, Eqgs. (19),
(20) and (21) contain two coupled oscillators : For a particle | Za | < 1, v,/ I'Vaw,
vy | <1 and vy>0, one of the oscillators corresponds to Z=-wy vy z/a (Which comes
from Eq. (21)), and the characteristic frequency is Qd=’\/vyw,/a. The other one is
cyclotron motion in x-y plan which has a frequency w;. These trajectories with
lz/al <€ 1 are called meandering particles. Particles other than the meandering
ones have one cyclotron frequency V w,? tanh? (#/8)+w *=w and the bouncing
frequency around the minimum magnetic fleld plane(z=0), whose

bouncing frequency is Q #=wx\//.t/a2wx, where u is magnetic moment for the
cyclotron motion. We call those particles “mirroring particles”.

In the geomagnetic tail the frequencies Qg4, w;, wc and Q, can be comparable
around the z=0 plane. Since those oscillators couple with each other nonlinearly
through Eqgs. (18)-(21), the particles suffer transitions from the meandering orbits
to the mirroring orbits and vice-versa. These transitions take place in a
stochastic way. This means that the invariance of « and the action of the
meandering particles break down through the resonance of two oscillation
motions.

The stochasticity or the chaotic tendency can be characterized by the ratio of
the orbital frequencies defined by the parameter « =w,/Qgy When « is near
unity (or an integer or rational number) the particle orbit will become chaotic,
Since Q4 is a function of vy, thesearea group of particles whose orbits are regular
and others are chaotic. An example of phase space distribution of particles is
shown in Fig. 3 for k=0.25 We can see that there are two kinds of orbits. One of



these is a kind of non-integrable orbit and the other one is the type of integrable
orbit, the boundaries of which are indicated by the KAM surface in Fig. 3. At
the boundary between the two regions, the orbits are periodic for a very long time
until they become chaotic. Namely, particles in the vicinity of the KAM surface
stay for a very long time in that region of phase space and gradually diffuse out
from the region near the KAM surface. Since the particles in this region have a
long time correlation, the two-time position or velocity correlation does not decay
rapidly such as exponentially, but shows a slow power-law decay. In fact, the two-
time velocity correlation functionin the direction of dawn-dusk in our simulation
has a long time tail as shown in Fig. 4. Figure 4 indicates that the two-time
correlation function consists of two parts. One of those decays with slow
oscillations. The frequency spectrum of this correlation function may be

represented byi2.

@ L C.

s(f)=] eC@e¥F= 3 —i— 2.

0 j=12 lf - fJ’ J '

where
1 (T
C@= lim —I v(@v G-0dt 23)
Ta——cn 0 T—TU. y y

is the correlation function. _
From Fig. 4, the exponent of the power-law decay of the correlaton function is
approximateiy 1. Therefore, y of Eq (12) is 2. When 7=3/2, Eq.(10) yields.
fle)=(e/e ) %2 . Thisisslightly different from the energy distribution observed by
Lui and Krimigis 4; fxe2;

On the other hand, when particles are accelerated randomly, the energy
distribution given by either Eq.(10) or (16) indicates n=1or1/3.
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ENERGY SPECTRA
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Fig.1(b) Energy spectra in the magnetosheath and
in the LLBL. The solid line is the source
distribution in the magnetosphere . The
broken line is the source distribution in the
magnetosheath. The circles are in the
LLBL, and the squares are in the
magnetosheath. The distributions

- represented by both the circles and the
squares are on open field line.



Fig.2 Magnetic structure in the geomagnetic tail. (a) and

(b); effective potentials
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Fig. 3 Surface of section at the z = 0 plane for the 2D
Hamiltonian in Eq. (2) for the stochasticity parameter k£ =
0.25 and H = 1. The initial data for the integrable (Int)

and the stochastic orbits (Sto) used in Figures 2 and 3 are
marked.
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Power Law decay of two time velocity correlation.






