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ABSTRACT

Excitation of large amplitude wake fields in a plasma for acceleration of
particles is theoretically and computationally considered. The wake electric
field can be generated either by short laser pulses or charged particle (electrons)
beam pulses. We treat both cases from a unified point of view and compare
them. In two (or three) dimensional investigations, the wake causing agencies
- aretreated as rigid, while in the one dimensional cases the feedback of the wake
field on the driving pulse is accounted for fully kinetically and relativistically.
We elucidate transverse and longitudinal wavebreaking effects, nonlinear wake
field effects, pulse shaping, multiple pulses, the coherency length of wake fields
and comparison of laser and electron beam pulses.

INTRODUCTION

A promising way of achieving super high accelerating gradients for future linear
colliders is the use of a plasma-based accelerator in which a plasma wave is driven
either by a short laser pulse or a relativistic electron beam. These schemes are
known now as the laser wake field accelerator (LWFA) and the plasma wake
field accelerator (PWFA). Some of the early ideas on this have been introduced
by Veksler in 1956 (see Ref. 1). In Ref. 2 a laser pulse was introduced to induce
a wake, as the laser pulse is capable of creating a fast phase velocity. Some
later papers went back to the original charged particle ideas. The electron beam
version of PWFA was proposed in the theoretical paper,>* and its basic princi-
ples have also been tested experimentally.? Recently, an enhanced accelerating
gradient has been obtained in a new experiment,® and there are at least two
more experiments”® proposed with substantially increased parameters.

To address an experimental situation, theory of either the LWFA or the
PWFA is desirable to be both three dimensional and nonlinear. Three dimen-
sional effects are especially important when the wake field is excited by an elec-
tron beam, since the transverse dimensions of the driving beam are typically less
than its length. In addition, the self fields of an ultrarelativistic electron beam
have predominantly transverse components. The nonlinearity of a plasma is also
an important issue in the whole problem, since there is a nonlinear limitation
on the amplitude of the plasma wave excited by the beam. Though the above -
arguments had long been commonly accepted, the theory developed so far has




been often limited by using either a linear approximation or a one-dimensional
model. The two objectives of this paper are to develope a simple luid model for
analytical and numerical study of the nonlinear dynamics of a three dimensional
wake field and to present related fully self-consistent computer simulations for
a one dimensional kinetic model. ,

When solving the general wake field problem, one has to take into account
both the nonlinearity of the plasma and the deformation of the driver. However,
in the ultrarelativistic limit the driver may be assumed to be “rigid”, i.e. the
back effect of the excited field on the driver can be neglected (at least as a first
approximation).

The nonlinear limitation on the accelerating gradient stems from Langmmr
wave breaking. As it was shown for the one-dimensional case in Ref. 9, the wave
breaking is characterized by a finite threshold amplitude of the electric field. In.
contrast to this, the wave will always eventually break even for small amplitude
waves in the three-dimensional case (see Ref. 9). With decreasing wave ampli-
tude the wave breaking is delayed in time, but it does not disappear. In the
context of the problem, it means that that the length of the “laminar wake”,
where the field structure is suitable for particle acceleration, depends on the ac-
celerating gradient. As the gradient increases, the length become shorter, hence,
the question arises as how large a gradient can be achieved with a accepta,ble
length of the laminar wake.

This particular question may be addressed within the fluid description of
plasma electrons on the background of immobile plasma ions. As the velocity
of the driver is very close to the velocity of light, all the fields and currents in a
plasma are assumed to depend on the longitudinal coordinate z and time ¢ in a
combination z — ct, like in a travelling wave. This assumption is consistent with
the fact that the plasma is unperturbed far ahead the leading edge of the driver
because the group velocities of both electromagnetic and Langmuir waves are.
less than the driver velocity. An additional assumption is an axial symmetry of
the problem.

In the three dimensional model the fluid approximation is used and the driver
acts on the plasma; however, there is no feedback on the driver. This “rigid”
driver approximation which allows an important three dimensional analysis is
valid over short distances. The one dimensional kinetic model gives the self-
consistent interaction of the driver with the plasma at the cost of reduction in
dimensions. This simulation can test the rigidity approximation

The fluid model that we use reduces a physically three dimensional problem
to a mathematically one dimensional one for which a numerical solution can be
obtained easily. A simple fluid code which solves this problem can be further
combined with a much more sophisticated kinetic code to describe the dynamics
of the driving beam on a time scale determined by the distortion of the driver.
This second time scale is much longer than the period of plasma wave. The
combined code will certainly be less time consuming than a fully kinetic code.




'BASIC EQUATIONS

Electron Driver

Derivation for an electron beam driver will be initially investigated, with
modifications then given for a laser driver. A set of equations to be solved
includes a relativistic equation of motion for plasma electrons

%+(VV)p=—8<E+%[VXH]) ) . (1)

wherein v = ¢p/+/p? + m2c%, a continuity equation
on
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A total current j in Eq. (3) is the sum of a plasma electron current
jp = —env (5)

and a current of a driving beam j;. For a rigid axisymmeric beam, j, is directed
along the z-axis of a cylindrical coordinate system (r, ¢, z) and is a given function
of r and ¢ — z/c. For the particular computational runs we take a gaussian radial
profile of the beam. It is convenient to rewrite Egs. (1)-(4) in a dimensionless
form by introducing new (dimensionless) variables that are marked by primes
and defined by the following transformations:

t= [t r > ——nir’- p=mcp ; v=cv;
(47np62) "’ (4mnge?) ’ B

n=>non' ; j = —enycj; ; E = —\/dmnymc?E ; H = —\/4rnymc? H' . (6)

Here, ng is the unperturbed plasma density and the fields are normalized to
the wavebreaking value Ey = mw,c/e. In what follows we omit the prime at a
dimensional variable. By assuming an axisymmetric travelling wave dependence
(r; t — z/c) for all the functions we eliminate z-derivatives from Egs. (1)-(4).
We also introduce new unknown functions V;, V; and N that are related to Vg,
v, and n by equations
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Finally, Eq's. (1)-(4) take the form
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For the driving beam current, j,, in Eq. (12) we choose
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with the parameters jg, 0., 0_, and o, that determine a beam-to-plasma density
ratio (jo), beam radius (o,) and the widths of the beam leading edge (¢_) and
trailing edge (0,.) measured in units of the plasma collisionless skin depth.

By analyzing the solution of Egs. (7)-(12) one can, in principle, find the
optimum values for the parameters jg, 0,,0_, and o, to maximize the plasma
wake field. Since the complete analysis of the solution is rather difficult we will.
restrict ourselves with a more practical problem of outlining a relevant range of
parameters for creating experimentally the wake field of the order of hundreds

GeV/m.
Laser Driver

We will model the laser pulse in the plasma by the ponderomotive force it
produces, otherwise the electromagnetic flields of the laser pulse are ignored.
This gives the “rigid” laser pulse with all the fields in the basic equations due
only to the plasma. Effects of the feedback of wakefields on the laser pulse have
been treated by a fluid approach, including the pump depletion in Ref. 10. A
laser pulse with a radial profile will produce a radial and axial ponderomotive
force

F, = —% V(L) , | (14)




Where Vo = €Ejager/Miinser 18 an electron oscillatory velocity in the laser field.
A relativistic generalization can be done.
This force is to be included in the equation of motion for plasma electrons

%I:‘ +(V)p = (B+ % [vx H]) +F, (15)

where the fields are only those due to the plasma.
The normalized force becomes

F = (/4mnymc2e’F (16)

Then the dimensionless equations (7) and (8) become
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The rest of the dimensionless equations (9)—(12) are as before, except that the
beam current j, is equal to zero.

LINEAR THEORY
Electron driver

A sufficient applicability condition for the linear theory is given by inequality
Jo K 1 for the electron beam or F' <« 1 for the laser pulse. With this condition
being satisfied one can put N =1 in Egs. (10)—(12) to split off Eq. (9) and to
rewrite the remaining equations in the form
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We now substitute E,, E; and V; in Egs. (22) and (23) from Eqs. (19)~(21) to
obtain
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It follows from Egs. (24) and (25) that a vector potential A given.by :
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After solving this equation the longitudinal electric field E. can be found from
Egs. (20) and (26)

, :
E.(r;t) =/ A(r;t") cos(t — t')dt' . (28)
Equation (28) gives a sinusoidal wake field behind a driving beam

E.(r;t)|E cps(t + 1) (29)

with an amplitude F that depends on radius as
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* For the current given by Eq. (13) the amplitude takes the form
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Here Jp is a Bessel function and | F} is a confluent hypergeometric function.




It follows from Eqs. (31) and (32) that the electric field E as a function of
r reaches a maximum value on the beam axis. The dependence of E(0) on o,
is characterized by a monotonic function R(0;¢,) that is shown in Fig. 1. Since
it is typical for an electron beam that both o_ and o, are larger than o,, we
restrict o, by a condition

o, <min(o_;04) . (35)
To maximize the wake field under this condition we will assume in what follows
that '

o, =min(o_;o04) . (36)
As Eq. (31) is symmetric with respect to o_ and o, it is sufficient for our
purpose to consider the case oy < o_. Shown in Fig. 2 is the dependence of the
wake field on o, with o, given by Eq. (36) for the symmetric beam (o_ = ¢)
and for the beam with a very long leading edge (o_ = o). The positions of the.
maxima are almost the same in both cases (o, = o, = 1.3), while the maximum
values of E differ by a factor of 2. Namely, Em.x & 0.87, for the symmetric beam
and Eax &~ 0.47, for the asymmetric one. There is a simple qualitative argument
for the existence of the maxima in Fig. 2. At small values of o, the wake field
is less than the maximum value because of a smaller number of particles in a
driving beam. At a large values of o, the field decreases because the beam
switches on adiabatically so that the beam space charge can be neutralized by
the plasma. By extrapolating the results of linear theory up to j; = 0.5 we
would obtain a dimensionless wakefield to be 0.4 for the symmetric beam and
0.2 for the asymmetric beam.

With the normalization (6) we have for the above quantities in their di-
mensional form jo = 0.5enc, En = 0.4mwpc/e, and Ep,, = 0.2mw,c/e.
At a plasma density 10'®cm™ these numbers correspond to 1200 MeV/m and
600 MeV /m respectively. An optimal beam radius is equal to 0.22 mm for this
density. The above values determine the characteristic scales for the parameters
in our nonlinear numerical simulations.

Laser driver

In the linear approximation for the laser pulse Egs. (17) and (18) become

0

EV; -—E,.-|— Fra (37)
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at r = -4 T .

We now define the electric potential ¢ and the ponderomotive potential ¢ such
that
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Since the force is derivable from a potential, there is no magnetic field in the
linear approximation. From these and the originhal equations we get

Zwtv=s. (41)

The solution for Eq. (41) is

w= [ 4tr)sint—t)ar (42)

The amplitude of the potential ¥ depends on the ponderomotive potential. As-
suming f(t) to be an even function of ¢, we obtain

ampl = max /oc P(t';r) cos(t')dt' . (43)

For a ponderomotive potential with a gaussian radial and longitudinal profiles

_t2 _,,.2
¢ = Cexp (203> exp (%?) | (44)
the amplitude becomes
2
ampl = v/27 0,C exp (—%) . (45)

The calculation of the force from this form of the laser pulse is valid only for
nonrelativistic velocities of the plasma electrons. If the amplitude of the force is
such that either the velocity of the electrons due to the electric field of the laser
pulse or the velocity of the electrons in the plasma wave becomes comparable to
the speed of light, then the force given above will not come from the gaussian
form of the laser pulse. The corrections to the nonrelatistivic ponderomotwe
force have not been considered here.

COMPUTATIONAL RESULTS

Equations (7) to (12) from the 2-D problem with a rigid driver were solved
numerically with a fluid code. We also used a fully relativistic 1-D kinetic
code (see e.g. Ref. 11) to study the effects of particle velocity spread which is
important for studying wave breaking. In this section we present the numerical
results for both electron and laser drivers with various longitudinal profiles and
intensities. The radial profile of the driver for all 2-D runs is chosen to be
gaussian with o, = min(o_; 0, ) for the electron driver and ¢, = o, for the laser
driver. For the longitudinal gaussian half width o we used the optimal value
from linear theory of 1.3 c/wy for the electron pulse and 1 ¢/w, for the laser
pulse. In the case of a rigid driver relativistic factory was not specified (v = ¢); -
for the one-dimensional kinetic case we put v = 20000.




Initially we shall look at electron drivers starting with the single pulse driver.
In Figs. 3-5 we present the results for various densities of the driving beam.
In each of the figures the radial profiles of the wake field and focusing force
correspond to the right end point of the longitudinal profiles. Fig. 3 corresponds
to a beam peak density which is 20% of the plasma electron density. Although
the plasma wave look linear (sinusoidal), it is actually in the weakly nonlinear
regime as is evidenced by the form of the focusing force. Since we are dealing
with accelerating relativistic particles, the focusing force is defined as the radial
_ electric field minus the magnetic field. In the linear region, the focusing force’s
sign is always opposite the slope of the wakefield, however, in Fig. 3b we see that
the focusing force becomes positive after about 2.4 radii. The radial profile.of
the longitudinal field in Fig. 3 has a gaussian-like form as expected in the linear
regime.

Next we look at a beam density that is 40% that of the plasma density
(Fig. 4). There are now indications of nonlinearity in both the longitudinal
and radial structure. The longitudinal fleld now has a steepened trailing edge
and doubling the current from 20% to 40% increased the maximum amplitude
by more than a factor of two. The amplitude also drops off due to nonlinear
phase mixing of the harmonics. The structure of the focusing force is definitely _
nonlinear showing regions of large focusing and defocusing. Also the radial
profile of the longitudinal wakefield has a blunted top and steep dropoff after
about one radius due to nonlinearity. ,

The last 2-D single gaussian bunch (Fig. 5) has a beam density that is 60%
that of the plasma density. The longitudinal wakefield has a steep trailing edge
with a decreasing amplitude due again to nonlinearity. Although the longi-
tudinal field looks nonlinear it does not appear to be close to wave breaking,.
However, if we look at the radial profile there is a very sharp change in the focus-
ing force and in the radial profile of the longitudinal field at about three-fourths
of a radii. The wave is on the verge of wave breaking in the radial direction.

Now we look at the velocity distributions with the one dimensional kinetic
code. Since the 1-D code has an infinite radius, we expect the maximum wake-
field amplitude to be larger than that for a finite beam radius of the same beam
to plasma density ratio. Fig. 6 shows the phase space and plasma wakefield
for a beam density of 20%. The initial distortion in the first 10 c/wy is due to
startup and is to be neglected since it is unphysical. We see that the density
perturbation is slightly peaked showing a weak nonlinearity. However, there is
no wavebreaking and heating of the plasma and the plasma wave has a sinusoidal
structure with no decrease in amplitude. The peak amplitude of the longitudinal
oscillation is as expected larger than that for the 2-D case with a finite radius.

Fig. 7 shows a very nonlinear plasma oscillation which almost immediately
starts to break. The beam density is 60% that of the plasma. In the phase
space plot we see a very pointed top and a heating of plasma electrons. The
electrons with large momentum are trapped by the wake field and are accelerated
by the longitudinal field. The initial amplitude of 1.4 mwpc/e is above the




nonrelativistic wave breaking limit of 1.0mw,c/e.

Figure 8 shows the 2-D results for a slowly ramped pulse composed of two half
gaussian one with a wide width and the other with a sharp drop. The maximum
current is 60% with a half width of about 17 plasma wavelengths. This shape
gives an enhancement by a factor of 2 over the linear theoretical prediction of
0.24muwyc/e for the peak amplitude of the wake field. We see from Fig. 8c that
inside the pulse the focusing force is always negative and the longitudinal field
is very low. In the wake field there is the usual nonlinear flattening of the radial
profile of the wakefield and the nonlinear distortion of the focusing force.

Figure 9 shows the 2-D results of 5 bunches all spaced one plasma wavelength
apart. The beam density of each bunch is 10% that of the plasma. This shows
that following bunch amplifies the pulse in a linear fashion, the peak amplitude
growing linearly with the number of bunches which have amplified the wave.
After the final bunch the amplitude reduces somewhat as the wave is now in the
nonlinear regime. The radial profile also shows as before the nonlinear behavior
of distorting the focusing force and radial profile of the longitudinal electric field.
Careful inspection of the wakefield shows a progression from the linear regime
of a sinusoidal wake field to that of the nonlinear wave with a steepened profile.

Now we look at the cases for the laser pulse. In Fig. 10 we have the pon-
deromotive potential of an amplitude 0.1mc? with a half width ¢ of 1. This
corresponds to the laser intensity I of 0.1];, where I = (= )27‘bmc2 This gives
a wake field amplitude of 0.15mwy,c/e consistent with linear theory, however,
from the radial profile of the focusing force we observe that we are entering the
nonlinear regime.

Fig. 11 now shows definite nonhneanty in both the nonsinusoidal longitu-
dinal wake field and in the radial profiles. The normalized amplitude of the
ponderomotive potential of the laser force is now 0.3mc? in this case. As dis-
cussed in the theory section, the assumption that this force models a gauss1an
pulse is in question since we are now in the relativistic region.

For the last 2-D case we have three laser pulses of normalized amplitude
0.1mc? spaced one wavelength apart. As in the multiple electron bunch case we
see an amplification of the wake field startmg in the weakly nonlinear regime
and ending in the strongly nonlinear regime. From the radial profiles we see
that the wave is near wavebreaking. |

For the 1-D cases we now look at a normalized ponderomotive potentla,l of
0.1mc? in Fig. 12. As expected the amplitude is larger than that of the finite
radius case and is in the weak nonlinear region. We observe no wavebreaking or
heating in this region.

Figure 13, with a normalized potential of 0.6mc?, shows definite nonlinearity
in both the phase space and in the wakefleld. The phase space diagram shows
the wave starting to break after about 2 oscillations, with the harmonics starting
to modulate the wave. After about 4 oscillations we see the transition to chaos
and the heating of the plasma. Correspondingly we see the amplitude of the




wakefield decrease due to nonlinearity and noise introduced due to the heating.
Also observed are electrons trapped by the wakefield and accelerated.

CONCLUSION

In this paper we considered the excitation of a nonlinear plasma wave for the
wakefleld acceleration of high energy particles. By using the two dimensional
fluid model we calculate the maximum amplitude of a wake field driven by
either “rigid” electron beams or a given laser pulse and study the dynamics
of the wave steepening and approach to wavebreaking. We also studied a one
dimensional kinetic model in which depletion of a driver is taken into account
and which is capable of describing a plasma motion after wave breaking. We
observed that in a two-dimensional problem the wave steepening and breaking
can occur first in the radial profile and not in the longitudinal profile. The length
of the “laminar” wave after the driver decreases with increasing amplitude of
the wake field. However, one can produce the wake field close to the wave
breaking limit and have it suitable for particle acceleration and focusing on a
distance of a few wavelengths behind the driver. In particular the accelerating
field of 0.6mw,c/e is feasible. The amplitude and the structure of the excited
field depends substantially on the shape of the driver. We observed a nonlinear -
amplification of the wake field by a factor of 2 for a driving electron beam with
a gentle slope leading edge and a sharply cut trailing edge. It is shown that
the fleld can be strongly enhanced by employing multiple drivers with a spacing

~ equal to one wavelength. The electron beam driver and a laser driver of a similar

shape produce comparable wake fields when

2¢2 enc

<’v3sc) ~. jb (46)

A simple fluid code presented in this paper can be further incorporated into
a more sophisticated three dimensional kinetic code to describe the dynamics of
the driver and accelerated particles over the distance comparable to the length
of acceleration. This longer distance typically exceeds the plasma wavelength
by several orders of magnitude and the driver does not remain rigid over such a
length, though it can be assumed rigid over a few wavelengths. The combined-
code would be much faster than a fully kinetic code alone since a lot of time can
be saved by calculating the fields on the intermediate steps from the fluid code
with a locally rigid driver.
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1. From equations (26) and (27) the dependence of the normalized wake field
E at r = 0 as a function of given by R(0,0,). E is normalized to mwpc/e
and o to c/wy,. '
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2. From eéuation (31) the dependence of the normalized wake field on nor-
malized o, for a symmetric beam with o_ = o4 (thick line) and for a beam
with o_ — co (thin line).
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8. Slowly sloped electron beam with normalized peak current of 0.6, 2D fluid
code. 8a — normalized driving beam and wake field. 8b — normalized
radial profile of the wake field and focusing force at the right end point of
the wake field longitudinal profile. 8c — normalized radial profile of the
wake fleld and focusing force at the peak of the driving beam.
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9. Five electron beams spaced one plasma wavelength apart each with current
of 0.1. 9a — normalized driving beam current and wake field. 9b —
normalized radial profiles of the wake field and focusing force at the right
end point on wake field longitudinal profile.
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10. Gaussian laser pulse with normalized ponderomotive potential amplitude
of 0.1mc?. 2D fluid code. 10a — normalized driving pulse and wake field.
10b — normalized radial profile of wake field and focusing force at the

right end point on the wake field.
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11. Same as Fig. 10 for a normalized pulse amplitude of 0.3mc?.
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12. Same as Fig. 10 for three laser pulses spaced one plasma wave length apart,

each with normalized amplitude 0.1mc?.
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13. Single gaussian laser pulse with normalized amplitude of 0.1mc?, 1-D ki-
netic code.13a — phase space plot. 13b — normalized wake field.
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14. Same as Fig. 13 for a pulse amplitude of 0.6mc?.




