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Abstract

TFTR profiles from a supershot density-modification experiment are analyzed for
their local and ballooning stability to toroidal 7;-modes in order to understand the
initially ‘puzzling results showing no increase in X; when a pellet is used to produce
an abrupt and large increase in the 7; parameter. The local stability analysis assumes
that k| = 1/¢R and ignores the effects of shear, but makes no assumption on the
magnitude of kjvy Jw. The ballooning stability analysis determines a self-consistent
linear spectrum of kj)’s including the effect of shear and toroidicity, but it expands in

kjvti/w < 1, which is a marginal assumption for this experiment. Nevertheless, the
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two approaches agree well and show that the mixing length estimate of the transport
rate does not change appreciably during the density-modification and has a value close
to or less than the observed X;, in contrast to most previous theories which predicted
X;’s which were over an order-of-magnitude too large. However, we are still unable to
explain the observed increase of X;(r) with minor radius by adding the effects of (i)
the finite beta drift wave - MHD mode coupling, (ii) the slab-like mode, or (iii) the
trapped electron response. The experimental tracking 0.2 < X./X; < 0.7 suggests that

both grad T; and trapped-electron driving mechanisms are operating.



I. INTRODUCTION

Transport studies in the large tokamak confinement devices show that the ion and electron
thermal transport rates are well above the collisional neoclassical transport rates. When
the thermal losses are expressed in terms of thermal diffusivities X; and X. the lost rates
are characterized as having comparable diffusivities X; ~ X. with the order-of-magnitude
of X consistent with the E x B transport diffusion expected from small scale drift wave
turbulence. Drift wave stability theory predicts that typical tokamak discharges are unstable
to drift waves driven by both the ion and the electron temperature and density gradients.

An important stability parameter controlling the onset and the strength of the turbulence

' is the ratio of the density gradient scale length L, to the temperature gradient scale length

L called the eta parameter n = L, /L.

Early pellet fueling experiments in the Alcator C tokamak’ showed the onset of improved
confinement with the steepening of the density profile which is readily interpreted in terms of
the ion temperature gradient drift wave turbulence due to the simul_ta,neous sharp decrease
in the 7; stability parameter. Similarly, improved confinement regimes in numerous other
machines have been interpreted in terms of steepening the density gradient so as to lower the
n; and 7, stability parameters. In such an example the ASDEX team® used density profile
control to extend the unsaturated Alcator-Goldston energy confinement scaling 7z ~ 7. by
a factor of two above the original saturation limit.

‘These various transport results show the need for a detailed study of the ion thermal
transport in terms of drift wave turbulence theory. A series of transport studies on the
Tokamak Fusion Test Reactor (TFTR) were undertaken by Scott et al.>* and Zarnstorff
et al.5® to test the hypothesis that the ion transport is due to the ion temperature gradient
driven drift wave turbulence.

Earlier comparisons of TFTR experimental results with the existing ion temperature



gradient (ITG) theories yielded mixed results. A set of measurements® in the hot-ion and
supershot regimes showed that theories gave X;’s which were 10-100 times too big in the
plasma core (r < a/3). However, these theories were derived in the 7; > 74y limit and did
not contain a smooth transition to zero transport as 7; dropped below 7.4 where the ITG
mode becomes stable. It was observed that these plasmas were actually close to marginal
stability (see Fig. 2 of Ref. 3), which would explain the differences between the measured
and theoretical X;. In fact, the correlation of the measured 7; with the theoretical 7 (see
Fig. 4 of Ref. 3) suggested that the plasma was forced to stay near marginal stability by the
strong ITG transport which would result if 7; >> 7ai. A later set of experiments* which
included L-mode plasmas found that some plasmas were able to have 7; > 7qit, but these
tended to be colder plasmas for which the theoretical X; was not strong enough to enforce
marginal stability.

These findings lead to the experiments by Zarnstorff et al.>® where the density profile
of a hot supershot plasma was modified b>yva deuterium pellet or by helium gas injection to
flatten the density profile and force 7; > Nyt It was expected that a very large X; would
then be observed in the experiment, but in fact X; changed very little, thus disproving the
idea that marginal stability was enforced and calling into question the existing ITG theories.
The focus of the work presented here is to analyze one of the discharges from this series in
detail to try to understand this puzzling result.

We focus on TFTR discharge #44669 which is described in Table I and Fig. 1. This
discharge was a hot-ion mode (or “supershot”) plasma with 7z ~ 2.77§ and was heated by
14 MW balanced neutral beam injection in a 1 MA, 4.8 T target plasma with major radius
R = 2.45 m and minor radius ¢ = 0.80 m. A deuterium pellet was injected at t = 4.50
seconds and penetrated only part way into the plasma, transiently producing a flat density
profile corresponding to very large values of the stability parameters n; and ¢, = L,/R. In

the figures and tables, the letters A and B are used to designate the plasma state before and



after the pellet injection. Figure 2 shows the radial profile of X;(r) obtained from the ion
power balance analysis. As shown in Fig.. 3, Lt; did not change much (in fact it dropped
slightly), but because of the large rise in L,, the stability limit for Ly; was gre;tly exceeded
for a period of more than 20 msecs. There was little change in the thermal diffusivities
inferred from the power balance during these transients in TFTR, in apparent contrast to
the earlier experiments in Alcator C and ASDEX, and in disagreement with the existing
theories which predicted very large values of X; if n; >>'Uait-

To illustrate the magnitude of the disagreement between theory and experiment, Fig. 2
compares the meaéured X;(r) before and after the pellet perturbation with several different
theories: the analytic slab- and-toroidal formulas of Biglari, Diamond, and Rosenbluth,’
(BDR) and the numerically derived slab formula of H-amaguchi and Horton.? (It should
be noted that we have replaced the factor (1 + 7;) which appeared in the original’ BDR.
toroidal formula with the factor (7; — 7t ), @ modification motivated by the desire to have a
reasonable transition to marginal stability and by the form of Hamaguchi and Horton’s X;.)
These previous theories predict a X; which is more than an order of magnitude too large in
the core of the plasma.

Developing a complete first-principles theory of tokamak turbulence is not a realistic task
in the foreseeable future due to multiturde of active processes in the tokamak plasmas.® The
standard picture of tokamak turbulence is based on drift-wave type instabilities (including the
n: mode and trapped electron modes) which generate small scale E x B convective turbulence
(although there is some uncertainty, both theoretically and experimentally, about whether
small or large scale-lengths dominate the transport). In order to make analytic progress
and derive simple expressions for X; and X., various approximations are made about the
geometry (slab or toroidal), the dominant driving force (such as 7;), the mode structure, the

collisionality, the nonlinear saturation mechanisms, and the nonlinear spectrum. The most

complete formulas for X; to date are based on parameterization of 3D nonlinear computer




simulations using a two-component hydrodynamic description of the plasma.

The ITG theories shown in Fig. 2 were based on a number of over-simplifications which
caused them to predict a X; which is clearly too large. These theories were based on simplified
fluid equations which did not adequately model finite-gyroradius effects or kinetic effects such
as Landau damping (there is ongoing work to improve the fluid equations in this regard'® and
to use more complex fluid models!!). More accurate kinetic (particle) simulations!? show
that the actual growth rates and mode widths should be significantly smaller than given
by the simplified fluid equations. Fortunately, both fluid and kinetic simulations seem to
support the mixing length theory and the scaling law analysis for the turbulent diffusivities
based on the characteristics of the most unstable linear modes.

In this work, we show that a simple mixing length estimate applied to local kinetic theory
which incorporates toroidal and finite-gyroradius effects (missing from the previous theories)
into a simple mixing length model is actually fairly consistent with the measured X; in the
core of the plasma (r < a/3). However, the ITG mode appears to be too weak to explain the
observed transport in the region r > a/3, where either some other mode must be invoked or
the simple mixing length estimate fails. .

Some of the observed radial profile of X;(r) is obtained in the inner region when we use the
local kinetic theory which retains the full particle-wave resonance effects from the magnetic
curvature and VB drift and the parallel ion transit drift. The local kinetic analysis®® shows
that the threshold for the ion temperature gradient driven turbulence 7 is a function
of g(r). The ¢ value determines the connection length ¢(r)R between the good and bad
toroidal curvature regions as well as the ratio of the strength of the ion Landau resonance
from kj v to the grad-B curvature drift resonance wp = k, vp (vf_, vﬁ) Both these effects
work together to make the n; threshold higher at low g. Using this aspect of kinetic theory
in the turbulence formulas for X; produces an increase of X;(r) with radius in the core region.

The present 7; theories seem to be insufficient to explain the radial dependence of X;



in the outer region. Here we consider the possibilifies of obtaining the observed incréase
of X; with r/a by adding the effects of (1) the finite S drift wave-MHD mode coupling,
(ii) the slab-like mode, or (iii) the trapped electron resonance are found to be inadequate.
We also discuss other possible effects such as small-scale oscillations in the gradients or an
unmeasured E x B poloidal shear flow as possible mechanisms for increasing the mixing
width AX of the n; modes in the outer region. |

The structure of the paper is follows. In Sec. II, the TFTR discharge 44669 is analyzed by
various models of the 7; mode. First, a detailed analysis is given from the local kinetic theory.
Then the electrostatic and electromagnetic ballooning analysis is followed to complement the
local analysis. Also, the sheared slab model is dis'cussed for completenéss. In Sec. I1I, in the
attempts to solve the disagreement problem of the radial profile of X; at the outer region,
various stability effects such as steeper edge gradients and trapped electron resonamce:are

discussed. Finally, in Sec. IV, the conclusions are summarized.

II. DRIFT WAVE STABILITY ANALYSIS

A. Local electrostatic kinetic analysis

We begin the analysis of the discharge by determining the unstable spectrum from local,
electrostatic stability theory using the parameters from Table I. For Maxwellian velocity
distributions the electrostatic dispersion relation is

Des(k,w) = n}j? [1_< W = ox(0) J§>] : o

7 w — Wwpj; — k” v"

The j-summation is over electrons, ions and impurities. In III.B we briefly consider the
effect of the carbon impurities on the stability. When only the thermal ions are taken as

dynamical with the electrons and beam ions as adiabatic the dispersion relation (1), in the



standard dimensionless units, reduces to

Drralku, by 0) = / /+oo [rw — Iy (1 + n(v?/2 = 3/2))] JZ (kL v /%) /2 ) du, dy
ITG( Ry, &, o —F En( v_,_—i-v”) — kyoyr1/? (2#)(1/; )
2
where the adiabatic response D, is given by

_ n; Te ny Te n, Z2Te —b,
D“—1+neTi+naTb+ T (1 = I(b)e ") . (3)

In Eq. (3) we include a hydrodynamic impurity ion contribution where b, = k% p?, and
we assume the impurity drift frequency w,, = 0. The adiabatic response reduces to the
usual D, = 1+ T./T; of ideal ITG mode theory when the impurity and beam densities
are sufficiently low. The usual dimensionless parameters in Eq. (2) are ¢, = r,/R with
Tn = L, = —(0ln n/0r)!, and 7 = T./T; and the fluctuation variables k_, k), and w are
normalized t0 ps = ¢;/Wei, Tn, and r,/cs with ¢, = (Te/m;)/2.

The marginal stability analysis of the dispersion relation in (2) gives the condition 7; >
2/3 and
= (@)

for the threshold of instability. The toroidal threshold condition (4) is derived by Dominguez

ET =

and Waltz'* and Horton-Hong-Tang,'® and is often called the Romanelli’® condition

LTi _ 0.7
(ﬂmt =1TT/T, )

since Romanelli emphasized its practical importance. Clearly, the role of magnetic shear is
considered subdominant when applying conditions (4) or (5) since the formulas are indepen-
| dent of s.

In the case where the magnetic shear length L(r) is relatively short (L, < R) the results
of marginal stability from the sheared-slab eigenmode analyses in the flat density profile

limit are given by Hahm-Tang!”

(L:“)c; 3\/_< )2l+1) (6)
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here [ = 0,1,2,.... is the radial mode number.

Both stability conclusions (5) and (6) state as that for fixed scale lengths the system is
stable when T./T; falls below a critical value (T./T;)ait- In both the A and B states we
find that the plasma is well above this critical value 74 as shown in Fig. 3. As a function
of 7 = T./T; the growth rate first increases as 7 — Ty, and then decreases as (1/7)'/2 for

T > Tert. In the hydrodynamic approximation Hamaguchi-Horton® give

Ve = Jwae] [(%g)lﬂ - —g— (1 + Z£>] | (7)

T

with vycri; in the flat density limit given by 7ens = %‘i (1 + i— £)2 where T' is the ideal gas
constant and S = L,/L,. The maximum ~x(7) occurs at 7, = I'>S/n with the value of
Y = %IQ*J(T]{ /T — 2 S). The local stability analysis indicates that the experiment is-in-the
regime of +; decreasing with increasing 7. The comparison of the stability conditions on Lr;
for the transport discharge is given in Fig. 3 showing that the plasma is unstable to both
criteria at all times. The critical values for Lz; obtained by the integral equation analysis
by Xu a,nd Rosenbluth® are also shown to be close to the value from the Romanelli formula
given by the curve labeled (c). -

While the threshold formulas given in Egs. (4)—(7) are useful,-a simpler and more di-
rect picture of the stability of the system is obtained by finding all the local eigenmodes
wk(r), vk(r) from the Vlasov dispersion relation. The sheared slab and ballooning modes
may be viewed as certain linear superpositions of these local modes that form long-lived
states in the inhomogeneous system. We calculate such local solutions both varying the
radial position and the poloidal angle to obtain a description of the stability of the system
before and after the pellet injection.

In Fig. 4 we show the spéctrum of v(ky, kyj, ) computed from Eq. (2) (with ny = n, = 0)

before (state A) and during the flat density profile perturbation (state B). The growth rates



in Fig. 4 are normalized by v;,/R (2.4 X 10%s71) for state A and v,/ R (1.56 x105s™1) for state
B, where v;, and v}, are the ion thermal velocity (T;/m;)'/? at r = 0.3m in the states A and B,
respectively. We see that in both states there is a large spectrum of unstable wavenumbers.
The principal effect of the large increase in 7; is to destabilize the modes with k;p; > 1. In
fact, in the flat profile state a secondary local maximum is produced at k  p; ~ 1.5 which is a
stable region before the density flattening. However, these short wavelength modes may not
have a significant effect on the transport because nonlinear 3D simulation studies®!? support
the theoretical picture that the correct measure of the transport is v/k2 ~ v/ kz since the
turbulent states are found to be isotropic (k2) ~ <k§> with the peak of the k, spectrum
only slightly down shifted from the k, which maximizes ~;, depending on 7;, £, and s. The
secondary instability giving rise to the isotropization in k, — k, is analyzed in Cowley et al.®

The long wavelength modes (kL p; < 1) have the maximum dimensionless growth rate
YmLn/cs increasing with the increase of n;. However, during the perturbation, the value of
L, and the ion temperature T; change strongly (see Fig 1). Thus, returning to the actual
growth rate we find that at » = 0.3m the maximum growth rate 7, is slightly increased
from 2.1 x 10%/s to 2.6 x 10%/s and its location shifts from k,, = 2em™! to k,, = 3.2em™.
Fluid turbulence simulations imply that the expected turbulent transport is then X;(r =
0.3m, A) = ¥ /k2 = 5.2m?/s compared with X;(r = 0.3m, B) = 2.4m?/s. While numerous
parameters change from the A to B states of the discharge the dominant change for the X;
value at r = 0.3m is the decrease of the ion temperature from 8.4 KeV to 3.55 KeV. In Table
I1I the mixing length values of X;, obtained from the local Vlasov stability analysis described
by Eq. (1), are given at various radii for the A and B states.

From the local analysis we also see that the degree to which the local parameters
are in the toroidal regime of small kjvr/wp; in contrast to the sheared slab regime with
z = kjvp/wp; > 1 is an important influence on the stability of the ITG modes. As ana-

lyzed in detail in Kim and Horton'® and Dominguez and Rosenbluth?® this dependence on
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kjvr/wp; ~ 1/qkyp taking kj = 1/qR gives a ¢ dependence to the growth rate ymax(q), the
threshold 7ct, and the associated transport. In Fig. 2, we plot the results given in Table
ITI labeled as “mixing length X;,” and compére with expérimental results. The kinetic mix-
ing length X(r) in Fig. 2 has a radial dependence that is in considerably better agreement
with the experimental profile at the inner region of r < a/3 than the X#H(r) and XBPR(y)
formulas. However, at the outer region of r > a/2 there is still significant disagreement in
the radial dependence. The unfavorable radial dependence arises from the rapid decrease of

T;(r) which overcomes the increase of X; with ¢ at fixed T;.

B. Electrostatic ballooning mode stability analysis

Here we analyze the stability of the systém to the electrostatic ballooning mode equation
assuming that the ion acoustic dynamics kﬁ c/w? can be expanded to ﬁrst order in.the
kinetic response functions in Eq. (1). The ballooning eigenmode equation gives the proper
gveraging over the spectrum of parallel wavelengths that occurs at each k, p, and radius.
The change in the eigenvalues from the local value given in Subsec. A occurs from the ion
acoustic wave propagation along the magnetic field lines. Many basic studies of the drift
wave ballooning mode equa,tic;n for the n; mode problem from numerous groups are available
as reviewed in Horton.® Here, we give the ballooning mode equation used in the study with

minimal explanation for the present application. The electrostatic mode equation? is

((1 B ﬂi) To — %m (To + (T — ro))> ex %9

w q?w? 962

+(L+7(1 = P(8))) ¢(6) =0 . (8)

with the boundary conditions ¢(§ — c0) — 0 sufficiently rapidly for (k2) o s? k2 7 *dh
T 3

to exist. In Eq. (8) the kinetic response ‘function‘P, given in Eq. (A.3) in the Appendix,

is a function of § and vanishes as 1 /0% for large §. The local perpendicular and parallel
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wavenumbers are given by

kz 2
B ot = P (14 57 02)
by 109
= qR ¢ 00

and the local grad-B and curvature drift frequency is

wpi = —€rky ps % (%vi + vﬁ) (cos 8 + sfsin 6) [z—s]

for low beta, circular flux surfaces.

The ballooning mode Eq. (8) has a series of eigenfunctions describing the normal modes
of the plasma. As in the sheared slab we designate the [ —th mode by ¢y, ;(f) and order the
modes with increasing oscillations with [ = 0,1,2,..... Important measures of the character-

istics of the modes are given by the integral width Af; and the differential width Afp. We

2

also define the mean value of the expansion parameter P = k_ﬁvi /w? used in obtaining the

differential Eq. (8) from the integral mode equation. The definitions of the ¢(8)-measures

are

Jo- d66>4*(6)
Jo~ do¢*(6)
1 _ [ db(¢'(6))®

AGL 57 dOd(0)

Al = (9)

(10)

The ballooning mode wave function ¢(8) gives a ballooning mode radial width AX, and %,
given by
< k2 >=AX;? = kls’Re(A6}) (11)

with the subscript b for ballooning. This ballooning mode width and the associated
v/ < k% > has been estimated theoretically in Horton-Choi-Tang?? and Dominguez-Rosenbluth.?°
The resulting diffusivities are similar to that given as XBPR in Table II. The ballooning X;
varies inversely proportionally with shear s = rq’/q and proportionally to ¢ which for fixed

T; gives a X; that increases with r/a.
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The expansion parameter for measuring the strength of the ion acoustic wave effect is
<kﬁ> v?/w?, which in the dimensionless variables is given by

Te 1

A= T3 WRlaeg)

(12)

and the validity of the differential Eq. (8) requires that P < 1. Now, using Eq. (8), we
consider the ballooning stability of the modes identified as most dangerous from the local
stability analysis in Sec. 2.A..

For each radial pbsition in Table III we have carried out the integration of the ballooning
mode equation in Eq. (8) to find the lowest order eigenmodes and eigenvalues. First of all,
the ballooning mode analysis shows that there are two important fast growing modes: one
is peaked at § = 0, which we call the outside mode and one peaked in the region 6 = 7/3
to 27 /3 which we call the top/bottom mode since the peak intensity is somewhere i}g;jgh‘ose
regions rather than on the outside. The shapes of the eigenfunctions of these modes are
shown in Fig. 5 for r = 0.3m before and after injection. Generally, the growth rates of the
top/bottom fﬁo‘des are about one half that of the outside mode and the frequency of the
tdp /bottom mode is 1.5 times greater than the outside mode. Both frequencies are generally -
somewhat above the local kinetic transit frequency kyv; obtained with kj = 1/qR. We find
that the growth rates of the outside mode are close to those obtained with the local kinetic
theory. |

We have computed the moments of the wave functions defined in Egs. (9) and (10) to
determine the expansion parameter P, and radial mode ‘Width AX;. We find that even
though the condition Py < 1 is marginally satisfied over mosf radius, the outside mode
growth rates are nearly equal to the local kinetic results. The fop/bottom mode has a
larger P than the outside mode, and thus is closer to the slab mode. The mode widths
AX,’s appear to be larger than p, over all radii before and after the discharge, so that the

diffusivity estimate based on yAX? is somewhat larger than the isotropic turbulence mixing
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length AX = k; !, For example, for 44669A and r=0.3m, we obtain AX,/p, = 2.9 with
Py = 0.20 so that X} = 6.8 m?/s compared with 5.2 m?/s from AXp = 1/ky(Vmax). It must
be emphasized that the mode width AX, from Eq. (11) corresponds to the linear regime.
From the nonlinear studies,®?!21° however, we recognize that the nonlinear saturation forces
the formation of approximately circular vortices so that the proper mixing length is k;* when
k,AX, > 1. Now, with this consideration the results from the ballooning mode calculation
using AXmi = 1/ky(Ymax) are given in Table IV. Comparing Table III and Table IV we see
that the ballooning mode analysis agrees quite well with the local.kinetic analysis.

The expansion used to derive Eq. (8) is only valid if Pj < 1, which is marginally satisfied
for our parameters. Calculating moments of the eigenfunction and using Egs. (10) and (12),
we find that P = 0.2 for the outside mode at 7 = 0.3m at time A. Nevertheless, the growth
rates for the outside mode from the ballooning equation, Eq. (8), are close (Ay/y < 20%) to
the growth rates found from the local dispersion relation, Eq. (2), which made no expansion
in Pj. This gives some confidence that this calculation is approximately correct, at least
fof the outside mode which is primarily driven by toroidal curvature. The good comparison
between the two approaches is due in part to the use of & = 1/¢R in the local theory, which
agrees well with average k| calculated by our ballooning equation. However, it is possible
that a more complete ballooning calculation which did not depend on a small P ordering
might produce a different spectrum of ky’s. This may be important because part of the drop
of the theoretical X; near the axis is due to the stabilization of the ITG mode at large k
because of the assumed k) dependence on 1/q which is getting large near the axis.

An interesting area for future work would be to apply a more complete ballooning mode
calculation which did not rely on this small P approximation. In fact, comparing Fig. 14 of
Ref. 18 (which makes no assumptions about &y or Fj) with Fig. 4 of Ref. 20 (which makes
B < 1 and k| = 1/qR approximations), one finds that the stabilization of ITG modes at

low ¢ is overstated by the kj = 1/¢R approximation.
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While our expansions may be marginally acceptable for the outside mode, they are not
useful for the top/bottom mode for which we find P| ~ 7 and kj ~ 4/qR. The top/bottom
mode is not affected much by the toroidal curvature drive. We will analyze this slab-like

mode with a theory which is valid for general Fj in Sec. ILD.

C. Electromagnetic ballooning analysis

To complete the stability analysis of the discharges Wé consider the electromagnetic balloon-
ing mode analysis. Here again there a,‘rye fnaﬁy works giving the details of the theoretical
analysis including, but not limited to the ones of Cheng,? Tang et al.,24 Hong et al.,** and
Dominguez'—Moore.25

Using the 9(8) potential for A” such that £y = —z'k“(é‘—gb), we obtain the electromagnetic

mode equation

wi 0.2 0 Wk (. WDe _(1--—u.2:'=e/:.u)2 N
["”2 o kL 89+<1 w ) (1 w) Dgs(w, k,0) p=0 - (13)

valid for Py < 1. Some details of the derivation of Eq. (13) are given in the Appendi)ﬁ. The

s — « equilibrium model is used as a simple approximation for the equilibrium. In this model

the local wavenumber and drift frequency become
k} = k2 p? (1 + s%(§ — asin 9)2)

wp; = Wp; (cos § + 3(9 — asin §) sin 6) (14)

giving the reversal of the magnetic shear for o > 1. Here @ = —2R¢? df/dr with f containing
all the pressure components and reaches a maximum value of 0.4 in 44669A and B.

In Table V, we show _fhe growth rates and real freqﬁencies obtained from the local elec-
tromagnetic dispersion relation at various radii for the discharge 44669 before and during
- the density modification. The spectrum of modes obtained from Eq. (13) contains both the
local electrostatic toroidal ITG mode which has w?/w? >> 1 and thus satisfies Eq. (13) by

15



having the electrostatic dispersion relation Dgs(w, k,6) ~ 0, and the high frequency kinetic
FLR-MHD mode rotating with
w > wi(l+m;) .

The kinetic FLR-MHD mode is destabilized by the w = wp; drift resonance below the MHD
beta limit qqy.2?%?* The « is sufficiently below aqj in these discharges that kinetically
modified FLR-MHD mode is a real oscillation with w = ~5.09 x 108s~! at r = 0.3m and
kyps = 0.5. Table V shows that the electromagnetic effect on the electrostatic toroidal ITG
mode is stabilizing. For each radius there are two modes with their polarization given in the
right-hand column where £ = 0 at ¢//¢ = 1 and 6B, = 0 at ¢/¢ = 0. On the other hand,

to obtain the MHD (k,p — 0) beta limit the mode Eq. (13) is expanded in the fluid limit to

obtain
€202 0 (1)) K2 ( 1+m>] B
7 B 80k4'80¢+ [w(w_w*z(l+U:))k¢(9)+w*ewpe(0) L+ +—— b=0. (15)

For 44669A Fig. 6(a) shows the shape of an eigenfunction of Eq. (15) for r = 0.3m, kyp, =
0.5 (ky = 2.2cm™1!) before injection where the eigenvalue is w = —2.66¢,/L, (3.13 x 10%s71)
compared with w;(1+mn;) = —2.55¢,/ L, (3.01 x108s7!) and wy = v4/qR = 3.06¢,/L, (3.6 x
108s~1) using ¢,/L, = 1.18 x 10%/s. The ballooning mode width is AX, = 0.342p,. This
compares well with kinetic modified FLR-MHD eigenmode given by Eq. (13) with w =
—2.87¢c,/ L, (3.38 x 10%5~!) and mode width AX, = 0.342p, at the same position.

In Fig. 6(b) the n;-mode branch of the same EM equation is found by solving Eq. (13)
with the electrostatic eigenmode as the first trial function. The electromagnetically modified
n;-mode solution has w = (—.277+1.0272) (c;/Ly) or (—32.7+41:3.21) X 10*s~! eigenvalue and

the ballooning mode width X}, = 0.690p,. The electromagnetic modification has reduced v

and the estimated X;.
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D. Electromagnetic integral equation analysis in sheared slab

In the subsections A and B; the ballooning mode analysis was méde by expanding the
parallel ion motion in the small [kﬁv? Jw?| limit. Here, we study the slab-like bra,ﬁch, called
the top/bottom mode in Fig. 5, from another theoretical description taking into account
w ~ kjv; for completeness. For the slab-like mode, we use the integral equation code of Dong
et al.?® in the electromagnetic regime with non-adiabatic electrons. In the electrostatic limit
WiAtlnl adiabatic electrons, the result gives the 44669A maximum growth ra,te. Ym =9 X 104/s
and the 44669B value v,, = 6.5 x 10*/s at r = 0.15m. | |

Within the adiabatic approximation for the electron dynamics the electromagnetic cor-
rections are weak. Howevér, the electromagnetic effects appear to be substantial at the inner
radii when the assumption of adiabatic electron dynarﬁics is released. For example, the in-
tegral equation analysis shows that at 7 = 0.15m the electromagnetic-nonadiabatic electron
systems has a growth rate of only v = 4 x 103/s for 44669A and v = 4.1 x 10*/s for 44669B,
which are notably smaller than the values given above for electrostatic limit with adiabatic
electrons.

Due to the stabiiizihg effect of finite 3 some favorable radial dependence of X;(r) can be
produced but the effect is found to be weak for discharge 44669. | |

The quasilinear heat flux taking into account the indﬁctive electric field §A)/8t and the

perturbed magnetic field B, for both the ions and the electrons is given by

*n;T; | 1 dT; [m;v? 3 1 dn; we;B| (mv?
R d3 ‘ Baliheint' ) 7 _Z i J J
©; B2 Zk:/ v [Tj dz < 5T 2> t o O ckyTj] (21})

2

<8 = )BT (ko) [dr(@) = L A (a) (16)

Due to the slab-like resonance approximation this @; is proportional to |Ej.(z)[*/kf(z).
For Q; only the large k) part of the wavenumber spectrum contributes and for Q. only the

small k) part of the spectrum contributes significantly. The solution of Ampére’s law for A
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shows that Ay is not negligible compared with @, so that the effective crossfield correlation
length is increased by the finite B coupling to Aj. Using the electromagnetic quasilinear

diffusion coefficients from Eq. (16) evaluated at the mixing length amplitude

fx2(E”(m))2d:c
J(Ey(z))?

results in the electromagnetic diffusivity estimate of X; = y(Az)? = 0.7Tm?/s (kyp, =

(Az)? = |Re

0.3) compared with the electrostatic value of X; = 12m?/s (kyp, = 0.5) for 44669A at
r = 0.15m. It is worth mentioning that X; = 2.45m?/s and X; = 0.30m?/s are obtained,
respectively from electrostatic and electromagnetic perturbations if X; = v/k2 is used to
estimate the diffusivity. The differences are sufficient to indicate that for the slab-like modes

the electrostatic approximation is breaking down in the plasma core.

ITI. OTHER STABILITY AND TRANSPORT
EFFECTS

A. Effect of steeper edge gradients

The ion temperature T; is only measured at a small set of discrete radial points, and it is
conceivable that the T;(r) profile is not a simple smooth function but may have small scale
oscillations with some regions of large gradients dI'/dr. In order to test the sensitivity of our
theoretical X’s to the experimentally measured gradients, “what if” numerical experiments
are performed first of reducing Lr; and then reducing both Ly; and L, by one half at the
radius r = 0.7m. The results from local kinetic theory for 44669 A state are that the
growth rates and X; increase to about 2 times the reference value for both the two gradient

variations. Even these large changes in L, and L,, seem to be insufficient to explain the

experimental diffusivity result which is over 10m?/s at r = 0.7 m.
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B. Effect of Carbon Impurity

The dominant impurity is fully ionized (Z = 6) carbon. Since the gradient_ scale lengths for
carbon are not well known, we first studied the effect of including the carbon compoﬁent
B. = n¢/n. in Eq. (1) within the slab approximation with w(C) = 0. The growth rates are
reduced to about one half their f. = 0 value when Bc ~ 0.1 (or Z%n./n. ~ 3;6) in the A-state
and in the B-state the effect is weaker with the réduction of about 2 /3 in the grthh'raﬁe.
Taking w*(C) o —w*; leads to stronger stabilization with the A-state bec.oming stable for

B. 2 0.05 and the stability of the B-state is again less affected by the carbon componenf.

C. Comparison with the Swedish stability and transport
analysis '

The plasma theory group?” at Chalmers University, Sweden has developed a model of the sta-
bility and transport for the ion temperature and collisionless trapped electron temperature
gradient instability that is reported to produce agreement with the power balance thermal
diffusivities in some JET and TEXTOR discharges.28 Their theoretical model differs from
that presented here in the following aspects. The model uses collisionless two component
hydrodyna.fnic equations in which the toroidal drift frequency wp is taken as completely
dominant over the kjv; resonance. The effect of magnetic shear is neglected as is the.role
of ion acoustic waves. The recent version?® of their theory contains a continued-fraction
approximation for the reactive part of the drift resonance w = wp, which seems to pro-
vide a fairly good fit to the kj; = 0 kinetic results even though the dissipative part (due to
collisionless phase-mixing) is ignored. (Extension to include the dissipative part might be
done with a variation of the work of Hammett and Perkins). Their theoretical modelling
assumes the modes to be localized to the outside (§ = 0) of the torus and that the spec-
trum of k) is sufficiently small to be negligible compared with the toroidal drift wp effects.

The key parameters are then L,/R and Lg;/R as well as the trapped electron fraction f;
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and 7 = T./T;. In the Swedish model the stability, determined by the roots of a fourth
order polynomial in w, gives a trapped electron mode rotating in the electron diamagnetic
direction which is used to calculate X, and a n; mode rotating in the ion direction which is
used to determine the X;. We have solved their polynomial dispersion relation for TFTR
discharge (44669) and find that their growth rates for the mode rotating in the ion direction
are somewhat smaller than those obtained in the kinetic analysis in Sec. IIIA. A typical
comparison is that in the A state at » = 0.5m before injection their equation gives the ion
mode w + 2y = —0.612 + 0.0537: and the electron mode w + 2y = 0.224 + 0.1062 compared
with the local kinetic value w + 7y = —0.274 + 0.148¢ in unit ¢,/ L, where the adiabatic
electron model used in Eq. (2) gives only the ion mode.

The second major difference is in the formula used for the amplitude of the potential
fluctuations by the Swedish group. They modify the mixing length level by including a

factor of v/wx so that the quasilinear formula for X; is now proportional to

2/ (o= Fom) + 7] )

This makes their X formulas vanish at the rate v° as ¥ — 0 as it does from large compress-
ibility when L,/R > 1 in the plasma core. In this way the resulting X; develops a radial
profile that is closer in shape to the power balance X;(r) than that reported here in Table III.
Nordman et al.2” support their choice of the modified mixing length formula by appealing
to agreement with a simple 2D toroidal mode coupling simulation which has no magnetic
shear or wp;(f) variation. Their results for X; would appear, however, to contradict both
the theoretical and simulation results obtained by Hamaguchi and Horton® where the X;
is shown to vary as m; — 7;ens at small v which is no faster than 42 and is close to v for
the slab model. Of course, the problem of obtaining accurate theoretical formulas for the
saturation level is an unsolved problem which leaves room for various models. For the near

marginal states ¥ — 0, bifurcation analysis® gives a systematic calculation of the variation
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X; = (M — Nierit) X1 which does not agree with the 4® variation in Nordman et al.?” For com-
parison we have applied the X formulas of Nordman et al.?” to the TFTR discharge. We find
that their extra power of v/wx in the fluctuation level formula and the s = 0 approximation
have the effect of making the X;(r) increase with radius. The formulas have the problem,
however, of predicting that X, > 4X; contrary to theoretical expectations and to the power
balance diffusivities which have®** X; > X,. For v > (wk - %wD)z the Nordman et al.?” X;
formula reduces to the usual estimate of vx/k? consistent with Hamaguchi and Horton away
from marginal stability. ,

Rewoldt and Tanlg30 find a different behavior for the effect of the trapped eleétron mode.
They find one eigenmode with a gaussian-like ¢, (8) that changes direction of rotation from
the ion diamagnétic to electron diamagnetic as 7; is decreased below 1 to 1.5. They call this
continuous root the hybrid mode. When the mode rotates in \the electron direction the:growth
rate has an enhancement due to the trapped electron cc;ntribution. For larger n; the growth
is determined by the ion dynamics with v = 1.25(1+7;) x 10%/s for kep, = 0.356, r/a =021
in the béam heated TFTR discharge 22014. Their quasilinea,r tranép_ort studies show X, > X,
with X; and X, comparable to those obtained from power balance at the mixing lerigth level.

One may conclude from these comparisons of theory With experimenf, as is also‘ obvious
from the proportionality of the quasilinear thermal flux with the square of the amplitude,
that the actual fluctuation levels increase more strongly towards the outside than given by
the mixing length level formula as presently understood and applied. The problem of the
disagreement in the radial profile of X; may be removed if actual measured fluctuation levels
are used in the quasilinear formulas. A récent study by Bravenec et al.3! reports Xe(r)
using the measured fluctuation leveis in the quasilinear formula in a study of electron power
lbala.nce in TEXT. The study however, still shows disagreement in the radial profile of X.(r)
in the outer edge region of the ohmic TEXT experiment. In all tokamaks in both the L and

H confinement modes the measured fluctuation levels are, to the authors knowledge, strongly
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increasing toward the plasma edge. The problem with the radial profiles X;(r) and X.(r)
then appears to reduce to the fact that the mixing length fluctuation levels AX/Ly; and
AX/L, given by theoretical formulas used to obtain X; do not increase rapidly enough with
radius. Perhaps, it is necessary to find more directly the mixing scales in the edge turbulence
and to consider the long correlated E x B drift orbits that occur in regions where the vortex

rotation parameter® Rp = k,0g/Aw > 1.

D. Trapped electron destabilization

When the profiles are such that the ion temperature gradient driven turbulence is weak it
is necessary to calculate X; taking into the resonant trapped electron response as a drive to
the same electrostatic drift modes Dgs(k,w) = 0. In classical n;-mode theory the resonant
electron response is neglected since the contribution is subdominant for large n; and of a
different physical origin.

1/2

Due to the fast electron transit ve/qR and bounce €'/?v,/qR frequencies (with € = r/R)

compared with the fluctuation frequencies, the electron response 7, is a bounce average
of ¢(6) over the parallel electron motion § = v /gR = [2(E — uB)]"/?>/qR. For B =~
By(1 —e cos ) and the pitch angle variable A = pBy/E, the argument of the elliptic function

integrals K(m) and E(m) is given by

1 1—2) 0 at A=1+c¢ (deeply trapped)
m/\=f€2='—<1+. ): (17)
2 ¢ 1 at A =1—¢ (separatrix) .
The pitch angle averaged trapped electron resonance is
e d) T(m3)
HTr k —_ / haddd 18
e (kyw,w) lme T W— Ep Wk WG(My,8) + tveg /w2 (18)
with the reduced quarter bounce period 7(my) = K(m,)(2/Ae)'/?, and

G(my, s) = (-1 + 21?((7::))> +2s (215((2:)) 2+ 2m,\> .
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The trapped electron density response function is then

fe = "*Tiq) (1 - BF) (19)

with .
PR = 2 [Pt e o= ky (4 (o = 3/2) HE (k) . (20)
The classical theory®® of the trapped electron mode follows from D¢ = 1 — P& +'

T (1 - P/ z(w, k)) = 0 where the nonresonant or hydrodynamic ion response function P/*(w, k)

' is taken for the ions and the resonant electron response Im PJ* drives the turbulence through

4, = Im PI7/(8Dgs/0w). The nonadiabatic electron -response in Eq. (19) gives a phase shift
between 7. and ® leading to particle transport. |

For 44669A at r = 0.3m with n, = 1.22 we find two roots of the electrostatic dlspersmn
relation with PT". The root with the largest v has the behavior shown in Fig. 1 of Rewoldt
and Tang® when n; is varied from -5 to +3. For ; ® 2 the growth rate is dominated by
the n; driving mechanism. Tile second root has a considerably smaller growth rafe with
Y2/ S 1/86.

The trapped electron driven turbulence produces E x B turbulent diffusion of the ions

and electrons given in the quasilinear approximation by

'\ _necle edy > 2 oo P
(Qc) " eB g L /2 A dww e
1 b
X (w—-3/2> (w—ky (1 +7.(w—3/2)))Im G’E (k,w,w) (21)

with the thermal fluxes ¢; and ¢, given by

3 ‘
g = ETiri + g, . (22)
and
5 .
ge = §Tere + qe » (23)
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where the ¢; and g are the conductive part of the thermal flux due to (the out of phase)
T; fluctuations. At the mixing length level of turbulence where (fix/7.)? ~ 1/ (kZL2) =
(p2/L?)(L,/L,) these fluxes from the trapped electrons can explain the magnitude and some
of the parametric variations found in tokamaks 313334, In Bravenec et al.®! the fluctuation
spectrum measured by FIR scattering and the heavy ion—Beam probe are used in the quasi-
linear formulas (21)-(23). The principal difficulty with using the trapped electron mode for
X, in all regimes is the lack of a sufficiently strong ¢ dependence and the tendency for the
ge(r) flux to decrease rapidly with increasing radius r/a just as is the problem discussed
above for the n; driven X; formulas.

A second source of electron thermal flux is obtained by including the short wavelength
VT, driven electromagnetic turbulence. This small scale 7, driven turbulence, which is the
electron analog of the 7;, produces a collisionless skin depth electromagnetic X. given by

trapped electrons

1/2 2 2

e Wpe € Ve C

X, = (24)

wge " gR? wge
As shown in Table II rate X(!) from Eq. (24) can exceed that from the longer wavelength part

of the spectrum X{?). For fixed T, the electromagnetic X, in Eq. (24) vanishes with electron

1/2

mass me — 0 as m;,

whereas the electrostatic X in Eq. (21) is independent of m. which
indicates the physically different origins of these transport components. The relationship
between the X{}) skin depth transport and the ng) trapped electron mode is analyzed in

Kim et al.%

IV. Conclusion

The TFTR supershot density-modification experiment of Zarnstorff et al.>¢ has been ana-
lyzed for local and ballooning mode stability to the n;-modes. The analysis shows that even

though the ion temperature gradient parameter 7; increases almost an order of magnitude
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(ni = 2.3 — 21 at r = 0.3m) from the flattening of the density profile the growth rate and
wavenumber of the dominant 7; modes are not strongly changed. The ion thermal diffusiv-
ity constructed from the linear kinetic growth rate and the isotropic turbulent correlation
length AX,.; ~ k! as required by the 3-D turbulence simulations, yields a decrease in X;
in the post injection state due to (1) the lowering of the ion and electron temperatures and
(2) the increase of the toroidicity parameter ¢, to the order of unity where compressibility
is strongly stabilizing. The toroidal 7;-mode growth rate vx(€n,7:) has a maximum at small
€, for fixed n;.

The stability analysis from both the local and nonlocal equations shows that the dis-
charges are not near marginal stability. Even within the classical n;-mode approximation of
adiabatic electrons the VT;-driven modes are unstable both before and after pellet injection.
The ion thermal diffusivities derived here are not s‘ufﬁciently large to force the profiles to
marginal stability.

The previous theories predicted X;’s which were much larger than bbserve_d in the exper-
iment. Our present calculations do a better job by including a number of important effects
which were ﬁot adequately treated in previous theories. Finite-gyroradius an.d kinetic effects
(such as Landau damping) are retained which reduce the growth rate significantly, which is
partially offset by the inclusion of toroidal driving terms which had been missing from many
of the previous theories which were in slab geometry. Also, we use a shorter mixing length
1/|ky| rather than a longer mixing length which sometimes is suggested by the linear radial
mode structure but which is not expected to survive the nonlinear regime. \

There are a number of ways in which future work could build upon our calculations.
We have employed local toroidal calculations which are good for arbitrary kjvs/w but
which assume a k| = 1/(¢R), and we have used a ballooning mode equation expanded
.for small kyvg; Jw but which self-consistently determines a linear spectrum of k”’s. Although

we have found good agreement between the two approaches, it would be interesting to -
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repeat the stability analysis using more complicated ballooning codes which do not as-
sume small kyjvy/w. We have used a simple s — o model equilibrium, but a more accu-
rate equilibrium would, among other things, introduce a nonlocal dependence on integral
quantities through the Shafranov shift A(r). At the edge of this plasma (r > 0.65m),
A" = —(a/R)(B, + £:/2) = —0.65 is large giving an enhancement in the pressure gradient by
a factor of 2 to 3 while also shortening the connection length by a similar factor

The problem of the lack of agreement in the radial variation of the theoretical turbulent
conductivities compared with the experimental power balance conductivities occurs for many
forms of microturbulence. The conflict suggests either that another class of linear instabilities
needs to be found, or that our simple mixing length estimates for the fluctuation levels are
inadequate and a more complete nonlinear theory needs to be developed. Indeed, there is
evidence on a number of tokamaks that the theories underestimate the actual fluctuation
levels which are measured to increase strongly with radius.

The present 7; mode theories fail, however, to explain the radial dependence of the power
balance X; over all radii, in particular, at the outer edge region. Attempts to obtain the
observed increase of X;(r) with r/a by adding the effects of (i) the finite beta drift wave-
MHD mode coupling, (ii) the slab-like mode, (iii) or the trapped electron resonances are
found to be inadequate. The tracking 0.2 S X./X; < 0.7 suggests that both the V7; and the
collisionless-trapped-electron driving mechanisms are operating. The disagreement in the X;
and X, profiles appear to arise from the underestimate by theory of the actual fluctuation
levels which are measured to increase strongly with radius.

The problem of the lack of agreement in the radial variation of the theoretical turbulent
conductivities compared with the experimental power balance conductivities occurs for many
forms of microturbulence. The conflict suggests one of several possibilities: (i) that another
class of linear instabilities is controlling transport in the outer regions, (ii) the that either the

relevant gradient scale lengths L,(r), Lr(r) in the dynamics of the plasma are substantially
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shorter in the region r/a > 0.5 than reported from the measured mean (smoothed) profiles
nj(r), T;(r), or (iii) that the actual mixing length AX,,; is substantially greater than the
theoretical values. Theoretical transport effects outside the scope of the usual locally homo-
geneous turbulence models related to the radial profiles of the gradient parameters, the shear
profile, and the E x B shear flows created in the outer layer of the plasma may be responsible
for the larger edge transport. The effect of a strongiy localized E x B shear flow layer®—38
can distort the radial wavefunctions and thus increase the radial mixing length. Studies of
the shear flow layer effect are advancing and show that if the shear flow scale length Ly for
the nonuniform flow vg(r) satisfies vz = vg/Lg > (¢s/Ls) the Kelvin-Helmholtz like vortices
are formed between the counter flowing plasma streams. In this shear flow layer the mixing
width AX,, becomes as large as the vortex diafneter which is found to approach Lg for
sufficiently small L 5.8 S

Other mechanisms for increasing the mixing length may be the electromagnetic shi?lding (
of the induced parallel current filaments by the collisionless skin depth ¢/wpe which exceeds
ps(Ls/Ly)M? at sufficiently low S, characteristic of the edge region.®® and long correlated
E x B orbits in the amplitude regime above the mixing length level.3°

In this work Wé have clarified the basic problems that occur in using present theoretical

models for understanding and analyzing power balance in the hot ion region in the TFTR

Tokamak.
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Appendix: Electromagnetic Ballooning Mode Equations

The calculations of the Vlasov parallel current and charge densities are given in Cheng,®
Hong et al.,>! and Horton et al.*® The ballooning mode representation of the fields in a torus
is used, and the mode frequencies are taken to be between the transit frequencies of the ions

and electrons which is justified a posteriori. The condition of quasi-neutrality is
Gp+bp =0 (A.1)

and the parallel component of Ampére’s law is

bp+dp =0 (A.2)
where
. ¢ 9 _ 0
a(k,w,0)=—1+T(P—l)—m5§ 3-8—9-
~ Wake 62 3 8
bk,w,0) =1~ » + Y2 60P250
and

2,,2 2
~ _ vy 0,0 ( _ w*e‘) ( _ w*pe) wpe(9) ¢ 0,0
a(k,w,0) = w?q?R? aviee "\l )T w  wiq?R2 567156

The ion kinetic response functions, P and P;(j = 1,2,3) are given by

P= / dvFi(v) (%"5‘2’) J? (%“) - (A3)
_ W w — W) M o, (FLos
j . / (V) St e T (A.4)

where Fy(v) = (27v?) ™%/ exp(—v?/2v?) with v; = (Ti/m;)*/? and wi; = ws; [1 + n;(v?/v? — 3/2)].
The fluid limit of the P;(j = 1,2,3) functions are

Wk,

P{ =P = P{ = (1-2)T(5) - L [To(8) + b(T2() ~To(®)]  (43)

with [';(b) = I;(b)e™® and b = k3 p? = k% p2(1 + s26?) .
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All frequencies are measured in units of ¢,/r, and the wavenumber k¢ in units of p, =
¢(m;T.)"?/eB. The dimensionless complex frequency w(c,/rs] is a function of the seven
dimensionless parameters k, B, q, €, 3, 7; and 7 = T,/T;. With the dimensionless variables,

we write Eqs. (A.1) and (A 2) as

;e o we 5 €2 O
{1 —T(P 1) + P =2~ P 892]¢ {1 —-— {—PZ POWERTE b (A.6)
e2 29,0 Wike\ / wDe> e 0
[qzuﬂ Be 551%55 + (l T ) <1 T W +h q2w? 062 v
R P o
= {1 » + P o 892] é. | (A.T)

A. Limiting Regimes. of the Kinetic Eigenmode Equation

First we consider the limit which allows ion acoustic coupling terms to be zero w1th wy =

o (ﬁe) fixed. If ¢ — o0 but qzﬂe finite, Egs. (A.6) and (A. 7) reduce to the second order

differential equation

vt 01 gt g+ (1-2) (-2 - (1) =0, a9

W W -

where we used

% 1+T(1—P) (AQ)

Wi,
1 - w

from Eq. (A.6) and note that
B =ikyo(1l —4/9) .

The eigenmodes of Eq. (A.8) have been analyzed in earlier works?*!**~2% With the full ion
kinetic velocity space integral P we give the results of the kinetic effects on MHD ballooning
mode.

Equation (A.8) also governs the toroidal 7; mode in the low beta limit
wi — o0 then Dgs(w,k)=1+7(1-P)=0 (A.10)
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with the mode characteristics (|¢] > [#]). In the high beta limit Eq. (A.8) reduces to the
MHD ballooning mode (|¢| ~ [1|) for ¥ — 0 at finite w.
In the 8 — 0 limit Eq. (A.8) reduces to

wijd , 0

{1 —T(P —1)]3-55]%'80

$=0. (A.11)

If we assume Dgs = [l — 7(P — 1)] # 0, then we obtain the solution of Eq. (A.11) as
¥ ~ tan~!§, which is an unphysical solution having / dfy* — oo. Thus, to have a solution

which tends to zero for large §, we must have
Des(k,w,0=0)=[1-7(P-1)]=0, (A.12)

which is the local dispersion relation of toroidal n; mode.

Dispersion relation Eq. (A.12) gives unstable 7; mode when

2 TT;
N > Mg ~ 3 and € = & < 0.35 . (A.13)

Above the threshold the mode has wy ~ wp; = —2ke, and v ~ v;/(Rrr.)'/?. Recent H-
mode discharge experiments show inverted gradient profiles with n; < 0 and €, < 0. For the
dissipative drift wave and the trapped electron mode the inverted profiles show substantial
gain in stability for v, < 0.3 regime. For a fixed or local value of § the condition Im P =0

yields the marginal stability frequency

1+ 3 Inil ox
1 — [n:l/lenl

IR

Wm

and
m

n

Re P(wp) = To(d)

which leads to the instability condition of

oo 7To®) _ _To®) o 1
BT+ r T I+T/T. T 1+TT.

(A.14)

for e, = r1./R = €,/7; from a Nyquist diagram.
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Electrostatic toroidal integral equation

In the limit where magnetic shear determines the mode structure and the drift velocities are
taken local in @ the velocity integrals can be done without the expansion in P ~ kfjv}/w?

defined in Eq. (12). We obtain the integral equation,
+00
(L+n)olh) = [ K(ko B)S(RDIAR, (4.15)

where ‘
0 g—twi e~ (kL —kz)? [d0:t?

2
Vor ,/-oo (1 +ai)y/a:

with the kinetic response function

K (ko B.) = G(t)dt (A.16)

Wike W 3
G(2) t\/2at{w*e7‘+1 27 + (1 + a:) 27(1 + a4)
k.kaL I ni(k.; — kz)2 ’
7'(1 + at) T(; 4ata'tt2 FO(kJ.,k.L) ) (A'l7)
where
a = 1+ i28nw*et ,
T

a_i«&y
T e \ L,/

Buk B + 7
o L 1) Q<T(1+at)) eXp[ 27(1+at)] ;

ki=k=2:+k§’
kP =k2+ K2,

and 7 = T, /T;. For s — 0 the matrix K (k;, k.,) is diagonal and the eigenmodes are ¢(k;) =

6(kz —q) with the ¢ = 0 mode from Eq. (A.15) giving the local toroidal dispersion in Eq.(2).

For |w| > kjjv;, wp; the small ¢ imit G(¢) = G(0) + G'(0)t + - - - of Eq. (A.16) returns the

differential equation valid for P < '1-
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Figure Caption
Fig. 1 Profiles of temperature and density for discharge 44669 in the A and B states.

Fig. 2 Comparison of three theoretical models of ion thermal conductivity with experimen-

tal results for shot 44669 A and B states.

Fig. 3 Comparison of three theoretical models of critical temperature gradient length (Lz;)
with experimental result at r = 0.3m as a function of time. The reference times for

_ states A and B are marked.

Fig. 4 The local kinetic growth rates in the wavenumber domain for the shot 44669 A and

B states.

Fig. 5 Theshapes of the kinetic ballooning eigenfunctions for both the outside and top/bottom
modes at r = 0.3m for 44669 A and B states.

Fig. 6 The eigenfunctions of the electromagnetic kinetic and FLR-MHD ballooning modes.
In (a) the stable kinetically modified FLR-MHD mode is given from Eq. (13) (kinetic)
and Eq. (13) (FLR-MHD). In (b) the electrostatic-like mode from the electromagnetic

Eq. (13) is given.
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Table I

TFTR Perturbative Transport Discharges

shot number 44669
TRANSP number 2200

r=0.3m

Time into discharge 4.490s 4.525s
ne(x10%m™) 3.03 3.98
T. (KeV) 5.71 4.07
T; (KeV) 8.4 3.55
L./R 0.17 1.18
L1i/R 0.074 0.056
n; 2.3 21
T./T: 0.68 1.15
QMHD 0.36 0.29
s 0.75 0.7
q 1.52 1.53
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Table IT

TFTR Drift Wave Turbulent Diffusivities

Shot 44669 at r=0.3m

T4 = 4.490 15 = 4.525
X =4 m?/s 3 m?/s
s cT. |
Dy = % 3 = 3.45m?/s | - 2.07 m?/s
2 .
() _ e _, . ,
. o, ~.58r§ /s 1.66 m?*/s
Y2y cT,
X(Q) - <£> Ps i = 1. 2 . 2
4 7, —5 1.97m?/s 3.85 m?/s
T: cT; T. L
xHH — PsCi o —5s) = 4.5m2 Ps CLi 42T
) Ln 6B (Tli 7716) eXp( 58) 5m /S LTz eB exp( 4T1 Ls
XPPR = %w*ep?(l +n;) = 7.5m?/s 25m?/s
Xf,\,LIc{cal—Vlasov = In = 52 1'1'12/8 2.4 mz/s

k2
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Table ITI

Mixing Length X; from Local Vlasov Theory

shot 44669

using ¥max at k) = 1/qR

and (k2) = (k2) = k2(Vmax)

r Before Injection After Injection
0.15m 0. m?*/s 0.16 rn2/sv
0.3m 5.2 m?/s 2.4 m?/s
0.5m 1.2 m?/s 0.7 m?/s
0.7m 0.4 m?/s 0.21 m?/s
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Table IV

Mixing Length X; from Electrostatic Ballooning Eq.

shot 44669

using X; = v, AX2, and AXE, = k7% (vm)

T Before Injection After Injection
0.15m 0.19 m?/s 0.13 m?/s
0.3m 5.1 m?/s 2.2 m?/s
0.5m 1.23 m?/s 0.68 m?/s
0.7m 0.37 m?/s 0.21 m?/s
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