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List of Changes for the revised version

1. Page 5.

Change: ” < L,, the already defined scale length for the ambient plasma ” to ” is not
too large ” in line 14.

Delete: ” magnified by a factor L,/L, > 1, resulting in ” in line 18.

Change: ” L,/L, ” to ” L, ” in line 19.

2. Page 7, Eq.(9).

Delete the last term of the Eq.(9).

3. Page 12.

Delete: ” and L,/L, > 1,” in line 16.

Add: f’ if |L,| is not too large, e.g. not larger than the minimum of the density and
the temperature gradient lengths, ” in line 17. |

4. Page 15. a big change [ cf. the attached sheet |

5. Page 23.

Change ” sharper than the density gradients of the plasma ” to ” reasonably sharp ”
in line 20.

Add: ” Note that the relavant parameter for the drive is the scale length L, associated
with the impurity density; the appearance of L, /L, in various equations is an artifact of
our normalization. In fact, the combination w?,L, that appears in the impurity response

s independent of L,. ” in line 21.







are neglected. For very small value of T [weakly collisional plasma, regime (a), T = 0.04]
a narrow current channel near the rational surface results in a very shallow potential well
unable to contain the mode, which is primarily localized by the ion sound effect [Fig. 1a].
The situation illustrated in Fig. 15 is quite different. Here T = 0.18 has a moderate value,
and the current channell created potential value is deep enough to localize the mode; the ion
sound term plays no essential role. As Y is increased further [Fig. lc, T = 0.6] the current
channel width increases towards z = z,, and the structure of the mode becomes'sensitive
to the ion sound term. Finally, when T = 1, the current channel, though broad, becomes
sufficiently shallow that the mode .structure is again controlled by the sound term [Fig. 1d).
Strictly speaking, our set of equations is inadequate to accurately describe the last scenario.

We now examine the comparative roles of the destabilizing mechanisms for standard edge
plasma condition in TEXT. The parameters chosen for numencal work are: R = 100 cm,
a=25cm, n, =3 X 1012cm‘3 T. =20ev, B=22kG, L, —5cm, L,=1cm, L, = 150 cm,
Z = 4, Vioop (the loop voltage)=1 Volt, ; = 1.0, 5, = 1.0, n; = 0.5, and the poloidal mode
number m = 30. ([For the electron temperature ~ 20 ev, the impurity charge number is
Z ~ 4]. We do not include the effect from v/(~ 8I, /0T.), because the strong temperature
dependence of I,(T.) for a given charge state of a given impurity will be smeared out by
averaging over many impurity species and multiple charge states of the same impurity. The
value of n,I,(T.) is estimated from the experimental data (notice that only the product of
n, and I,(T.) is the relevant parameter for the impurity condensation drive). From the
Bolometry measurement on TEXT,®2° we choose the radiation power loss rate as 0.06
Watt/cm®, which, for standard value of n,, translates to n.L(T.) = 2 x 1077 erg/s.‘ All
standard parameters are followed by the symbol ( 1),bfor example, the standard v.;, and w:,,
are written as ve;(1) = 1.26 x 10%/s, wX (1) ='2.18 x 10%/s respectively. From the above
standard data, we obtain f,(1) = 0.35, v2(1) = 0.2, ¥*(1) = 0.04, J(1) = 0.1.

By varying the value of the equilibrium current and collisionality, we can examine the
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Abstract

Possible destabilizing mechanisms for the linear electrostatic dissipative drift waves. -
(in tokamak edge plasmas) are investigated in slab geometry. The effects of processes
such as ionization, charge exchange, radiation, and rippling are examined. In particu-
lar, the impurity condensation associated with radiation cooling is»evaluate.d appropri- .
ately for the drift wave ordering, which is found to be an imp.o;tant driving mechanism
in contrast to the results of earlier studies.! It is also shown that the role of ionization
is quite complicated, and depends strongly on the manner in which the equilibrium is
achieved. The linear eigenmode equation is studied both analytically and numerically.
For the range of parameters relevant to TEXT tokamak, both the charge exchange and

the rippling effect are found to be unimportant for instability.



I. Introduction

The highly diagnosed edge region of a tokamak plasma provides a valuable testing ground for
turbulence theories. The motivation to theoretically investigate this region has become even
stronger with the discovery of the H-mode,? a state of the plasma characterized by improved
confinement. It is observed that the H-mode is often accompanied by a suppression in the
level of edge turbulence.®* This correlation suggests that a deeper understanding of edge
turbulence could help in creating and sustaining this highly desirable plasma equilibrium.
Several reasonable models for the suppression of edge turbulence have been recently
advanced and have met with a certain degree of success.’~7 Strangely enough, the causes and
nature of the original edge turbulence (supposedly suppressed by the proposed mechanisms)
are still essentially ununderstood.! In several of the current theories, the edge turbulence
is attributed to rippling — like modes, which are assumed to have no perturbed pressure
(6P, = 0).%° This assumption runs into several difficulties. Zero pertui‘bed pressure implies
that the perturbed temperature (§7.) should be strongly correlated with the perturbed
density (6n). Experiments on the TEXT tokamak, however, 1.'eveals that én — 6T, is the
weakest amongst §n — 6T, 6n — ¢ and ¢ — 6T, correlations, the last being the strongest.!®
(It shoud be pointed out that the electrostatic potential ép measured by the Langmuir
probe in TEXT is the floating, rather than the plasma potential). From a theoretical point
of view, the zero pressure fluctuation is essentially a strong assumption on the parallel
Ohm’s law, which is plausible if the mode localization is shifted sufficiently away from the
rational surface, i.e., it is restricted only to the strong rippling case, whereof just a small
overlap occurs between the perturbed current éJj (localized at the rational surface) and
other shifted fluctuations such as é¢, én,67,. However, the strong rippling regime requires
a large equilibrium current, a condition generally not satisfied for the typical edge plasmas

(cf. Sec. IV for detail). To model the realistic situation, therefore, it is essential that the



self-consistent pressure fluctuations be included in deriving the mode equations, even if
the parallel fluid motion is decoupled from the system because the ion sound effects are
ignorable. The preceding discussiqn strongly suggests that the identiﬁcation of the linear
mode responsible for edge tﬁrbulence is still not complete.

1 can be used

Since the edge plasma is highly collisional, Braginskii transport equations®
to model the plasma dynamics. In a slab georhetry, this model can adequately describe the
dissipative drift wave. Recent numerical simulation of the dissipative 'drift wave turbulence
reveals several features that appear té be consistent with experiment.'? For example, the
6T, — 6 correlation is found to be stronger than the én — é¢ correlation. The linear aspects

of the dissipative drift wave for a pure plasma have been studied by Drake and Hassam,!®-*

and Chen et al.'®

In the limit éf small ion Larmor radius, the nature of the mode is controlled-by the
parameter T = z,/z, = (2wve/kv) 2 (w/e, 7t = [(me/ms)(ve/w)]'?, the r‘a.,tiovt.Jf the
current,ch‘annél width to the ion-sound-point’ distance from the rational surface_.. In the
" above déﬁnition, w(< ve) is the mode (&lectron collision) frequency, k|’| = ky/Ls [ky, =m/r,
L, = qR/3], m is the poloidal mode ﬁumber, r (R) is the minor (major) radius, ¢ is the éafety
factor, v, = (27, /ﬁe)l/ 2 is the electron thermal velocity, ¢ = T,/m; is the ion sound speed,
- 5§ = (r/q)(dg/dr) is the magnetic shear parameter, 7T, is the electron temperature, and m,
(m;) is electron (ién) mass. For generic drift waves, the parameter T = [(me/m) (ve/wE M2,
because the mode frequency w ~ w¥* = Teck,/ eBLn, where c-is the speed of light, e is
the electron charge (¢ > 0), B is the magnetic field, and L, = (—=din n/dz)™! is the
density gradient scale length. Three distinct regimes pertain: (a) The weakly collisional
regime T < 1, in which the mode localization (in close analogy with the collisionless drift
waves) is provided by the ion sound term. (b) The collisional regime, where T < 1 but

neither too small nor close to unity. The current channel is now broad enough to produce a

localizing potential well. The mode width is determined by z,, and the ion sound effects are



unimportant. This is the regime most relevant to existing tokamak edge plasmas. (c) The
strongly collisional regime characterized by T close to or even greater than unity, in which
the current channel expands to overlap with the ion sound region. The current channel
potential becomes shallow (high collisionality prohibits paralle] heat flow) and the ion sound
effect are essential for the mode localization. This regime may also be relevant to some edge
plasma. A proper treatment of the highly collisional regime [regime (c)] would require a very
complicated set of equations, because in this regime the electron-ion energy transfer time
is comparable to the wave period. In the present paper, therefore, we confine ourselves to
regime (b) T < 1. In the rest of the paper, unless stated otherwise, the ‘dissipative drift
wave’ will refef to regime (b) only.

For typical edge plasma parameters in TEXT the dissipative drift wave is linearly stable
in a pure electron and ion plasma. To investigate possible sources of instability we generalize
the previous studied system!®~1® to a multispecies plasma, including neutrals and impurities.
The interaction of new components with the bulk species, electron and ions, provide extra
dissipations that may drive the mode unstable. The basic linear system primarily using
equations derived by Braginskii with simplifying approximations warranted by experimental
scenario are given in Sec. II.

At tokamak edge, the neutral density is typically one to several per cent of the electron
density. Through the processes of ionization and charge exchange, the neutrals change the
plasma dynamics by introducing a source term in the continuity equation, and a frictional
force in the charged fluid momentum transfer equation. A general analysis for the neutral
responses is complicated, and will not be presented in this paper. The analysis can be
greatly simplified, if the neutral temperature is not too much lower than the bulk plasma
temperature (the warm neutral limit), in which case the neutral fluid can be viewed as
imcompressible. The role of .cha,rge exchange is associated with the ion sound effect, which

is unimportant for the dissipative drift wave. Even in the warm neutral limit, however, the
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role of ionization is very complicated, and strongly depends on the manner in which the
equilibrium is achieved. For this reason the issue of ionization is discussed seperately in
Sec. VI, and will not be included in the eigenmode analysis.

The importance of .impurities' for the edge plasma has been appreciated for a long time.
It contributes to both the rippling effect68%:17
culations, limited to a purely growing mode,'® neglected the impurity inertia. This response
can not be appropriate for the dissipative drift wave in the preéence of massive impurities,
because the inertial term gets enhanced due to comparatively high mode frequency W ~ wk.
In fact, the inertial term (proportional to w) could be dominant in the impurity response to
a drift wave, because the impurity sound speed c;,, [where ¢2, = T,/m, with T, the impurity
temperature < T;, the bulk ion temperature, and m, the irﬁpurity mass > m,], is much
smaller than the bulk ion sound speed c,. It turns out that if the the impurity gradients
are stronger than the bulk plasma gradients, i.e., if L. = ‘(dln n./dz)"! [n,- thegunpurlty
density] < L, 1the already defined scale length for th<|3 ambient plasma, the impurit;‘:density

response is greatb; simplified, and becomes a term proportional to ép. When this newly

~ calculated response is used for the impurity condensation effect on radiation cooling power

in the electron temperature evolution equa,tiori, it is found that the dissipation due to ra-
diation is magnified by a factor L,/L, > 1, resulting in an important driving force for the
dissipative drift wave (positive L,/ L, is destabilizing). A detailed derivation for the neutral
and impurity résponses is given in Sec. I11.

The remaining part of this paper is organized as follows. In Sec. IV the linear eigenmode
equa?tion is derived, and solved numerically, analyzing and comparing the relative importance
of val»rious driving forces. Some of numerical results are presented in a manner that makes
comparison with experiment easier. In Sec. V, the simplified eigenmode equation is solved
analytically by the WKB method, neglecting both. the rippling, and the ion sound effects.

A brief summary of the paper along with our conclusions is the subject of Sec. VII.

and the radiation cooling.'®®! Previous cal-



II. Basic Equations, Linearization

Our theoretical model is based on Braginskii transport equations. Unless stated otherwise,
the analysis is confined to electrostatic mode in slab geometry. The system consists of
hydrogenic ions and neutrals, and only one impurity species in a uniform equilibrium electric
field. Since we are concentrating on delineating the growth mechanism, the gradients of the
radial electric field are neglected.In the presence of neutrals the electron continuity equation

becomes
On.
ot

where n, is the electron density, v; = f1(T.)no, is the ionization rate due to electron impact,

+ V- (neve) = vine (1)

no is the neutral density, and f(7.) is a function weakly dependent on the electron tempera-
ture. The electron fluid velocity v, = ve b+ Ve,1, (b is the unit vector along the equilibrium

magnetic field) has the parallel component v, |, and the perpendicular component

1
€N

Ver=gbx(Vp——VP,), (2)

which consists of E x B and diamagnetic drift with ¢ the electrostatic potential, and P, =
neI., the electron pressure. The equation of parallel electron momentum balance is generally

repla.ced‘by the equivalent Ohm’s law

! VP , (3)

nd) = EI(IO) = Vi + en.

where EI(IO) is the equilibrium parallel electric field, Jj, is the eléctric current, V) = b-V, and
n is the resistivity.v With impurities, we write 7 = Zegnsp, where Zeg = 1 + Z%n,/n,, with
n. the impurity density, Z the impurity charge number, and n,,(= m.v.;/e*n.) the Spitzer

resistivity. The electrostatic potential ¢ and the parallel current J are coupled through

the vorticity equation
e\2(d 2
min; <§> =) Vie=Vidi, (4)
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where (d/dt); = 0/3t + (ug + up;) - V, ug = (¢/B)b x Vp is the E x B drift velocity,
up, = (¢/Ben;)b x VP, is the ion diamagnetic velocity, and F; = n;T;, is the ion pressure.
In Eq. (4) we have neglected the impurity contribution to the fluid inertia for simplicity; °

this contribution yields a small quantitative stabilizing effect on the system. With charged

impurities in the system, it is useful to write the parallel momentum equation for the total

chargéd fluid,
d d\ ' - .
mini | = | uif+mene | = | Un+ V(P P+ P.) = vemng(uo,| —us) +vimoneto,) , (5)
i) o dt ), T I |

where (d/dt)g = 8/0t + ug - V;u;|, 4, and uo, are representing the parallel ion, impurity
and neutral velocities. vy = fer(T)no is the charge exchange rate, and P, = n,T; is the
impurity pressure. Since ion temperature evolution is neglected in our study, we need only

the electron temperature equation °

) |
(52 +ug V- ﬁuvﬁ) T.=H-L-T.Vy, , ' (6)

to complete our description of the bulk plasma. In Eq. (6) 8, = T./e*n.n describes the
parallel heat conduction, H is the heating source, and L = (2/3)n,,(T,) with I, the radiation
cooling function, describes the impurity radiation loss.

To close our system we also need equations associated with neutral and impurity com-

ponent. These are the neutral and impurity continuity equations -

'ano

5 + V- (nouo) = —vin. , A (7
on, _
T +V~(nzuf)—0, N (8)

where ug (u.) is the neutral (impurity) velocity, with the impurity perpendicular velocity

given by

‘ c 1 m, fe\2[dY\ ’
W= b X (Vo t 5VP) - 72 (F) (a) Vi ©)

z



with [(d/dt), = (d/dt)i-.], the neutral momentum equation

mmog-iuo + VP = vy;mini(u; — ug) — vym;nelo , (10)

where Py = noTy, and d/dt = 0/0t + ug - V, and the impurity parallel momentum equation
d
m.n., (?E) Uz + V| P: = Zen By + nimaviz(ti) — tz)) + NeMeves(Ve,| = Uz) » (1)
E

where v;,(ve,) is the ion-impurity (electron-impurity) collision frequency.

In the above theoretical model all equilibrium quantities are assumed to vary only in the
radial direction, in particular quantities like V”Te(o) = V”ngo) = 0, where the superscript
(0) denotes equilibrium. We also assume that 67,,= ¢6T; = §Ty = 0, i.e., the temperature
fluctuations for ions, impurities and neutrals are negligible. This asuumption is plausible
1f T is sufficiently smaller than unity that the electron-ion energy transfer time is much

longer than the wave period. To simplify our discussion we also assume that u; “) ((J')'

f’l)l = 0. Notice that the already invoked electrostatic approximation requires that w/ve <
(cky/wpe)?, where w2, = 4mn.e?/m. with k. the perpendicular wave number. This condition
is generally satisfied for typical edge plasmas in TEXT.

Before linearizing Eqgs.(1)-(11) for stability analysis, we have to discuss a particular serious
problem associated with the inclusion of ionization. In slab geometry, wherein all equilibrium
quantities are assumed to vary only in the radial direction, the divergence of the equilibrium
current (when Eq. (2) is employed), V - (n@v(®) = (¢/B)b - Vo x Vn® = 0 leading to
(through Eq. (1))

a

Eln n® = l/}o) . (12)

with the implication that with V}O) # 0, there is no equilibrium (9/0t = 0) electron den- .
sity. In order to include a possible slow time variation of n{%), the linearized version of the

continuity equation is then written in a general form

0 5n._,

at ) + V- 6ve + 6Ve Vln n(o) + V(0) v5ne

—51/] , (13)



where vy = vy () Sno/ng © (Ovr/8T.)©6T,. The remaining linear equations can be obtained
in a straightforward manner with the understanding that the density may grow sldwly, while
other quantities like temperature and current are genuine equilibrium quantities. The set of

linearized equations consist of: parallel Ohm’s law

1 IO bne
inJp +108J) = =V + ZViSTe + ==V (14

with 69 = 6 Z.an(9 + Zﬁﬁ? 6nsp;- the vorticity equation [Eq. (4)]
(0) ‘
n® £>2 4) w26, = o
min, <B (dt , Vibe =V)8J | (15)

where (d/dt)” = 8/8t + (u§) +ul)) - V with uf) = (¢/B)b x V@, uf) = (c/Ben{”)b x

VP%; the parallel momentum equation [Eq. (5)]

AN man® [ d\© | 5ne .
(a)E buii m;n £°) (E)E Suz) + (14 m)e V” EVH&T&" AL

= v(Sugp — uiy) + viuoy) | - (16)

where (d/ dt)(o) = 8/ ot +uld . V, with V|0 P, neglected, and the equation for”electron
temperature evolution .

0 () o 0 2 0) _2 0I .
(8t+ 'V = BV} | T +6ug VI = —26n,10 = 300 = §T. =Ty fsy , (17)

where Sug = (¢/B)b x Vép. Although the fluctuating part of H may be quantitatively
important, it is being neglected for simplicity.
The linearized form for neutral and impurity equation [Egs. (7)-(11)] will be derived in

the next section.

ITI. The Neutral and Impurity Résponses

We first show that for warm neutrals (Tp ~ T;) the neutral density does not respond to
the drift wave with a large perpendicular wave number k,. For notational simplicity, the

superscript (0) for the equilibrium quantities will be dropped except in Sec. VI
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To calculate the neutral response, we linearize Eq. (7) and Eq. (10) to obtain

(_8_ +ug - V) (-(27}-9-> = —(1/;E Lone _ dug - Vin ng — V - dug . (18)
ot ng o Ne

and

mgng (% + Uug - V) 6110 + VTotsno = U,:m,-n,-(éui - 611;)) - I/Imoneallo

—vymiu; ) 6n; — (Vg + vr)miuedne . (19)

The equlibrium neutral velocity ug, can be driven radially by the neutral pressure gradient,
and poloidally by the bulk ions through charge exchange. Because the details for the neutral
equilibrium solution are not essential to the following discussion [actually, these are not
trivial], we merely give an estimate for ug. The radial () component of ug is estimated as
- g(2)eso(vr/ve)M?, where g(z) may vary from order unity to a small number, and c,, is the
neutral sound speed [¢;o = (To/m0)!/? > 10%cm/s for Ty > lev]. Notice that in an equilibrium
the radial component of uy can not be zero with finite v;. The poloidal component of ug
(in y-direction) is estimated as u;,, the poloidal bulk ion velocity, whereas ug) = 0, because
there is no parallel driving force on the neutrals (u;| = 0). In th'e warm neutral limit one
may order w/cy ok, (Vzne/N0)/Csok s, (VIe/N0)/Csoks ~ € € 1, leading to [through Eq. (19)]
the following estimates fug,; ~ ¢y0(6n0/n0) for g(z) ~ O(1), and dug, 1 ~ (cs0/€)(én0/10)
for g(z) < 1. For the former case (g(z) ~ O(1)) the perpendicular compressional term in
Eq. (18) is compaprable to the convective term, which yields éng/ng ~ en./n.. For the
later case (g(z) < 1) the perpendicular compressional term becomes dominant, and we find
éng/ng ~ €26ny/n.. In either case, the warm neutral fluid can be viewed as incompressible,
éng/ng can be dropped everywhere. The demonstrated incompressibility of neutral would,
by itself, lead to considerable simplification. However, in this paper, we make even a stronger
assumption: we neglect the effects of ionization altogether (v; = 0) because a consistent

incorporation of ionization needs more analysis [Sec. VI].
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If g(z) ~ O(1), the parallel component of Eq. (19) yields dug ~ €du; . The contribution
from neutrals to the parallel momentum equation [Eq. (16)] can thus be neglected. For

g(z) < 1,8uq, is comparable to du;|, and is given by [g(z) — 0]

1V, n;
6 = z Sy . 20
Yol w +1vz(ni/ng) mo il (20)

Substituing Eq. (20) into Eq. (16), we find the ion parallel response modified by the neutrals,

. 1 2Nz
Sug) = N {_m n. w'5qz,|| + (1 + 7)c2ky

k
bne _I_lgTe} : (21)
e m;

il n
where 0, = W' + iugw’/(w + tzni/ng), W = w — wWg,wE = ugky, is the E x B rotation
frequency due to equilibrium electric field, and = = T;/T.. It is interesting to note that
in the large v, limit Q, goes to (1 + ng/n;)w’ ~ «/, indicating that the charge exchange is
unlikely to be an important driving force for this system. Henceforth, we approximate (2, by
w', and drop the superscript on w, i.e., w denotes the mode frequency in the plasiﬁé. frame,
orgequivalently, (d/dt)g — 0/0t. |

Now, we calculate the impurity response to the dissipative drift wave. The linearized

impurity continuity equation [Eq. (8)]is"

gt-éﬁz +n, I:V“(Suz,” - Zw;f;—:5¢] =0, (22)

where 6@ = ebp/T., and where we have neglected the contribution from impurity polarization
current. In order to calculate éu, ), we must solve the linearized impurity parallel momentum
equation [Eq. (11)],

o

0 mznz%(suz,” + V||6P; = ZeEbn, — Zen,V|ép + 6F, ) , (23)

where 6F} represents the linear frictional forces on the impurity fluid due to electrons and
ions, i.e.,

Fo ) = nimivis (8us) — 6uz,)) + nemeves(ve,| — Susz)) (24)

11



where v, is taken as (ZegZn,/ne)ve:, so that the equilibrium condition of Eq. (11) is con-
sistent with our assumption u;| = u) = 0. The definition for the total parallel current:
J = enibu;y + Zen,bu,) — en.v., and the estimate v,,/v;, ~ (m;/m.)*/? helps convert
the second term on the r.h.s. of Eq. (24) to —(m./e)v..Jj. Making use of this estimate
along with the parallel Ohm’s law [Eq. (3)], we can rewrite the impurity parallel momentum

equation, Eq. (23), as

mznz%&zz,” + TZV”(Snz = —-2Zn, (V"5Te + TeV”(SZ:> -+ n,-milliz(tsui’” - 5uz,||) . (25)

Substituting Eq. (21) into Eq. (25) to eliminate du;),, we obtain

. NiVig

ou,,| = “'é‘z' -V {C§z5ﬁz + %ZCE [6738 + 6T, + zanw

(67a(1 +7) + 511)]} -

where i = ne/ne, §T, = 6T./T., 67, = én,/n,,c2, = T,/m,, and Q, = w + (1 +

nimi/nym;). Combining Eqs. (22) and (26) determines 67, in terms of 63, §4,, and 67,

m i 25 (B)
z—l—cgzkﬁ/wﬂz w \L, ¥

21.2
m; Cskn ~ ~ NV
* (zz> o0, 67+ 6T, 447

where k)| = kl'l:c (we have transformed V| — tky). For the dissipative drift wave the large

(67.(1 + ) +5Te)]} : ' (27)

ng

impurity mass implies ¢}, 4} < wQ, ~ w*?, Since 6@, 87, and 6T, are expected to be of
the same order (verified a posterioi), and L,/L, > 1, the impurity density response can be

asymptotically expressed in a simple form:

87y ~ ——22 55
Ao~ ——2 2260 (28)

Notice that in the very low frequency case one can neglect w in §2,. Futher, assuming that
1 < vi;nim;/n,m,, and neglecting the second term of Eq. (27), one reproduces Rutherford’s
result’®!? [k, = n,T,/m;vi,ni]

wX L, .

285, (29)

SR, = ——en .
w + mzkﬁ 2

12



which can be a good approximation for the very low frequency rippling mode. For the current

analysis, however, Eq. (28) is the proper approximation for the impurity response.

IV. The Eigenmode Equation, Numerical Results

In Sec. III, we discussed in detail the linearized dynamics of the neutral and impurity compo-
nents. The appropriate ordering for the dissipative drift waves leads to the conclusion that
the neutral dexiéity perturbations are negligibly, and that the impurity response is given by
Eq. (28). The simplification was brought about by the fact that the perturbed impurity
pa,rallél velocity u. is negligibly small for the mode under consideration. The smallness of
u along with the neglect of the neutral response allows great simplification in the bulk
plasma equations of motion which can then be reédily solved. We do not consider ionization

in this section (v; = 0). All the simplified linearized equations are: S
wbA = wh 6§ — k(85— busy) , (30)

where v; = T.(0v/0T.),

- - : JUP 3. - |
831 = (Z'Ths — iB)68 + (2T + 38053 + (ST +iBB)6T.,  (31)

with Z' =1 —1/Zeg ~ 1, Jy = Jy/en, A, = (W /w)(Ln/L.), and 8Jj = 6J)/en,
(w+wh)ptV3ég = —kéJy , (32)

where p, = ¢,/ws with we; the ion cyclotron frequency, and w;- is the ion diamagnetic

frequency (= (1 + n;)rw* with n; = din T;/dIn n),
(W +iB,kf +iv))6T. = (Wi + 1v.A.)66 + ky(uiy — 8T)) ©(33)

where v, = (2/3)nzfz/Te, v, = (2/3)n,01,/0T., and w¥ = n.w¥ with g = din T./din n,
and

iy 3
Suiy = "Tc (1 +m)67 +622] . | (34)

13



Equations (30)-(34) are combined together to form the eigenmode equation,

d? “ N~
where
1 P(7)
T) = 36
Ve = 5 B (30
. , T
P(z) =2 {m it 4 wLs 1 oy - 722 A
» n B,
+ BL L G+ ) (@—1—7n — ZV_.,AZ)} - TZ %\;J”&}(&} +17;) , (37)
and
Q(F) = 74 — P 2-(30 + 7)) — 0@ + 7). (38)

ﬂ v ? IBV
In the eigenmode equation we retain the rippling effect due to impurity fluctuations only,

namely, the Z’ jhAz term, All frequencies (with a caret on top) are normalized to wX, for

*

example, & = w/w* 0, = v,/wX. Other dimensionless quantities in Eq. (35)-Eq. (38)

are k = poky(Ls/Ly)Y?, ¢ = Zp,(Ls/ L), B, = B k* L2k = (mi/m.)(Tecky/eBL,) -
(1/Zegve:), and J|| = (Jy/encs)(Ly/ L) 2.

The eigenmode equation is clearly rather complicated and the potential V(%) is a function
of many parameters. Although some analytical solutions, which are quite good in the perti-
nent parameter range, will be presented in the next section, the major thrust of the current
study is to numerically investigate the destabilizing effects of various competing mechanism,
and to determine the nature of the wave function in regimes of interest.

We begin by displaying the numerically determined mode structure when the rippling
effects, i.e., the contribution from the terms proportional to the equilibrium current JI(IO)
are neglected. For very small value of T [weakly collisional plasma, regime (a), T = 0.04]

a narrow current channel near the rational surface results in a very shallow potential well

unable to contain the mode, which is primarily localized by the ion sound effect [Fig. la].
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The situation illustrated in Fig. 15 is quite different. Here T = 0.18 has a moderate value,
and the current channel created potential value is deep enough to localize the mode; the ion
sound term plays no essential role. As T is increased further [Fig. 1c, T = 0.6] the current
channel width increases towards z = x4, and the structure of the mode becomes sensitive
to the ion sound term. Finally, when T = 1, the current channel, though broad, becomes
sufficiently shallow that the mode structure is again controlled by the sound term [Fig. 1d].
"Strictly speaking, our set of equations is inadequate to accurately describe the last scenario.

We now examine the\comparative roles of the destabilizing mechanisms for standard edge
plasma condition in TEXT. The parameters chosen for numerical work are: R = 100cm, a =
25¢cm, ne = 3 x 102em=3, T, = 20ev, B = 22kG, Zg = 3, L, = 5¢em, L, = lem, L, =
150cm, Z = 4, Vipop (the loop voltage) = 1Volt, 7; = 1.0, n. = 1.0, n; = 0.5, and the poloidal
mode number m = 30. [For the electron temperature ~ 20ev, the impurity charge.number
is Z ~ 4]. From the given data, thé impurity density can be calculated from the formula
n, = (Zeg—1)n./ 16. We do not include the effect from v, (~ 01I,/0T.) for two reasons. First,
the calculation based on the coronal model'® indicates that the radiation cooling function
| I.(T.) shows a strong dependence on T., and the charge state of impurities, so that the sign
of v, varies for different 7T,’s and charge states. On the other hand, the calculation based
on the coronal model is subject to be modified due to transport in tokamak. An improved
calculation including transport shows that the temperature dependence of I, can be greatly
decreased, éccompanied by an enhancement in the magnitude of I,.2° In the light of the
latter calculation, we choose I,(T,) = 5.6 x 10~'%erg.cm~%/s as the standard value of the
radiation cooling function, which correspondé to the peak value for carbon for T, ~ 10ev.
All standard parameters are followed by the symbol (1), for example, the standard v,;, and
wX are written as z/e,-(l.) = 1.26 x 106/s, wX (1) = 2.18 x 10%/s respectively. From the above
standard data, we obtain 8, (1) = 0.35, 7,(1) = 0.2, k*(1) = 0.04, Jy(1) = 0.1.

By varying the value of the equilibrium current and collisionality, we can examine the
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effects of ‘rippling’ on the mode structure, frequency, and growth rate. It is noticable that the
‘rippling’ becomes stronger as the plasma becomes more collisional. With stronger ‘rippling’
the mode localization is more skewed about the rational surface. This feature is shown in
Fig. 2. Fig. 2a illustrates a dissipative drift wave slightly modified by the rippling effect, with
its growth rate essentially determined by the impurity drive. Fig. 2¢ illustrates the case close
to strong rippling regime; the instabilty in this case is mainly due to the rippling rather than
the impurity drive. For different collisionalities we plot the mode frequencies and the growth
rates versus the equilibrium current in Fig. 3. The standard value of the equilibrium current
is indicated by an arrow in Fig. 36, which suggests weak rippling. The condition for rippling
to be important is that Z’ jhAz be not negligible compared to 8,k [Eq. (31)]. This condition
can be estimated as Z'J) is bigger than about one third of (L,L,/L2)(B,/Zex)"/?, when one

has estimated the mode width by the current channel width, and the mode frequency by

*

Wep -

The real frequencies and growth rates normalized to the standard diamagnetic frequency
wX (1) versus the poloidal mode number m (and the corresponding k,) are shown in Fig. 4
for various L, with other parameters taken at the standard values. It shows that the peak of
growth rate shifts towards higher m for greater growth rate. The marginal stability curves
are shown for standard values in parameter spaces [L, — L, plane in Fig. 5, and L, —T, plane
in Fig. 6]. These curves indicate that the lower electron temperature and smaller density
gradient favor instability for fixed impurity gra;dient. For lower electron temperature the
parallel heat conduction is smaller, resulting in a smaller damping rate. For smaller density
gradients, although the shear damping becomes larger, the increase in the impurity drive
overtakes the damping increase, and the mode actually tends to be more unstable.

Several analytical expressions for the dispersion relation are given in the next section,
where the general features of the instability are shown. For example, 7. is stabilizing to the

dissipative drift wave.

16



V. Analytical Solutions

The main thrust of this paper is to numerically investigate the dissipative drift instability in
the tokamak edge plasmas. However, in the regime of greatest interest (from the experimental
point of view), i.e., when the parameter T is not too small but still less than unity [regime
(b)], we have been able to derive an analytical dispersion relation which agrees very well with

“the numerical work, and. which clearly brings out the parameter dependence of the growth
rate.

From numerical work presented in Sec. IV, we concluded that in the regime of moderately
high collisionality, the effects of both the sound and the rippling (due to the equilibrium
current) terms is negligible. The modes turn out to be localized in distances smaller than
the sound turning point. For these rno&es, the relevant equation, an approximate version of

Eq. (35), can be written as [; = 0,k = 0],

dﬁéA é P(z)

%5 @ -
with
. P(T) 2 a1T* + ag
0@ - e (40)
where 7
L, -
al = L—n(l —W) s . (41)
o L, ~ DA\ & L, .
ao——z—B—U--—-;(l-*-ne—w-l-z — ):—ZB—V z:f(w)y (42)
by = -é-(m ~iD,), | (43)

-~ 2
@
bo = (-IF—U) y (44)
and @ = (0 + @%). Notice that for edge plasmas L,/L, is a large number, and for the

moderately collisional plasmas under investigation, &/8, > 1. In a formal ordering one
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could take Ly/L, ~ 1/e ~&/B,, € being the small ordering parameter. For the modes with
spatial extent limited to Z? < 1/¢, Eq. (39) is a good approximation to Eq. (35).

The zeros of P(Z) in the complex plane determine the turning points of the system,
T =0, = +(—ao/a1)"? = £z,. A W.K.B. dispersion relation corresponding to the principle

mode confined between —z; and z; is

T INY2_ e (04T +ag 1/
5=(3) 2 = <—b- Th) (45)
which is readily evaluated to yield
1/2 b 1/2
7= () (2-2) wmm-na-m], 0

where II = (1 — aybo/aoby)~'/2. Several such transcendental dispersion relation can be ob-
tained by including k% and/or the sound term. However, their utility in producing insights
or suggesting scaling of the growth rate becomes questionable as their complexity increases.
In fact, the dispersion relation given by Eq. (46) is also not particularly perspicous. Consid-
erable simplifications result if we use the perfectly valid ordering (fé)r the range of interest)
bo/by > 1 along with |by/by| > |ao/a1|, which is satisfied only if the dispersion relation
corresponds to f(&) ~ 0. This indeed happens to be the case and Eq. (46), then, reduces to

ag (_;_?3)1/2 _ —%7{' (61 — 621_2?) ~ —-:Zial , (47)

which can be reexpressed in terms of physical variables.

~ ' -AzAz : 23 7 “n e o, e
fR)=1+n—-&— z”g = ¢"/® (:-343) (ﬁ,,—‘Z—) (1 + %’“) (1+o)¥.  (48)

Mode frequencies, determined from Eq. (48), over a broad range of L,/L,, B,, and 7, agree
very well with the results of the direct numerical integration of Eq. (35). Whenever the
impurity drive (~ v,A,) is strong enough, i.e., the situation of interest for the present study,

even the grossly simple dispersion relation f(@) = 0 yields essentially correct growth rates as

18



well as the oscillation frequencies. Dispersion relafion similar to Eq. (48) have been derived
by Drake and Hassam.'® These, rather, simple straightforward expressions for the linear
growth rate can be extremely useful in understanding the quasi - linear and nonlinear stage
of the mode. For example, we consider a quasi-linear saturation of the mode, achieved by the
relaxation of the impurity gradient due to the enhanced fluctuation aﬁphtude. Following
the standard approach of the quasi-linear calculation, wherein Eq. (48) is used for the linear

dispersion, we obtain the scaling for the saturated mode amplitude 6@ ~ D,(L,/L.B,)?,

1/3 stands

where 7, stands for the contribution from. the driving force, whereas (L,/L.f,)
for the damping rate. This scaling implies that the fluctuation level is proportional to the

impurity density.

VI. Effects of Ionization

N e

Since ionization is a universal characteristics of the edge plasmas, an instability dr.iven by
ionization could be an extremely attractive possibility for understanding and explaining the
ever existence of large levels of fluctuations in edge plasmas. However, consistent inclusion
of ionization into the mode equation turns out to be a tricky proposition. In this section
we point out the difficulty through a variety of examples. We limit ourselves only to a
conventional linear analysis; the fluctuations are taken to be inﬁnitely small, so that any
slow spatial and temporal variation of physical quantities arising from the ensemble average
of fluctuations can be neglected with respect to the variation in the quiescent plasma.

It is expected that the leading effect of ionization on the mode stability will come from
the source term in the continuity equation. In the absence of fluctuations, the electron

continuity equation takes the form [ne = n® + én.,v, = v + év,]

o
P 19 (V) = P, (49

where for a génuine equilibrium dn{®) /8t = 0. We pointed out earlier (Sec. II) that in a
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linear slab model with gradients only along z the divergence of the electron flow vanishes
implying that there is no equilibrium electron density as long as 1/%0) # 0. This may easily
be the case in early stages of the tokamak discharge. In this case, since the ‘equilibrium’
density varies at precisely the rate (u}o)) at which one seeks an ionization driven instability,
this time variation has to be properly considered in the stability analysis; the solution of the
initial value problem becomes nontrivial, and a naive Fourier analysis in time could result in
serious errors. In principle, one could solve this problem using two time scale perturbation
theory if I/}O) < w. This procedure is rather complicated, and is being investigated.

In order to demonstrate the surprises associated with ionization, we analyze a ‘toy’ prob-
lem of collisionless drift waves neglecting the effects of impurities of charge exchange, and of
vy, 7; (the finite ion temperature), and 6T,. The pertinent linear problem (spatial Fourier

transform in y and z have been taken) consists of the following set:

igt-éﬁ = Wi ()6 — RybJy + kybusy , (50)
67 = 63 , (51)

i P V18P = ~kyéJy (52)
z'%aui,,, = kyc267 (53)

where 67 = 6n/n(t),8J) = 6Jj/en®(t). With this choice of variables, the only explicit
time dependence comes through wX (t) = —(Tck,/eB)(8/dz)in n®(t). From Eq. (12) we

know that [N = constant in time]

n®(t) = N%(z) exp [ / dtu§°)(x,t)] , (54)
where
0 | 0
é-a;ln n(o)(t) = Wexp [—/dtu}o)] a—wN(o)(m) €xp [-I-/dt’/}o)] ) (55)

leading to the conclusion that if u,(-o)(a:, t), the ionization rate, were independent of z, the en-

tire set would have no explicit time dependence in the coefficients multiplying the perturbed
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quantities. Thus the eigenvalue problem will be amenable to the usual Fourier treatment
with the astonishing result that the ionization has completely disappeared from the eigen
equation! The perturbed density still increases due to ionization, but it, by no means, can
be viewed as an instability driven by ionization, because other fluctuating quantities (the
electrostatic field, for example) see no effects due to ionization. In this ‘toy’ problem, ion-
ization effects (not trivially calculable) persist only if v}o) or equivalently the neutral density
has spatiall gradients.

To continue our analysis of this problem, we now consider two cases, where a genuine
equilibrium density has been achieved. It may happen if we include the electron radial
velocity, that has been neglected in Eq. (2). The Braginskii model, then, yields

d 1dT; 1d
Ve,z = —Dz I:(l + T,)d inn + —f-ﬂ - é“c—l—l Te] ’ (56)

where D, = (1/2)p?ve; > 0 with p. the electron Larmor radius.!’'?! Substituting Eq. (56)

into the eqilibrium electron continuity equa,tlon, we find that

d  (d d 1 47 14
— — (0) (0) O =2 © 4= % -2 (0)
[dz-i-(dwlnn >] D§ {(l-}-r )d Inn +Te(0) 72 2dmfn T!

rﬁust be satisfied. Since D) is very small, one must have very steep profiles to balance the
finite I/I . Sharp gradlents make it imperative that the radial component of v, be retained
in the linearized electron contmulty equation [Eq. (13)]. Making use of the linearized form
of Eq. (56), we can evaluate the contribution from the radial flow to V - §v.+6v, - Vin n(®

~

[needed in Eq. (13)],

ing + 5v”_fl__ln n© — __63 [ d + (izn n(o)ﬂ

dz % “dz n(0) dz
(0) ‘
©) onNSg, @, 1 d’ 1d.  _q L, ém
D (147 ) ln n\ 4 — 70 & 3 In T, | +. "y = (58)

where ‘... consists of terms proportional to (d/dz)(6n/n(®), (d?/dz?)(6n/n®), 6T, /T etc.,

and Eq. (57) has been used to simplify the second equation. Substituting Eq. (58) into
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Eq. (13), we obtain

0 d d?\ én - ~
(b‘;‘*‘ug)V'i‘l/}O)-}-zl;-}‘E;)W:6@+(5Te . (59)

Obviously, the vf—o) term in Eq. (59), now seems to have a stabilizing effect, although the
total effect due to the equilibrium is rather complicated. Thus, a consistent understanding
of the equilibrium seems to have converted ionization into a stabilizing force, though naively
one could have judged it to be destabilizing. Equation (57) does not correspond to a realistic
tokamak plasma even if D{) is enhanced by the Pfirsch-Schluter effect.?? This example is
given just for illustration.

There exists an alternative mechanism that may also result in an equilibrium. Let us
consider a poloidally localized ionization source, which can be modeled by v[H (y)—H (y—Yo)]
where H(y) is the Heaviside step function, and a/m < yo < a (a is the minor radius and m
is the poloidal mode number). An equilibrium in the ionization region can be achieved by a

finite density gradient in the poloidal y-direction, i.e., the continuity equation reduces to

©
_g_d‘;m ._dfl?;ln n® = O (60)

which can be readily satisfied. Such an equilibrium requires a modified slab model; the
density n(® may vary in y-direction, while other equilibrium quantities such as (@, T©
vary only in the radial z-direction. The finite density gradient in y will add extra terms to

our basic system. For example, w¥ 65 in Eq. (30) will be modified to
T(O)V(O) d
L3 cte I ~
(wen + Z’:Eza)— "Iz 6@ , (61)

where E( = —dp© /dz. For the dissipative drift wave Az ~ p,(L,/L,)*/?, and the new
term (~ »{”) can be important for the parameters relevant to TEXT. However, it is not
easy to estimate the effect of u}q) on the instability until the entire system is analyzed. The

equilibrium described by Eq. (60) may be a possible choice. For many experiments performed
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in TEXT the neutral source is indeed highly localized in poloidal direction. However, this
may not be the experimentally observed equilibrium, at least, in the flat plasma current
phase. It is possible that the observed equilibrium may bg a nonlinear equilibrium in which
the electron radial flow (the radial particle diffusion) due to nonlinear (turbulent) transport
may be large enough to balance the ionization source, so that the density gradient in y
becomes small, even ignorable. This is beyond the scope of conventional linear analysis, to
which this paper is limited.

All thre;e examples discussed in the section clearly illustrate that a knowledge of the
mechanism leading to an equilibrium (genuine and not genuine) is essential for a correct
evaluation of the role of ioniza.tidn in determining mode stability. The general problem is
quitevcomplica,ted, and the results depend upon the nature of the equilibrium. It is clear
that the direct mea,sureménts on the equilibrium, and on the electron radial flow at various
poloidal positions and different discharge phases will be crucial in understanding the role of

| R
ionization in tokamak dynamics. This subject will be dealt with in a forthcoming publication.

VII. Summary and Conclusions

We have examined the linear stability of the electrostatic dissipative drift wave for condi-
tions pertinent to tokamak edge plasmas. There are two principal conclusions of this study.
First of all, We‘ﬁnd that when properly evaluated, the impurity condensation associated with
radiation cooling can serve as an important destabilizing mechanism provided the impurity
density gradients are sharper than the density gradients of the plasma. For standard pa-
rameters the growth rate can be a reasonable fraction of the diamagnetic drift frequency.
Detailed comparison with TEXT experiments requires more informatio;l on impurity pro-
files, and will be presented elsewhere. However, we note that this driving mechanism may be
interesting to the understanding of two types of (ELM dominated and ELM free) H-modes

in ASDEX, which appear to be associated with different impurity profiles.23-25
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Our second result concerns the effects of ionization. We find that these effects are com-
pletely determined by the processes which lead to an ‘equilibrium’ in the presence of a steady
source of particles. By analyzing a few possible scenarios, we showed that it is difficult to
make a clear case that ionization drives drift waves unstable; the real problem is rather’
complicated. Thus, any naive notions concerning a direct ionization drive for the plasma

edge modes need critical and careful scrutiny.
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Figure Captions

1.

o

The structure of the eigenmode and potential well for different regimes. Figures (a)
to (d) are for T = 0.04, 0.18, 0.6, and 1.0 respectively. The solid curves and dashed
curves staﬁd for real and imaginary part. The bold lines represent the potential well.
The thin lines represent the eigenmode. The horizontal axis is normalized to the ion

sound width z,.

The eigenmode structure with rippling effects at Z'Jy = 0.5. Figures (a) to (c) are for

B, = 0.5, 0.35, and 0.1 respectively. Other parameters are standard parameter.

. The real frequencies (a) and growth rates (b) versus Z'J for B, = 0.5,0.35, and 0.1.

The corresponding curves are denoted by a, b, and c respectively. Other parameters

are standard parameters. The arrow in (b) indicates the standard value of Z'J).

The real frequencies and growth rates in terms of the standard value w¥ = 2.18 x
10%/s versus the poloidal number m for L, = 2.0cm, 1.5¢m, 1.0cm, and 0.5¢cm. The
corresponding curves are denoted by a, b, ¢, and d respectively. Other parameters are

standard parameters.

. The marginal stability curves for different plasma densities in the L, — L, plane. The

curve a, b, and ¢ stand for the density n, = 3, 6, 9 x 102cm™3 respectively. Other

parameters are standard parameters. Below the curve is the unstable region.

The marginal stability curves for different L, in the T, — L, plane. The curve a, b -
stand for L,, = 2cm, and 5cm respectively. Other parameters are standard parameters.

Below the curve is the unstable region.
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