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Abstract

The effect of equilibrium velocity shear on the resistive tearing iﬂstability has been
systematically studied, using the boundary layer approach. Both the constant-i tear-
ing mode, which has a growth rate that scales as S-3/5 and the nonconstant-y tearing
mode (A'(aS)'1/3 > 1), which has a growth rate that scales as 5~1/3 are dnalyzed
in the presence of flow. Here S is the usualbratio of the resistive diffusion and Alfvén
times. It is found that the shear flow has a signiﬁcant influence on both the external
ideal region and the internai resistive regipn. In the external ideal region, the shear
flow can dramatically change the value of the matching quantity A’. In the inter-
nal resistive region, tﬁe tearing mode is sensitive to the flow shear at the magnetic
null plane: G'(0). When G'(0) is comparable with the ﬁiagnetic field shear, F'(0),
the scalings of the “constant-1” tearing mode are qhanged and the A’ > 0 instabil-
ity criterion is removed, provided G'(0)G”"(0) — F'(0)F"(0) # 0. The scalings of the
“nonconstéﬁt-@b” tearing mode remain unchanged. When the flow shear is larger than
the magnetic field shear at the magnetic null plane, both tearing modes are stabilized.

Finally, the transition to ideal instability is discussed.
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J. Introduction

The resistive tearing mode has been studied both analytically' and numerically.? In the ab-
sence of equilibrium flow, two kinds of tearing modes have been found: the “constant-i)”
tearing mode, whose growth rate scales as S—3/5 and the “nonconstant-®” tearing mode,

whose growth rate scales as S~1/3, where S is the usual ratio of the resistive diffusion and

- Alfvén times. Since without resistivity the magnetic field is frozen into the flow, in the case

of small resistivity it is to be expected that shear slow will have a profound influence on the
tearing mode. This problem is of interest for laboratory and magnetospheric plasmas.>*®
Because of the difficulty of this problem, approximations involving the many relevant pa-
rameters have been developed. Assuming the flow and Alfvén velocity have approximately
the same spatial profile, Hofmann® derived a di‘spérsion relation in which growth rate scales
like $-1/2, Paris and Sy* found that the scaling remains unchanged when the flow is sig-
nificantly below the Alfvén speed. Dobroﬁvolny et al.,®> by using the “frozen-in” equation
for the i_nternai solutions, have shown the possiblé existence of a number of scalings with
and without viscosity. Boﬁdeson and Persson® used the “constant-i)” approximation and
Fourier transformed the internal equation in order to study the problem with and without
viscosity. All of fhe above discussions pertain to the “constant-zﬁ” tearing mode. To 01;1'
kﬁowledge, no one has studied the effect of shear flow on the “nonconstant-” téaring mode.
Also, except for Hofmann,? the impqrté.nt effect of shear flow on the external ideal region
has not been considered. Einaudi and Rubini7 have studied the problem numerically. They
do not find instabilities when the flow sheér is large, in contrast to the results of Paris and
Sy* and Bondeson and Persson.® In both Ref. 7 and Ref. 8; altransition to ideal instability
is observed. | |

In this paper, we adopt the boundary layer approach to study the resistive tearing mode
in the presence of shear flow. Both the “constant-i” and “nonconstant-i)” tearing modes

are treated. By introducing an assumption similar to that of Ref. 3, and carefully comparing
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the orde.rs of the parameters involved, we arrive at general conclusions. In Table I we

summarize the majn conclusions that arise primarily from the affect of shear flow on the

internal resistive region. Also, this table describes the transition to ideal instability. An

additional main result of this paper is the recognition that the presence of flow affects the

analysis in the external ideal region. Flow can drastically change the value of A’ . We are

able to explain the numerical results obtained in Refs. 7 and 8. In our present work, viscosity |
is neglected, but this possibly important effect is left to the next paper.

In the next section, the basic equations are written down, and the notations are indicated.
Section II1 is devoted to the shear flow affect on the external solutions. In Sec. IV, we discuss
the internal solution in the limits of slow growth and fast growth, which correspond to the

“constant-1” and “nonconstant-1)” tearing modes, respectively. Also, we con51der the limits
of small flow shear and flow shear that is comparable to magnetic shear at the magnetm null
plane Comparisons are made with previous work. In Sec. V, we discuss the transition to

ideal mstabﬂﬂ;y This is followed by a conclusion.
II. Basic Equations

We consider an incompressible plasma with umform resistivity and density in the case of

plane slab geometry. The starting point is the magnetohydrodynamm (MHD) model

0 - - - 1 > >
_p(5+(v'V)v) = —Vp+E(V><B)_><B
jS-?‘-=—VXE‘ = 1V2§+Vx(z'fx§)
ot 4 ' 4
V.-B = 0
V. = 0.

We assume the equilibrium quantities depend only on y. The equilibrium magnetic field




and flow velocity are given respectively by

Eo(y) = ‘%Bow(y) + z‘Boz(y)

50(31) = évoz(y) + 2voz(y)'

Since we are interested in the problem where the time scale is much smaller than the magnetic
diffusion time scale, one can assume an ideal equilibrium and neglect the effect of z”;V2§0 (v)
in the equilibrium equations. With the assumed forms of %, and éo, an ideal equilibrium

exists provided there is a zeroth order pressure to support the magnetic field: po(y) + %’t— =

constant.

Now consider the linearization. We denote perturbed quantities by the subscript 1 and

write them as follows:
fi(7,1) = fu(y) exp [i (ke + kz2) + iwt].

* The linearized equations, obtained by neglecting terms of second order, are

(v +1iaG) (W' —a?W) —iaG"W = iaF (¢"—a2¢) — iaF" (1)
| (v +iaG)p —iaFW = S71(y" - o), | (2)

where we ha,vé used the followihg definitions:

_ By, w, B
Y= B - W_'UA VA= Iro

e

F=k];§°' Ce=t% i = TR

b RO
p=% a=ka ¥ = iwTH
2 . .
S I SO
B TH

Here prime denotes differentiation with respect to u, B is a measure of the magnetic field,

and a is the magnetic shear length. The above scalings are conventional,»* except we have




scaled the growth rate 4 by 7x, the Alfvén time, rather than the resistive diffusion time, and
G and W, which represent respectively the equilibrium velocity and perturbed velocity, are
scaled by the Alfvén velocity.
Defining u = v/a + G and w = :W/u, Eqgs. (1) and (2) become
(u2w/)/ — oty = — [F ('(,b” _a2¢) —F”‘l,[)] (4)
u(p —Fw) = (a8)™ (¥" - a'y). (5)
In the case of ideal MHD (S — o0), and Egs. (4) and (5) reduce to
[(u2+F2) w']’—oz2 (u2+F2)w = 0. (6)
Extending Eq. (6) into the complex p-plane, we note the presence of a singularity that occurs

at a point where

2 .
u2+F2=<g-+z'G) +F2 = 0. (1)

If we assume a ma‘gnetic null plane occurs at u = 0; i.e., F(0) = 0, then by selecting an
appropriate reference frame, we can always let the equilibrium velocity be zero at p = 0;
le., G(0) = 0. In the case of very small growth rate v, the singularities of ideal MHD
occur near g = 0. “For the tearing mode under discussibn‘, the small resistivity is only
important in a fhin layer around the ideal MHD singularify where 4 = 0. Asin th‘e usual
tearing mode treatment, we adopt the boundary layer approach. In the discussion below,
we assume F(0) # 0, and without loss of generality F'(0) > 0. Also, we assume a S O(1),
G"(0)/F'(0) £ O(1), and F"(0)/F'(0) S 0(1).

III. External Ideal Region

Away from the singularity discussed above, we can neglect resistivity (S — o0). This external

ideal region is treated here with the assumption that the growth rate scales as follows:
y~877 (0<o<1).
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Equations (4) and (5) reduce to
p~Fuw = 0 8)
(7 - ) w] —a® (P~ 6w = 0. )

Now consider the behavior of Egs. (8) and (9) as 4 — 0. Taylor expanding the functions
F and G, keeping the leading term in Eq. (8) and keeping terms to O (%) in Eq. (9) yields

%~ F'(0)pw ' (10)

{[(F©0? - ¢'(07) p* + (F(O)F"(0) - ¢'()6"(0)) #*] '}
~a? [(F'(0)? — G'(0)?) 4* + (F'(0)F"(0) — G'(0)G"(0)) p°| w ~ O (11)
The reason we retain the term O (p®) in Eq. (11) is to resolve the behavior for the case
F(0) ~ G™(0). o
Assuming F'(0)? — G'(0)? # 0, the solutions of Eqgs. (10) and (11) behave as follows near

p=0

. Co (. F'(0)F"(0) — G'(0)G"(0) o
R G =0 ) RN

, POF(0) - G0)G"(0)
b~ ro(1+ SR E

pln |N|) +F(0)Crap++++ -

Formally, this solution is the same as the case without flow (G'(0) = G” (O) =0), thus we

can still define the matching quantity A’

A= LI " _Cu -G
P du lo- Co

Note that Egs. (8) and (9) have the same structure as those without shear flow, although

they differ by the presence of the term with G?. Thus the shear flow can have as much

influence on A’ as the magnetic field. This is not a surprise, since in this region the magnetic



field is frozen into the flow. Hofmann® has ﬁade some general comments on the shift of the
wavenumber «g, where A’ () = 0, caused by shear flow. In Appendix A we consider two
examples that demonstrate the importance of shear flow when calculating A’

To conclude this section, we obtain the constraint on the internal solutions that is imposed
by the external solutions. To this end, we assume that the internal scale length is €, where
¢ < 1. In the border between the internal and external regions, we obtain from Eq. (10)

F'(0)e '
~ F / ~ —‘—z - w. 12
R e P (12)
Since the internal region is very thin, we can say that throughout, ¥, w, and W scale as
in relation (12). This is something similar to what Dobrowolny et al.’ called “use of the

frozen-in law for internal solutions.” In the case of no shear flow, this reduces to

H

y !
o~ iaF (0)eW
v
which is the assumption adopted in FKR.1

IV. Internal Resistive Region

The internal resistive region is so thin that the derivatives of 1/) and W are very sensitive
~ to the variation of 3 and W in this region. This suggests the introduction of a stretched
variable (, defined as

- K
(=;,

where, as noted above, € is the scale length of the internal region. Using Egs. (1) and (2),

the rescaled internal equations become

Y G0, 1.6M0) \EW o)

(aF’(O)e MOS0 EC) o7 T " =

L LF0) o\ &% F(0) ,
<z§+§zF,(0)eC) a2 —zeF,(0)¢+O(e) (13)



(oGO, 1670 ) 1.F"(0)
(am) +HE ) C>¢ (” 2 F0) 4)

(aF(0)és) ™" g gf +0(e). (14)

Because of the difficulty in solving the above equations directly, we are going to discuss them
in different parameter limits. There are two parameters of interest. The first is l LGP ,
Whlch is the ratio of the local Alfvén time to the anticipated growth time, 1/~. Equivalently,
this parameter is the ratio of the growth “phase velocity” to the Alfvén velocity in the
resistive region. The second parameter is |G'(0)/F’(0)|, which is the ratio of the flow shear
to the magnetic field shear at the magnetic null plane. We considér two cases: case A has
lv/aF'(0)e| < 1. Here the growth time is assumed to be long compared to the local Alfvén
time scale. We refer to this as slow growth. Case B has |y/aF"(0)e| ~ 1 which we term fast

growth. The case

>> 1,

-
aF'(0)e
where the growth time scale is in the global Alfvén regime, i.e.,

-
aF'(0)a

1
is not discussed in this paper.

< 1.

A. Slow growth; ,Q—F,ﬁ
)

As noted above, in this limit, the anticipated growth time scale is assumed to be much lbnger
than the local Alfvén time scale. We expect that magnetic diffusion is going to be effective
on this time scale. In the case of no flow, this limit corresponds to the classical “consta,nt_-z,b”
tearing mode, which has a growth rate that scales as S ~3/5. Below we consider the problem
in two different flow shear limits. In both cases, since the quantity that we want to match

is ¢ ~‘Co + Cip = Cp + Cx€(, order € is the highest order that is matched.



1. Very small internal flow shear

In this limit,

)G’(O) g
F'(0) aF'(0)e

i.e., the flow shear is so small that the inertial terms still dominate the convection terms in

the resistive region. Thus it is expected that the shear flow will Inot change the internal
ordering in this limit.

We find it convenient to introduce a new variable ¢ defined by

-2/ )

Using (12), the constraint imposed by the outer solution, implies ¢ ~ . Now, let

v = 7, ' (16)

where 7 is the measure of «, and 4 is a factor of O(1). Equatlons (13) and (14) become

(aﬁm)e)?? ("?+ )& - -l (- o) o
IS Sl o
_(ZF'%E>2A’(¢‘C“°) - (aF'(c;)Ze‘*sgch“Lo(a—F?(OTe)' oo

_ 5 \2 _ ‘
Using (a_F%F) as a small parameter, we expand ¢ and % as follows:

v = > (aF?(fJ)e)?n o

n=0
0 ‘._? 2n . o
= —_— . 19
Consi;stency at leading order requires that |
¥
— ~ 0(1),
(aF'(0))* S @

9



or

<1,

. 2
728| ~ || ——
|7€ Sl ,(aF’(O)e)

which implies the resistive skin diffusion time is much shorter than the a.nticipa,ted growth

time. For convenience, we set

5 .
S S———' 20
(aF'(0))* €4S | 20)
Thus 4 is the growth rate for the flow free tearing mode. Inserting Eq. (19) into Eqs. (17)
and (18) yields to lea,dihg order |

0?1 . _
Bez =0 @

hence, 1o = Co+ C1(. It is evident from Sec. III that matching to the external solutions can

only be achieved if

IC]Iim %o = const.
This implies C; = 0 and,
Yo = Cp = const. | | (22)

This is the so-called “constant-i) approximation.”

In first order we obtain the equations

. aG(0)e )awo . L0
v (')’ +1 p~ ¢ ac-z - (acz + (aF,_(O 6)2 F'(O) %o (23)
GWo—Cpo) = 428 (24)

a¢?
Let 4o = —h/4, 1o = 1, and define
aG'(0)e _ G'(0) aF'(0)e > G'(0)
¥ F(0) 7 F(0)
4eF"(0)/F'(0) 1 .F"(0)

(;F:ﬁ)z ~ 7eS F'(0)°

./\z

Ap
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Using the .above definition Eqs.-(23) and (24) become

2
5+ i0) 3 = 7¢*h = 30— Ar (25)
0? 1 1
%=Z(A+Zch). | (26)

These equations are equivalent to those obtained in Ref. 4, which yield the following upon

enforcing matching to the external solutions

I'(1/4) 403 ' 2\2/% o-3/5
<-—-—2ﬂ,(3/4)) (aF'(0)A?) ™" §-3/5,

| I'(1/4 M a5 An/scm2/s

. 2, 2 (7 T2 3
§ = 1-Zir+) (16+50AF)+0(A), | 27)

~ where I‘(:c) is the gamma function. In the cé,se where the internal flow shear is very small, the
internal analysis remains the same as that without flow, as a fesult the scaling is unchanged.
From the results of Eqs. (27), Paris and Sy* and Bondeson and Persson® conclude that
small flow shear destabilizes the tearing mode. Even though the flow shear at the magnetic
null plane is small, the flow in the external region could be large, in which case there is a
significant influence on the value of A’, as discussed in Appendix A. . '

Now let us check our assumptions. For the expansion in Egs. (19) to be valid, we require
_ N |
T__| ~(aS)"® A/ ~ e|A'| < 1. (28)

aF'(0)e

For the boundary layer approach to be valid, we must have € < 1; i.e.,
(a8)=23 |A® < 1, (29)

which implies the resistivity must be very small. When A is very large, the above assump-

tions are not valid. When « is very small, we assume A’ ~ 1/a and Eq. (28) yields

a> S~V4, (30)

11



which is consistent with the limit obtained by FKR! for “constant-i)” tearing mode in the

case of no flow.

2. Comparable internal flow shear

In this limit we suppose |G'(0)/F’(0)| ~ O(1), which implies that now the convection terms
dominate the inertial terms in the resistive region. Thus there is a change in the teariﬁg
mode ordering. This limit has been studied by Hofmann? with the assumptions G”(0) = 0,
F"(0) =0, and 1 — G'(0)%/ F'(0)* > 0. But here we remove these constraints. Equation (12)
implies here ¢ ~ W, and now in Egs. (13) and (14), the natural expansion parameter is
(W’i@j?)’ instead of (;ﬁaﬁ)z. Thus the equations analogous to Eqgs. (19) are

v = i(aﬂ()) ¥

n=0
oo . - AN .
W = —_— e ' 31
£ (i) ™ . @
This is the same expansion as that adopted by Hofmann.® Similarly, we assume

(@F"(0)eS)™" ~ O(1); i.e.,

<1,

hes] ~ ‘aF?(O)e

which implies the internal resistive skin timé is much shorter than the anticipated growth

time. For definiteness we choose (aF"(0)e*S)™ = 1, which implies that the internal scale
length

€= (aF'(0)8)71. (32)

To leading order, the solutions that match to the external solutions, are

G'(0) -
| F(0) ——~1)g = Wy = const. (33)
To first order Egs. (13) and (14) yield

GO W, _

) 8¢ - a0 (34)

12



. (G'(0) _
Yo + 1€ (F'(O)d)l - W1> = et : (35)

Equation (34) implies W; = gf-%lpl (generality is not lost by dropping the two integration
constants). We insert this into Eq. (35) and obtain '

P (. G0) iy |
o= i (- o) - e @)

This is an inhomogeneous Airy equation, which has the following solution®:
by = e\ oo Hi (— Xl | (37)

where m is an integer,

= [ (- 7o)

and Hi(¢) is the inhomogeneous Airy function. It is algebraic for large [(| when
‘arg ( '2’”"/3)\“‘1()] < 27/3. Choosmg m =0 if

F(0) G’(O)2

G0) (1 Fop) < °
and m = —1if |

F0) (, G(0)?
5'?65(1 P(O)Z) > 0

yields a solution that is algebraic in a sector which includes the real axis. For large ||, the

asymptotic behavior satisfies

a-25(1so0(2) o

which is valid in the sector —77/6 < arg({ < 7/6, when
F'(0) G (O)2 ,
0 (- FoR) < ©
while if

F'(0) G'(0)?
m(l Ff<o>) >0

13



it is valid in the sector —7/6 < arg¢ < 77 /6.
To second order, Egs. (13) and (14) yield

32 F” GII
G'(0) 0*W, _ 0%, F'(O)Tc’é' € F7(0) T o — F’(g) Wo
PO 8¢ 0¢ " C—imgor () ¢ iavion

GO, . e (GN0), _F(0)..\ _ &%
'¢’ (0) (’9/)2 CWZ +z 2 (;F_%OT) (F’(O) ¢0 F’(O) WO) 84-2 . (40)

Note, we have kept the singularity at ¢ = sz,(o)tE in Eq. (39). Equation (39) yields upon

(39)

insertion of Eq. (35), and integration

G'(0) 1= W, ,, = %, o — 3¢1C
F(0) J-o 082 % = Lot / -
F'(0)F"(0) — G'(0)G"(0
/ A _FOP0-C0e0,,
F,(O)c aG'(O)e
Now consider each of the integrals of Eq. (41):
© 0y . _ Oy, v\ |
~ OC2 dc = B oo eA'to aF'(0)e/ °’ (42)
where A’ is the matching quantity defined in Sec. III. From Eq. (40) we obtain
© §iW, _ [= G’(O) 82¢2
L am = [ F(0) o¢2 °
| G G(0) s 2.
/ T = T » (44)

aG’ (0 €
where we take upper sign when 243(%)1 > 0, otherwise lower sign is taken. Using the results of
Fq. (38) |
' _ -3 -3
] %o ¢1C / Yo — APy Yo 20y,

aG'(O)c aG’(O)e
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where I' is a contour in complex ({ plane. If

F'(0) G'(0)?
50 (- For) <
[ is closed in the lower half plane, while if
F'(0) G'(0)?
&0 (- Fr) > ©
T is closed in the upper half plane. So if
() (, GO\ Retr) _
G'(0) F'(0)2] G'(0) ’
then
oo — )3 .
Yo X il — 0. . (49

—f—t—
-0 2 ZozG"(O)es

We obtain from Eq. (41) upon insertion of Eqs. (42), (43), (44), and (45)

. . F"(0)F'(0) = G'(0)G"(0)
A = +ir F{0): = G(0) .

Since a pure imaginary A’ cannot be made equal to the external real A’ , matching cannot

be achieved in this case.

If

F(0) [, G(0)?\Re(y) _, | '
@) (1 ‘_F'<o>2) G " (“0)

A e y
L. s e - Tt O\ G0 )

where we take the upper sign when F'(0)/G'(0) (1 — G'(O)Z/F’(O)z) > 0, otherwise the lower

(47)

sign is taken. We obtain from Eq. (41) upon insertion of Eqgs. (42), (43), (44), and (47)

TGO (e o FOF(©) - GOC0)
w0 (1~ 75| (& 7= =R =G0 ) @

N = i(2«5)-1/2J

where the sign of growth rate v is determined by Eq. (46). Obviously, the above analysis is
not valid when 1 — G’(0)%/ F'(0)? = 0. | .

15



From Eq. (46) we see that only when
G'(0)
(1-F) > ¢

does there exist a growing tearing mode. When

102
(-Fw) <o
the kinetic energy overpowers the magnetic energy in the internal resistive region, the flow
freezes the m‘aénetic field and suppress the tearing instability. This is not necessa,rily accom-
panied by an ideal mode. Numerically, Einaudi and Rubini” solved the initial value problem
for the following equilibrium Proﬁles: F =tanh y, G = Gotanh by. They found the same
svcaling as Eq. (48) when |G'(0)/F'(0)] ~ O(1). However, they also found that the tearing
mode could be stabilized at some value |G'(0)/F'(0)| < 1, instead of |G'(0)/F’(0)| = 1. This
can be explained By the influence of shear flow on the value of A’.

For the hyperbolic tangent profiles, F/(0)F’(0) — G"(0)G’(0) = 0, aﬁd the negafive value
of A’ can étabiliz_e the tearing mode. In the first example of Appendix A, we evaluate A’
for a p:ecemse linear approximation of tanh (cf. Egs. (A7) and (A2)). Assume that G’o, the
quantity that measures the magnitude of the flow, is less than unity. From Eqs (AS), (A7)

and Fig. 1, we conclude that when the flow shear length b is less than the magnetic shear

length, but :
: GI(0)2 _ ig
F'(0)? T P2

then at some value of b, A’ = 0. This qualitatively explains thé stabilization seen in the

<1,

numerical works of Ref. 7. _ _

The result of Eq. (48) is different from that of Ref. 3 in that the second derivatives of
the magnetic field and shear flow are included. This is far from trivial since it removes the
A’ > 0 instability criterion if F'(0)F"(0) —G'(0)G"(0) # 0. In Refs. 4 and 6, they arrived at
a similar conclusion by neglecting G”(0), but in their growth rate expression, they omitted

the very important factor 1 — G'(0)% F'(0)?. Thus their growth rate does not stabilize when

16



G'(0)Y/F'(0)? > 1. The authors of Ref. 7 noticed the discrepancy between their numerical
results and the growth rate expression of Ref. 4. Our result explains this discrepancy.
To end this section, let us check our assumptions. From Eqgs. (32) and (48) we obtain
G/(O)Z
~ 1— '
Je< Fo) |

The validity of our boundary layer approach requires € < 1; i.e.,

2l

ST < 1. | (49)

(a8)™? « 1, - (50)

which requires that the resistivity must be small. Equation (49) is similar to Eq. (28), it
cannot be satisfied when |A'| is very large except in the case 1 — '—E%)Lfr — 0. We consider

the case of very large |A’| in the next section.

B. Fast growth; ~1

aF! (O)e
In this limit, the anticipated time scale is comparable with the local Alfvén time. In the case
of no flow, this limit corresponds to the “nonconstant-y” tearing mode with a growth rate

that scales as S~1/3.2:10

Equation (12) implies in this limit that ¢ ~ W, assuming |G'(0)/ F'(0)] £ O(1).
- Neglecting the terms of order O(¢), Eqgs. (13) and (14) become

(aF/(0)€+ F'(O)C) (2 = Cacz (51)
v GOy ey L LY |
Defining a
| G’(O) _iW
A=Foe VPN T A
Eqs (51), (52) become '
9\ _ 0% A
3(- <A2 ac) = Cacz (53)
1 0%

AW =09 = Tpoesar

17



_ Integration of Eq. (53) yields

9 9
5}? p=-429 L co=x, (55)

¢ 3

where Cj is a constant and we have definéd a new dependent variable X.

Substituting Eq. (55) into Eq. (54), we obtain

1 [azx_(z CYVE s

0X] . . ¢
aF’(O)e3S 362 '<7+ A )—a—c',—]—AX-I'-Z(X—Co). (56)

In the case of very small flow shear, i.e., |G'(0)/F'(0)| < 1 we expand X and 7 as

-
)= Sa(C0) o

The leading order of Eq. (56) is

aF(0)eS\ '8¢ ¢ 9 )~ aF'(0)e"°
This equatlon has been solved in Ref. 10 in the case of A'<0.In Appendlx B we treat the
case of IA’ (aS)~ 1/3| > 1. In the case where A’ — oo, Eq. (58) has the solution

Co = 0, .Xo = e—C2/2’

Yo 1 _
aF(0) ~ aF(0)@5 - (59)

To first order Eq. (56) yields

9*X, 206X 0Xo |
St~ ) n= e (12 xo- ?2(“%)){“1

The appropriate solution for the above equation is

n =0
1 3 _—(2/2
X, = gCe . - (60)
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To the second order, Eq. (56) yields

PX, 20X . X X,
60‘*—25('*’—(1“2)}\2 = - (C+%> 6<°+( X+ 2 XO+CX1>

+

' 2
¢? |: (C-i' )Xl Xo+((+7—1> Xojl
R (0
1 3 '
= =2 |_tre e [2_ _"_7'_2_) 2 ﬁ]
= e +¢+ + .
[ GC ¢ (2 “Yo ¢ Yo
The appropriate solutions of the above equations are |
_ 1l 3.4 5.,
= o mt it

% = g (61)

Collecting the results of Egs. (59), (60), and.'(61) yields

7 = pp+istd) 1+(G,(0)) Yt

F0)" F'(0)
= (éF,(O))'z/s §-1/3 (1__ :;’_i_:gg_;_:__}_ . ) _ | .(62)

Thus we see that shear flow in this ordering tends to stabilize the A’ = co tearing mode.
For the case where A’ # oo, but l(aS)‘1/3A’| > 1, there is a correction of O (m)

to the case of no flow (see Appendix B). Including a small shear flow, the growth rate is

7 560 1 0)
N Y T (OEd ((as)‘1/3A’ F'(O)) ' (%3)

For sufficient large |A’|, we can say that the small shear flow is stabilizing.

When G'(0)/F'(0) ~ O(1), i.e. the convection terms are éomparable with the inertial
terms in the internal region, the quantity A in Eq. (56) is stiﬂ ~ O(1). The scaling should
remain unchanged except the case 1 — G'(0)%/ F'(0)? —>‘0. When 1 — G'(0)¥ F'(0)? — 0, the
scalings changed to the “constant-1)” tearing mode scaling as we discussed in the end of last

section. Thus the tearing mode with l(aS)‘l/sA'I > 1 is stabilized when 1—G'(0)%/ F'(0)? —
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0-, approaching zero from below. It is reasonable to ascribe this result to the idea that the
flow freezes the magnetic field and suppresses the tearing mode with I(aS’ )"Y3A! I > 1 when
1 — G'(0)% F'(0)? < 0. This.conjecture agrees with the numerical results in Ref. 7.

a7y | ~ 1 is always satisfied if |eA’| > 1 and 1 — G'(0)Y/ F'(0)? 4 0.
This is seen by examination of Eqgs. (59), (63), and (B15). The requirement of ¢ < 1 leads

Our assumption

to (S)~1/® > 1, which requires very small resistivity.

V. Transition to Ideal Instability

Since shear flow itself can drive Kelvin-Helmholtz instability, a potentially powerful insta-
bility, the results of the preceding sections could be overshadowed. However, the necessary
condition for this to happen is that the flow velocity not be bounded by the magnetic field
everywhere, in any reference frame.!! For all of the tearing modes treated here there exist
velocity profiles that are Kelvin-Helmholtz stable.

An interesting case is where.the Kelvin-Helmholtz instability is near marginality, since
~ here its growth rate can be comparable to that of tearing. Also, the tearing analysis in the
external ideal region corresponds to that of marginal ideal instability, so here is a natural
place to begin tracking the transition from tearing to Kelvin-Helmholtz instability. In Refs. 7
and 8 this transition was tracked numerically as the appropriate values of the flow parameters
were varied. The profiles considered’ were F' = tanhy and either G = G, séch(;z/ b) or
G = Gosech?(p/b). In this section we track this transition analytically by expanding about
the ideal instability at' marginality.

For tractability we approximate the hyperbolic profiles by piecewise linear profiles, as
discussed in example 2 of Appendix A, although we have changed frame so that G(0) = 0.
These profiles are linear in three regions: |p| < b, g > b, and < —b. Consider first the

ideal problem with b <1 and || < b. For convenience we define

H=+a+ F2y, : (64)
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hence, Eq. (6) can be rewritten as

PH [,  wa?
& (" Gy Y )
where w = —17.
Marginal solution are given by solving the equation
d’Hy
d_;ﬂ - azH N = 0 (66)

in the region |u| < b, and matching the solutions at y = +band p = £1 to the appropriately

decaying solution as p — *oo. Equation (66) has two solutions:
Hf = sinhap (67)

with the matching condition & — tanh & + @@ tanha = 0; and

HY = coshap . . (68)

with the matching condition 1 — dtanhc‘v —af = 0. In the above expressions, & and 3 are
defined as in Eq.‘(AIO); For the details of matching, we refer the reader to Appendix A.
Hereafter, we denote the quantities corresponding to neutral solution by N, .a,nd fix the
wavevector a. | , ‘

From Egs. (67), (68), (A3), and (Al0), we see that Hf corresponds to the external
tearing solution for the case where A’ = oo; similarly, HY; corresponds to A’ = 0. |

Now upon multiplying Eq. (65) by H Nia,nd Eq. (66) by H, and subtracting, we obtain

_d_[ ﬁ—HdHN]——- w?/a?
du ["Nap T dp | T T = wYal]?

Defining y = w'/w, yields with Eq. (64)

HHy. - (69)

1dH _

'ﬁz =y(p)+ - £ _ - (70)

12 —wa?’
Shortly, we will need to use Eq. (70).
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Consider now, instability that is near to the neutral mode; i.e., H = Hy and w = bw.

‘Correspondingly, we assume the flow parameters
Go = Gon + 4G, b= by + 6b.

In the discussion below we neglect terms of second order.
Integration of Eq. (69) yields
1dH 1 dHN)

2

- (2 —w¥o?)

-HHNd/J" (71)

bm bm wa
EW HN d,u /

iy

where the limit by, is the smaller of b and by. The upper and lower sign is used to avoid
the discontinuity at g = bm as seen in Eq. (75). Using Eq. (70) and the symmetry of the

problem, we obtain

Cael)-w(R)] @)

Hdy Hy dp

(1 dH 1 dHN>

Since the solution y(u) depends implicitly on w, and the flow parameters G and b, we have

’ 0 0
 (,8,Gos ) = (0B, Gowi ) ~ L s B
aUJ b=by ab b=by
Go=Gon Go=Gon
Oy (p) | S
+. el ) §Gy. (73)
_ Go=Gon
Using Eq. (6), y(u) satisfies the Riccatti equation

2 2y/

B _ g A

du u? 4 F2

(u? + F?)y is continuous, as seen by the integration of Eq. (74). y(x) must have a jump at
p=>a

B — (2= G,) |
v(07) = % <_“w2/a2) y (b). (75)

For |u| < b, we can write the solution of Eq. (74) as follows
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— ¥

‘ ) 62 (E _ Go)2 .
) (wa b’ GO; ,u) = y(wa b, GO; N) - y(w1 ba Go; b ) + Y (b+) ) (76) v

b2 — wZ/a2

Assuming p? — G # 0 for b < |p| < 1, a—ygi—'_"z w=o I8 a real quantity up to first order.
Gg-_———lg;N
Let
_ Oy (57)
Y= " ey (77)
Go=Gon
Using Eqgs. (74) and (76), we have
9y (bL,) -Giy
Bb l g = RO [oc = Brvuw (85|
. Go:GoN
dy(b;, 2Gon Gin | Oyn(p)
m — - b+ ON ) 78 .
9Ge | #3% W v (B) + ( b% ) Gon lu=bt (7).
Go=GonN .

where By is defined as in Eq. (A10), and yn (bﬁ) satisfies Eq. (A11). Note, y(u) is indepen-
dent of the parameter b for b < u < 1. |

~ Combining Egs. (72), (73), (77), (78), the right-hand side of Eq. (71) becomes

1dH 1 dHN) bm

~ ‘ 2 | Gon (bt .
i du .-H__N_Eﬂ_ i I~} ZHN (bN) [g&u - —Zga [a "'.,BNyN (bN)] 6b

Gon G2y 9 (8%)
(2ﬁyﬁ, (8%) - (1_ b?vN> e )5Go].(79)

For the right-hand side of Eq. (71), we evaluate the integral by considering the contour shown

Hiy (5

in Fig. 2a. Assuming the imaginary part of w is less than zero, we obtain

bm 2 2 2 'zd sz
[ e - - [
i (4% ~ w¥?) o dp (4 —wf) ] lum-ure

2

(80)
—Lir2 for Hy = HY = cosh ap.

{ liraw for Hy = HY =sinhay,
2

We insert Eq. (79) and (80) into Eq. (71). For the case Hy = Hy;, there is no valid solution,

since Eq. (80) diverges and Eq. (79) vanishes in the limit 6b = éw = §Go = 0. This means

the neutral mode corresponding to A’ = 0 is an isolated mode (at fixed «).
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For the case Hy = H§ the mode is not isolated and we obtain the following:

o e ) = (o (45~ (- ) 288 o

Liar — 2 (sinh® (aby)) g

Sw =

(81)
For the profile analogous to that studied in Ref. 10, b is set to 1, yy(p) = —« for I,u[.> 1,
and f =1 — G2. Then Eq. (81) becomes

4aGon sinh? o

6Go.

dw = 4= —
stam — 2gsinh” o

2
There exists instability when 6Go > 0, meanwhile 68 < 0. Now we evaluate Goy, the flow
parameter corresponding to the neutral mode for & = 0.45. This is done in order to compare '

with Ref. 10. Using Eq. (A15) gives

| a —tanh o
1 - Gly = p, = -2 20

whence, Gony =~ 1.03. In Ref. 10, they obéerved strong ideal instability at Go ~ 1.2. This

roughly agrees with our above analysis.

For the profile discussed in Ref. 7, Gy is fixed at unity. Thus Eq. (78) becomes

S = _2%%&0‘ (CI ~ Booy (B%)) sinh? (aby) 55.

tiamw — 2g sinh®(ab)

We see from Eq. (A12) and Fig. la that Iyﬁ? (b}t,)l < a, and |Bs| < 1. Thus the insta’bility
appears when §b < 0, meanwhile 63 < 0, as a result of Eq. (A13).

In both cases, When. the flow parameter is varied so that § is decreased from [, there
exists instability. Using Fig. 1b, we conclude that an ideal instability appears when A/
becomes negative through oo.

When a small resistivity is included in the above problem, there is no influence on the
neutral mode corresponding to A’ = 0; while for the neutral mode corresponding to A’ = oo, -
the grthh rate is increased from zero to (aF"(0))*/® S=/3. When the flow parameters are

perturbed further, the A’ value becomes negative and there exists a mixture of tearing and
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ideal instabilities. This connection of the tearing and ideal modes is similar to that discussed

in Ref. 10.

VI‘. Summary

In the present paper, we have systematically studied the tearing mode in the presence of
shear flow. It is found that the shear flow has a significant influence on both the “constant-”
and the “nonconstant-i)” tearing modes. In the external ideal region the magnetic field is
frozen into the flow, hence the shear flow can dramatically change the value of the matching

quantity A’. Some flow profiles can change the scaling from “constant-%” to “nonconstant "

tearing. In the internal resistive region, the tearing mode is very sensitive to the flow shear at

the ' magnetic null plane; i.e., G'(0). G'(0) changes the order of the convection terms. When
G'(0) is very small the inertial terms still dominate the convection terms. Thus the scal-
ing remains unchanged for both tearing modes, while G'(0) stabilizes the “nonconstant-1”

tearing mode with sufficiently large A’, while the “constant-1” tearing mode is destabilized.

In the case where G'(0) is comparable with the magnetic field shear, F’(0), the convection

terms overtake the inertial terms in the “constant-i)” tearing mode, thus its growth rate is
changed from S—3/5 to S~1/2. The scale length of the singular layer is changed from S —2/5 to
§-1/3, and the A’ > 0 instability criterion is removed provided G'(0)G"(0) — F' (0)F"(0) 75 0.
For tﬁe “nonconstant-i)” tearing mode, the inertial terms are comparable with convection
terms, the scaling remains‘unchanged.v When the flow shear is larger than the magnetic
~ field shear at the magnetic null plane, the flow freezes the magnetic field and stabilizes the
tearing mode. Additionally, we have shown the parameter regions for the validity of the
“constant-i)” and “nonconstant-1)” tearing modes. Finally, since the shear flow can drive
ideal instability, we discussed fhe transition from the tearing mode to the ideal mode in two
examples. It is found that this happens when thé value of the matchiﬁg quantity A’ goes to

negative through A’ = oo, which is similar to the m = 1 tearing mode in Ref. 10.
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Appendix A: A’ Value in the Presence of Equilibrium
Shear Flow

Here we evaluate the A’ value in the presence of the equilibrium shear flow. We assume the

equilibrium magnetic field has the form
F=|u|, l<l; F=1, p>1 F=-1, p<-L (A1)

This piecewise linear profile can be viewed as a rough approximation of the profile F' =
tanh p.

In the first example, we assume the equilibrium shear flow to be
, Go
G:Tu, || < b G=Gy, p>b G=—-Gy, p<-—b (A2)

This piecewise linear profile can be viewed as an approximation of the profile
G = Gy tanh u/b.

For convenience we define

w'
) >
w

and

1 —z,tanhzy — 212, » (A3)
z, — tanh z; + 21z tanh z¢

f (:81, m2) =
The reason for these definitions will become clear below. Consider first the case where b < 1.

In the region || < b, Egs. (8) and (9) become

%= pw

which have the solution

sinh ap +B cosh ap
3+ .
I

Here the A} and By are as yet undetermined constants for the solution in the region 0 <

Y= Az

i < b, and A_ and B_ are constants for the solution in the region —b < p < 0. We have
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allowed for the discontinuity at g = 0 that arises because of the resistive layer. Thus A’ is

% oA _ A
0__ B+ B_. )

given by

¥
A=

The constants A4 and B, are determined by the boundary conditions at p = Foo. To find

these constants we must trace the solution for || > 1 through the regions b < g < 1 and

—b < p < —1. In these regions Eqs. (8) and (9) are

Y = pw

2pw’ V
g —a’w =0. A4
w+#2—G8 a*w=0 (A4)

Equation (A4) has no simple solution, but it is transformed into a Riccatti equation by

y = w'/w. We obtain
| 2py
A R . A
Y=o -y - B (A5)

In the outer region, || > 1 the solutions are trivially given by

w ~ e~k

From this we obtain two conditions y(1) = —e and y(—1) = a. We can replace the two
unknown quantities in A'; i.e., Ax/B+ by y(&£b) = y+. These quantities are in turn deter-
minéd by solving the Riccatti equation (A5) subject to the boundary conditions y(1) = —«
and y (—~1) = a. Matching at pu = +b yields |

-g—:-ab + abtanh ab — %—f tanhab F 1

b+ g—:btanh ab

Y =

2

which implies

aﬁ _ +a?btanh ab Fa — &byi
By = +4yibtanhab—ab-+tanhab’

Using the symmetry of the Riccatti equation: y — —y; g — —u, and the symmetry in

the boundary conditions y (1) = Fa, we conclude that y; = —y_. Finally we obtain the
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following expression for A’:

A" =2af (&a ,6) ) (AG)

where the function f was defined above in Eq. (A3), and B = —L1y(b). The complete
determination of A’ has been reduced to finding 3, which as noted requires solving Eq. (A5).

Hdwever, the qualitative nature of the solution can be estimated. Assuming G2 < 1 and

| G%/b® < 1, it can be shown that —oo < y(b) < —a. This implies

1< < oo (AT)

Moreover, as G2/b%> — 1, 8 — 0.

Similarly in the case where b > 1 we obtain

A" = 2af(a,B),
where
and y satisfies the Riccatti equation
| dy 2 2p :
i - TV T Eowa” |
y(b) = —a (A)

Assuﬁing G? < 1, we obtain from the above —a < y(1) < 0. This implies -
0<p<l : (A9)

Note, as b*/GE — oo, B — 1.

In the second example, we assume the equilibrium shear flow to be

G=0, |p|<b G=-Go, |p[>b
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This profile is a linear approximation for either of the profiles

G

G

il

Go (sech% - 1) ,

2
Gy (sech% - 1) .

The linear profile has a discontinuity at |u| = b. Since (F? — G*) w'(p) is continuous, as seen

by integration of Eq. (9), w'(¢) must have a jump at p = b, and therefore so does y(u).

Following the procedure used in the first example, but accounting for this jump, we obtain

when b < 1
A,

where & = ab,

2af (2, 8),

—'%y (b‘) ‘

and y(u) satisfies the Riccatti equation for % < p <1

4y
du

y(1)
Assuming G% — 1 from above,

implies

1 G?
-= (1 - b—;) y (6*), (A10)
, %
= QZ - y% - my,
= —a. (A11)

we obtain from Eqs. (All), —a < y(b*) < 0, which

Using Eqgs. (A10) and (A1l), we obtain

G2
—2 Y

l(l
(24

9 _
o

B <0. (A12)
(b+) B %‘. (l - %é) ;l_z p=bt
Cb;?g) [%y (b+) - (az - y (b'*.')z)] > 0. (A13) .
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Asb— 0,3 — —oo. When b > 1,

A = 2af(e,p),

where

5 = (2 —GE) e~ — Gie~20b
T (2-GE)e 2 4 Gie2

<1

In all the above cases, A’ has the form
A' =2af (a,8),

where & = ab if b < 1, otherwise & = a. In the above expression, & and S measure the
influence of the shear flow. In the case of no flow, @ = @ and § = 1.
At criticality A’ = 0, which implies f (&, Bo) = 0. This defines a curve

fo(a) = L-Gtamh& | (A14)

(8

Similarly, at A’ = oo, f (& fe0) = 00 implies

Bes (&) o _G-tamhd |  (A15)

«x

Both £ (&) and B, (&) are monotonic decreasing functions of &, which are shown in Fig. la.
Also the variation of A’ with B at fixed & is shown in Fig. 1b. We see that the shear flow

can drastically change the value of A'.
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Appendix B: Nonconstant-y) Tearing Mode with

[(aF"(0)S~H3A > 1

The case of the no flow tearing mode with A’ ~ O(1) and A’ < 0 has been analyzed in

Refs. 1 and 10. Here we discuss the case where |A'| > 1.

Let
! 2 4 .
(aF'(0))° €S ~1, 5 = rg , , (B1)
| ro (aF"(0))*/° §-1/3
and rewrite Eq. (58) as®
aZ.XO 28X0 — ‘3)2 2 )
where
N R
Xo—C'(rYfiﬁ——(m) a—C+Co~

‘The solution of the above that matches to the external solution should be asymptotic to Co.

We obtain from Eq. (B2)
We redefine

e (B4)

We find it convenient to convert this equation to a homogeneous equation by differentiation'?

3y v . . .
Q_)S+la_).‘._l(,\3/2+t)_.___x Y (B5)

5w Toe 1

Assume X = K [, e**v(z)dz, where K is a constant. C is the path decided later. Substituting

it into Eq. (B5) we obtain

1\ dv 5 ez 1
_ 2 _ -\ 22 v _ 2 2t zt 2 _ -
/c'[ z(‘z 4> dz+<, 27 T 71 Z)v]e dz + ze (z 4)v(z)
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Let

which yields
1 —(54A3/2) /4 1 —(5-33/2) /4
v = (z - 5) (z + 5) . (B6)

Now we need to choose a path so that Eq. (B3) is satisfied and

t 1\ —(1+33/2)/4 1\ —(1-3%/2)/4
= ze® (z——) (z+—)
c. 2 2

ze® (z2 - ?41:) v(z) = 0.

c

When 332 > 1, the path can be chosen from z = —1/2 to z = 0. By a substitution

__1-y
T2 +y)

we get the solution obtained in Ref. 8. For the case A%2 < 1, z = —1/2 becomes a singular

point. In order to extend our solution to include 33/2 < 1, we modify our path as in Fig. %.

Thus
o 1\ 1| (585024
X = K/ e*t (z——) (z-i——) dz
c 2 2 :
X u 1 —(s+58/%)/a . 1 —(5—:\3/2)/4d
- kfeemg) (rg)
' _ s 0 1\ —(6+32/2)/4 1\ —(6-3/%)/4
K (] 4 e=ir(s=3/2)/2) / zt( __) _ ( '..> . (BT
+ ( +e ) —1/2+6€ z 5 z+2 (B7)

Now consider the case where |1 - :\3/2' & 1. Define (1 - :\3/2) /4 = o, and rewrite Eq. (B7)

as
R P » 1 -3/2+0 1 —1-0 p
e ) )
0 ' 1 =3/240" 1 ~1l=-c ‘
) - = dz.
+ 270K /_1/2+6e (z 2) (z + 2) z (B8‘)
When ¢t — oo,
\ 0 -5/2 i Ko :
X ~ —-z'K/ e* <l> (2mio)dz = 27210 —. (B9)
-1/2+6 2 t :
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Comparison with (B3) yields
5‘3/200 '
YT

K=

(B10)

We choose the radius 6§ of Cs so that 1 > § & o. Let z + 1/2 = 6€' in Cs, then

1 —3/240 1\ ~1-¢
2zt = _
/06 © (Z 2) (z + 2) dz

= 2me~it 4 O(o).

. 0\ ~3/2t0 ; ooy
zt [ § i9) "3 §° —wed 0
/(;66 ( i+ de ) e (26)

(B11)

For the second term of Eq. (8), we estimate the order of magnitude as below

0
< 2re /
—-1/246

0 2 1 -3/2+0 1 —l-ad ori
Lumes(=3) 7 (e3)  asemi)

~ olné ~ O(o).

Substituting Eqs. (B11) and (B12) into Eq. (B8), we obtain

. e, , . '
X = —Gg (4 +009)).
For definiteness, we choose
:\3/200
o5, = 1.

~ Substituting Eq. (B13) into Eq. (B4), we obtain

, A3/2
A=mvm>l,

or

~ 1 27 aF'(0))*/® g-1/3
7'”(1 3(aF’(O)S)'1/3A'>( FO)T S

The above analysis requires ‘(aF '(0)S)72 A I > 1.
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Table I: Summary of the affect of equilibrium shear flow on the tearing mode

“constant-1)” tearing mode

“nonconstant-1” tearing mode

(a) The growth rate and scale
length of the resistive region
are respectively
A~ a2/5Al4/55—3/5,
e~ (aS) A « 1

(a) The growth rate and scale
length of the resistive region
are respectively
y ~ a23813
e~ (aS)y VP k1

!
g—,ig—) <1 | (b) The “constant-i” (b) In this limit, we have
(0) approximation is valid if Al > 1, -
A1« 1 1-G'(0)YF'(0)2 A0
(c) Small flow shear G'(0) (c) Small flow shear G'(0)
destabilizes the “constant-%” stabilizes the “nonconstant-1)”
tearing mode tearing mode with sufficiently
large A'
(a) The growth rate and scale (d) There exists a transition to
: length of the resistive region ideal instability when A’
are respectixlrely becomes negative through
v ~ (a|A']) /2 g-1/2, A’ = co (which is made
e~ (aS) Pkl possible by the flow on the
ternal region) -
lG—:(O) <1 | () EG(0)G"(0) = F'(0)F"(0) #0, external region)
F(0) A A’ > 0 instability criterion is
removed
(c) The “constant-1”
approximation is valid if
/(1= GOy F/(0)) Ave| < 1
G'(0) - -
m-)— >1 stabilized stabilized
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Figure Captions
1. Influence of equilibrium shear flow on the matching quantity A'.

(a) Sketch of functions fy(@) and fBo(@). fo and Bo, are the parameters at which

A (Bo, &) =0, and A (B, @) = 00, respectively.

(b) Sketch of variation of A’ with parameter 3.
2. Integral contours

(a) The integral contour used in Sec. V.

(b) The integral contour used in Appendix B.
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