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Screening action of the s-d hybridized electréns in PdH, and TiH, is an-
alyzed in the Fermi-Thomas approximation. The resulting interaction between
hydrogen exhibits an attractive part arising from interference between the H-

induced s-electrons and the valence electrons. The screening potentials due to

* many-body effects between the electron-screened protons are examined through

- solution to the hypernetted-chain equations. The nuclear reaction rates between

hydrogen isotopes are calculated at various temperatures by taking account of
statistical-mechanical enhancement arising from the increment in the Coulombic
chemical potential of a reacting pair before and after nuclear reaction. Remark-

able isotopic and temperature-dependent effects are predicted.

PACS numbers: 71.45.-d, 24.90.+d



§1. Introduction

Possibility of nuclear fusion reactions between hydrogen isotopes in metal
hydrides (MH,) through electrolysis*®) or through absorption/desorption
processes®) has created a challenge to condensed matter physics, calling for a
theoretical account of how two hydrogen nuclei can come to fuse by overcoming
the Coulombic repulsive forces in such a metallic environment. Experiments‘*'s)
performed under analogous settings, on the other hand, have not shown signif-
iéant observation of nuclear reactions. One therefore anticipates the rates of
nuclear reactions &epen_ding quite delicately on the states of reacting pairs at
short distances. |

The quantities that essentially control the penetration probability and its
enh'a.ncemvent for nuclear reactic;ns between hydrogen isotvope‘s are the screening

potentials,®7)

H(r) = v(r) +Ing(n)I/B, ey

which result from many-body effects in statistical mechanics. Here, 8 is the

inverse temperature in energy units, v(r) is the potential of binary interaction,
and g(r) is the associated two-particle (radial) distribution function. The last
term of eq. (1) is mfnug; the potential of mean fofce;s) the screening potential
(1) is represented diagrammatically in Fig. 1. It has been shown®®) that the
value of H (r) at » = 0 is equal to the increment in the interaction (or excess)
part of the chemical potential for the rea.ctihg pair before and after the nuclear
reaction. It then follows®"®) that the reaction rate is enhanced by a factor,
exp[BH(0)]. (See also §4 below.)

In this paper we present a set of careful analyses on the screening potentials

in Pd and Ti, two of the typical metals used in “cold fusion” experiments. We
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thus carry out Fermi-Thomas analyses on screening action of fhe s-d hybfidized
electrons coupled with the f-sum rules, calculate effective masses of such screen-
ing electrons, and thereby derive charge-form factors on ionic nuclei in PdH,
and TiH,. The resulting hydrogen interaction, containing an attractive part
due to strongly coupled valence electrons, depends sensitivel& on z and Fg, the
energy levels of those s-electron states which are induced by hydrogen around
the octahedral sites (Pd) or the tetrahedral sites (Ti) of the fcc crystals. The
effective interactions between hydrogen in those metals differ substantially, in

that Pd has a large number (ten per atom) of outer-shell d-electrons, while Ti

can have a large value (two if all the tetrahedral sites are occupied) of 2, the

rélative atomic concentration of hydrogen to metal. The screening actions of the
electrons significantly influence the nulear reaction rates at room temperatures.

Ma.ny;body effects betweén the screened protons é,re then taken into ac-
count through a solution to the hypernetted-chain .(HNC) equations,”®) for the
repulsive part and through gxamination of possible quasi-bound states and elas-
tic scatterings for the attractive part of the binary interaction. Resulting rates
of nuclear reactions are calculated for combinations of hydrogen isotopes at var-
ious temperatures. Remarkable density- and temperature-dependent.eﬁ'ects as

well as isotopic effects are predicted.
§2. Screening Effects of Electrons

We begin with an f-sum rule expression for the frequency-dependent di-

electric function,'®)
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where m is the bare mass of an electron, n; and E; = hw; refer to the number
density and excitation energy of the electrons in the j-level.

Since w € w; at room t‘emperatu'res, the dielectric constant of our concern
is

€(0) = 1 + 4xe’h? Z n; /mE;. (3)

J

This formula indicates that the contribution of (4s)%(4p)® electrons in the Kr-
core of Pd with binding energies, 86.4 eV and 51.1 eV (ref. 11), respectively,
produces a core-dielectric constant €, = 1.25 for the number density of palla-

dium, npg = 6.25 x 1022cm =3

, corresponding to a lattice constant, 4 A. For
Ti, €. = 1.36, from (35)2(3p)6 electroﬁs.in the Ar-core at 60.3 eV and 34.6 eV
(ref. 11) if ny; = 4.7 x 1022cm ™2 is assumed. |

Photoemission studies!?!3) of the Pd/H system have shown a band of
hydrogen-induced energy states centered at about 1 eV below the bottom of
Pd-derived 4d bands of width 4.4 V. Analogous studies'®) of the Ti/H éystem
have shown a broad band of H-induced s-states centered at about 3.3 eV below
the bottom of Ti-derived 3d bands of‘ width 1.7 eV. The energy levels Fg of
the s-state electrons below the Fermi surface quantify trapping characteristics

of where the hydrogen sits (octahedral sites in Pd and tetrahedral sites in Ti).

We analyze the screening effect of s-d hybridized electrons by separating

_the electrons in metallic d-band into {; (per atom) screening electrons and

the remaining valence electrons. The latter electrons are those occupying the
states near the Fermi surface; observations!?~1%) of the density of states and
the specific heats have indicated their effective masses in the vicinity of the
bare mass. Analogously we separate H-induced s-electrons into (s (per atom)

screening electrons and 1 — (s valence electrons. The total number density of
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the s-d hybridized screening electrons is therefore ((; + z{s)nar, where nps is
the number density of metal atoms; (4 ~ 8 for Pd, and {3 ~ 1 for Ti.

The values of Es play a central part in the analysis on the screening of
H-induced s-electrons hybridized with metal-derived d-electrons. We derive a
wave number-dependent charge-form factor of the protons with the screening

electrons in the Fermi-Thomas approximation®) as
d(k) =1— s + Csk? /(R + K2). (4)

The va,iue of (s can be determined through a consideration of a partial system
of hydrogen and its (s screening and (1 — (s) valence electrons. Since 1 — (s
corresponds to an effective strength of electric charge that remains statically to
hydrogen after being screened by (s elect.rons, it must be equal to the inverse

of the dielectric constant (3) arising from the (s electrons, i.e., |
(1—¢s) ™' =1+ drelsnpye’h? /mEL. - (5)

The remaining charge 1— (s will be screened naturally by the valence electrons.

In the Fermi-Thomas approximation, the screening constant of the s-d

 hybridized electrons with an effective mass m is calculated as'®)

k= [12re?ms /(3x%) /3R 2((¢s + ng)nM]'l/e.

The screening constant of (s Bohr electrons, on the other hand, is given by

(smse? /R, Eqﬁating these two, we find

=12+ el)mad 9. (8)

In Tables I and II, the values of (s and k~! are listed for relevant combinations

of z and Es in PdH, and TiH,.
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The potential of binary interaction between the screened protons is thus

expressed in Fourier components as

(k) = dnled(k)]* /K ece,(k), (7)

7.18) of the valence elec-

where €, (k) represents the dieletric screening function
trons; in the ensuing calculations we assume the effective valence Z, per a metal

atom to be three. The »s parameter of the valence electrons is given by
rs = (3/4nZonpr) Pmyet /B s (8)

with m, representing the effective mass of valence electrons. Assuming m, ~ m,
we find rs = 2 ~ 3. Screening effects of those valence electrons will thus create
atiractive interactions between hydrogen at short distances when the local-field

effects”)

produced by strong electron-electron correlations are appropriately
taken into account. In the absence of screening, i.e., in the limits ¢(k) — 1
and €,(k) — 1, eq. (7) reduces naturally to the bare Coulombic contribution,
4we? [e.k?, in the dielectric medium with ..

Figure 2 shows examples of &(r), the inverse Fourier transform of &(k), in
Pd and Ti. An attractive part is created at outside the screening s-electrons as a

conseqﬁence of interference with the valence electrons in eq. (7), The electronic

contribution U, to the screening potential in $(r) is evaluated as
U= linh[ez/ecr - &(7)). ) (9)
r—

The values of U.,, listed in Tables I and II, take on magnitude sufficiently large
as to influence the nuclear reation rates at room temperatures. Listed also in

those tables are: 7y, the radius at which &(r) first vanishes; ,,, the radius at

6



the first minimum, where (r,) = —&,,; 8, = d>®(r,)/dr2 ; 75, the radius at
which ®(r) next vanishes; rj, the radius at the first maximum (hump), where
®(rp) = ®3. Both ry and »,, are greater for Ti than for Pd, leaving sizable
many-body effects iﬁ Ti.

At room temperatures, the Gamow penetration factors between hydrogen
isotopes, a and b (= p, d, t), taking account of the electronic screening, are

calculated approximately as
Pus = exp{~(2/B) [ ar{2Ms8(r)]"). (10)
0

An isotopic effect enters eq. (10) through the reduced mass, M,;. Nuclear:

rection rates per a pair of a and b are then obtained as
A9 = 100 8,5(keVb) Pasy /[ Mas(amu)T(K)]H/? (s71). (11)

Here, we assume the larger of n, and n; to be 6 x10%2cm ™%, 535 = 106 (xef. 17),
Sar = 1.Tx10% (ref. 18), Spa = 2.5x10~* (zef. 19), and Spp = £x 1022 (ref. 19).
The Weak dependence of eq. (11) on T' comes ﬁ:qm statistics of relative velocities
between reacting particles; in the ensuiﬁg calculations of eq. (11) we assume
T= 300K. The values of /\gy, plotted in Figs. 3 and 4, are larger for Pd than
for Ti due to the differences in U. and r1. The latter stem mainly from the

differences in (4.
§3; Many-Body Effects in Hydrogen

The nuclear reaction rates (11) have not taken into account the statistical-
mechanical effects arising from multiple interaction generated by ®(r). To cal-

culate SH(0) in the diagrammatic summation of Fig. 1 where v(r) = &(r), we
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split the latter into the repulsive and attractive parts, &(r) = Sr(r) + @4(r),

so that

&n(r) = (¢} ecr) [exp(~7/Ds) + (r/pr) exp(~+/Dz)],  (12)

B4(r) = —(e*/ecr)(r/pa)* exp(—7/Da). | (13)

The parameters in egs. (12) and (13), listed in Tables Il and IV, are determined
so that the values of U., 7, &, and the first hump of $(r) at » ~ 2A are
accurately reproduced.?®) In Fig. 5, we show examples of comparison between
~ the original and fitted values for $().

Correséonding to the splitting of the binary potential into the repulsive
and attractive parts, we factor the two-particle distribution function in eq. (1)
as -

g(r) = gr(r)ga(r), (14)
so that

gr(4)(r) = exp{—B[@r(4)(r) — Hr(a)(7)]}. (15)

In egs. (14) and (15), the screening potential has been split analogously into
two parts: H(r) = Hg(r) + Ha(r). The repulsive contribution Hg(r) is
calculated by summing the diagrams as in Fig. 1 where all the bonds are
fr(r) = exp[—B®r(r)] — 1; H4(r) then collects all the remaining diagrams,
in which at least one of the bonds are f4(r) = exp[—B®4(r)] — 1.
Quantum-mechanical treatment is particularly essential for the calculation
of H,(r); an attractive potential of magnitude, eq. (13), if treated classically,
would create anomalously sharp and unphysical peaks in g(r). We thus take

up an enhancement factor exp[3H 4(0)] arising from the attractive part by a
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consideration of possible formation of quasi-bound pairs at the potential troughs
characterized by the parameters, 7, ®m, and &, (Tables I and II). Near
the bottom of the potential trough, a hydrogen atom may assume a state of
harmonic oscillators with energies, A(v-+1/2)(2,,/Ma3)*/?, wherev = 0,1,2.. ..

For the state of zero-point oscillation (v = 0), we approximately calculate

exp[BH4(0)] ~ 1+exp{—(Mab‘il)lvlz'ffn/ﬂﬁ[@m—(h/2)(‘§;/Mab)1/2]}- (16)

For all the combinations (25 cases) of z and E5 considered iﬁ PdH_ and TiH;,
we found exp[BH 4(0)] = 1 at T = 300K little enhancement comes from quasi-
bound pairs due to the magnitude of rp,.

We next consider the effects of non-resonant elastic scatterings by the at-
tractive potential well & 4(r). In the limit of low energies,??) the effective scat-
tering length is given approximately by 2D 4. When the temperatutre is finite, .
the latter is superseded by A,p = (27:‘?3,2,3/Mab)1/2, the théxmal de Broglie
wavelength, if Agp < éD 4. Upper bounds of the effective “packing fractions”,
" Nmas = A3, znps, then do not exceed 0.1 in all the cases examined here. In light

of the eqﬁations of states for equivalent hard-sphere systems,>?) we derive -

BH(0)gs = n(8 —9n+37)/(1—n)%, (17)

so that we conclude that enhancemehi of reaction rates due to elastic scattering
by the attractive part of the binary potential is negligible.

Finally we investigate the statistical-mechanical enhancement factor
exp[BHg(0)] arising from elastic scatterings by the repulsive part ®z(r) of the
bina.ry‘ intefaction. For this, we first note that the thermal contact distances

do, determined from 23&x(dy) = 1, take on values significantly larger than the
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shortest distances between tetrahedral sites (~ 2.24) for Ti, where hydrogen
sits; typically, do = 2.8A (in TiH,) for Es=>5 eV at T = 300K. Ample strength
~ of the potential therefore remains at those inter-site distances to justify con-
sideration of many-body effects for hydrogen in TiH,. On the other hand,
dy = 2.5A in PdH for Eg = 5 eV at T = 300K; this is shorter than the distance
between octahedral sites (~ 2.84) for Pd. There may not remain much strength
in the I;otentia.l for many-body interaction between hydrogen in PdH,.

We approach the increment in the interaction chemical potential through a

solution?® to the HNC equations, known to be accurate in describing statistical

properties of long-ranged Coulmbic systems. In so doing, we examine a pos-
sible quantum-mechanical correction to ®g(r) in eq. (12), arising from S-wave
scattering between a and b. Since the last term in eq. (12) determines dg in
the cases of our concern, a factor of [1+1.225(A a5/d0)?)/[1 + (Aas/do)?] should
be multiplied to the Dg for the quantum correctlon This correction, however,
turns out to be negl1g1b1e in magnitude for all the cases treated here.

The HNC values, BHgr{0)mgnc, of the screening potential overestimate the
true values by its neglect of the bridge-diagram contributions®); the latter exert
repulsive forces at short diétances. For Coulombic systems, the true values may
be obtained?*) by BH&(0) = 0.866[3Hr(0)m~nc +1] in a strong-coupling regime
where SH R(O) > 8. In this regime, the resulting values of 3Hg(0) can then be
parametrized accurately in a form,

a0 = M52 [ (2 ¢ (L0 o ()] i

where a = (3/4rznzs)!/3. In the bare-Coulomb limit (Ds — oo and pg — o),
eq. (18) reproduces the ion-sphere contribution to the chemical-pofential incre-

ment derived originally by Salpeter and Van Horn®) for dense steller matter.
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When Dyg is finite, the exponential screening factor in the first term of eq. (18)
suppresses the hydrogen interaction and thereby enhancement of nuclear reac-
tions. The newly created second term additionally accounts for the many-body

effects in the nuclear reactions.
§4. Rates of Cold Nuclear Fusion

The rate of muclear reaction is proportional to overlapping of wave func-
tions for the two reacting particles at zero separation, which is g(0) evaluated
quantum-mechanically. Equation (14), based on classical considerations as iﬁ
Fig. 1, needs therefore to be modified appropriately.

4

To do so, we rewrite eq. (14) or Fig. 1 as

g(r) = exp[—p&(r)] exp[BH(r)]. (19)

" It is clear that the quantum-mechanical counterpart to the first factor on the
right-hand side of eq. (19) at » = 0 is given by the penetration probability (10).

Since the contributions from the second factor have been treated quantum-

mechanically in the preceding section, we may thus calculate the nuclear reac-

tion rates according to

Aas = A9 exp[BH(0)]. (20)

where H(0) is evaluated as a summation between egs. (16) and (18). Computed
results for the reaction rates in PdH, and TiH, at temperaiures, T(K)=200,
300, and 600, are shown in Figs. 3 and 4 for various combinations of z and
Es. Enhancement by the many-body effect decreases steeply with T" as eq. (18)

llustrates.
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Figurés 3 and 4 ai)pear to imply that the reaction rates suggested by
experiments?®®) cannot be accounted for by the calculations described above.
In addition we remark that the pieriodic lattice potentials, which are ignored in
the present theory, may act to equilibrate the hydrogen atoms in the vicinity of
their individual sites at low temperatures, and may thus hinder their approach
to a mutual distance near ry, necessary for nuclear reactions to take place.

The steep variation of eq. (18) on a implies, on the other hand, that if

a mechanism unaccounted for in the foregoing treatments is operative in the
‘metal hydrides so that an effective short-range separation between a pair of
hydrogen atoms assumes a value smaller than a, then the reaction rates would
be enhanced over the valués cited in Figs. 3 and 4. If, for example, we assume
a = 0.5A in eq. (18), the resulting Agg in eq. (20) for PdH with Es = 5 eV
would take on ~ 10~2! (s~1); similarly with an assumption of a.= 0.64, we
find Agg ~ 1020 (s71) for TiH, with Es =5 V. Those are close to the values
suggested in the experiments.?3)

A number of physical mechanisms ex_ist‘ in cfea.ting such a local variation
of hydrogen concentration in actual metal hydrides. The periodic potential
structure of metallic atoms has a strength sufficient to produce a local density
modulation of such a magnitude. Lattice defects, which usually exist, may
further enhance the probability of two hydrogen atoms approaching close té one
another. In transient hdn—equilibrium situations,?®) some of the equilibration
constraints may be relaxed so that increased number of hydrogen atoms collide
with each other frequently near the low-Ej sites and/or in the lattice defects.
For a quantitative estimate on these effects, we must proceed with microscopic
analyses on how lattice fields (a.nd.their defects) actually influence the many-

body effects between hydrogen.?®)
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A remarkable prediction in the present theory is isotopic effect in nuclear
reactions (Fig. 6). Since the Coulombic chemical potential (and its increment,
eq. (18)) is independent of the reduced mass, the isotopic effects enter the
reaction rates through S,; and P, in eq. (11). Although the binary potential
&(r) has been lowered considerably by the electronic screening, the quantity
in the exponent of eq. (10) still takes on a large negative value, resulting in
remarkable isotopic effects which should favor reactions involving light species
(i.e., protons). In Fig. 6, the rates of ~p-d reactions substantially exceed those
of d-d, and the rare weak interaction of p-p may even catch up with d-t. Those
isotopic effects, if detectable experimentally, should be more pronounced in
Ti than in Pd, since TiH, can have a larger 'z and a larger spatial extent of

hydrogen interaction.
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Figure Captions

- Fig. 1.

- Fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.

Fig. 6.

Diagrammatic representation of the screening potential. Dashed lines are
the f-bonds, f(») = exp[—Bv(r)] — 1, and solid circles are the particle
coordinates to be integrated.

Binary interaction potentials between electron-screened protons >in metal’
hydrides at Es = 5 eV.

The d-d reaction rates in PdH,. AEl?i) refer .to the rates without the
statistical-mechanical enhancement; s are in units of eV; connecting lines
are to guide the eye. |

The d-d reaction rates in TiH,. Otherwise, the same as in Fig. 3.
Interaction potentials, ®(r), in PdH aﬁd TiH, at Es = 4 eV. The solid
curves are calculated from eq. (7); the dashed curves, from eq:s. (12) and
(13). .

Isotopic effects of nuclear reaction rates iﬁ PdH (open circles) and TiH,

(solid circles) at Es = 5 V.
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Table I. Screening and interaction parameters in PdH,.

-1

"

Es T (s kK U, rn Tm P e, rE . Dy
(eV) (A) (V) (A) (A) (V) (VA A) A) (V)
4 3/4 0775 0.25 582 0.59 0.81 038 7.9 1.64 1.90 0.017

1 0.81 0.27 56.8 0.57 0.79 048 9.9 1.66 1.91 0.017

5 3/4 0.61 0.21 61.8 0.72 0.94 0.16 3.5 1.57 1.87 0.020

1 0.71 0.24 59.2 0.62 0.84 0.31 6.4 1.63 1.90 0.017

S. Ichimaru et al.
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Table II. Screening and interaction parameters in TiH,.

"

Fg T (s w1 U, T Tm  Om o, Tq Th D,
(eV) (A) (V) (A) A) (V) (VA2 (&) (A) (eV)
4 1 0.7 0.42 342 0.73 1.00 0.46 6.7 1.95 2.20 0.015
3/2 0.84 043 35.2 0.70 0.97 0.52 7.5 1.95 2.20 0.016

2 0.88 0.43 36.4 0.68 0.94 0.55 7.9 1.92 2.19 0.017

5 1 0.61 0.34 36.3 0.77 1.03 0.33 5.1 1.86 2.14 0.020
3/2  0.74 0.39 36.5 0.71 0.98 0.44 6.6 1.90 2.17 0.017

2 0.81 0.39 37.4 0.69 0.95 0.49 7.3 1.90 2.17 0.018

S. Ichimaru et al.

18



Table III. Fitting parameters in eqs. (12) and (13) for PdH,.

Es =z Ds p pr Dr q psa Dy
(eV) Qc (A) (4) (A) (&)
4 3/4 020 83 1.04 019 2.5 0.71 0.23
1 020 7.6 1.05 0.20 2.5 0.66 0.23
5 3/4 019 109 1.07 0.16 4.8 0.64 0.16
1 0.19 2.7 0.74 0.23

S. Ichimaru et al.

8.9 1.04 0.18
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- Table IV. Fitting parameters in eqs. (12) and (13) for TiH,.

Es = Ds p pr Dr q pa Dy
(eV) (A) A) A A) A4
4 1 0.31 11.4 0.96 0.16 3.1 0.59 0.24
3/2 0.30 104 0.98 0.17 3.0 0.59 0.25

2 0.29 9.7 1.00 0.18 2.9 0.59 0.25

5 1 0.29 11.6 1.02 0.16 3.5 0.60 0.22
3/2 0.29 104 1.01 0.17 3.1 0.60 0.24

2 0.28 10.0 1.00 0.17 0.61 0.25

S. Ichimaru et al.
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