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Abstract

The theory of ion temperature gradient driven turbulence in tokamaks is extended to the
flat density regime. The values of ion and electron thermal flux, x; and x., momentum
diffusivity, x,, and particle flux, I',, are also calculated. These formulas extend previous
calculations, which were restricted to the regime L, < +/I,Lr (Lee and Diamond, Phys.
Fluids 29, 3291 and Mattor and Diamond, Phys. Fluids 31, 1180). This allows an assess-
ment of the role of ion temperature gradient turbulence in H-modes, where the density

gradient is often observed to be flattened in the plasma core.
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I. Introduction

The theory of ion temperature gradient driven turbulence (ITGDT) which develops from
ion temperature gradient driven modes! (“p; modes”) has been reasonably successful in
explaining several aspects of anomalous transport in tokamaks.?®* However, the standard
theory is not applicable to the important case of H-mode discharges, where the core den-
sity profile is (approximately) flat, so that L, — co and 7; — c0.*® Indeed, the stan-
dard ITGDT model is valid only when w < w,, which occurs in the regime L2 < L L.
In this regime only, density fluctuation evolution is slow compared to density evolution,
(-aa—t(]e[ $/T) < cVeq;/BLn), so that the total density flow is incompressible with radial
convection balancing parallel compression (V - (n%) = 9./L, + V# = 0). In contrast,
the “flat density” ITGD mode is relevant when w > wy, so that L2 > L,L,. Here, density
fluctuation evolution is faster than radial convection, so that 2(|e| ¢T) + V9 = 0. The
flat density “n; mode” is more properly termed a VT}-driven mode, with the linear stability
threshold given by (Ls/L;)erit =~ 1.9 (1 + %—:) -(-22":—1), in contrast to n; crit = 1, as in the
“standard case.”® The Vno — 0 threshold of the toroidal ITGDT model has been studied
as well.”:® However, comparitively little theoretical work on saturated ITGD turbulence in
the flat density regime exists at this point.

In this paper, we discuss the theory of strong ITGD turbulence in the flat density
regime, where Vng — 0. The renormalized ion fluid equdtions are solved to obtain Dy,
the diffusivity necessary for saturation of the mode k. In the process, the “diffusivity as
eigenvalue” calculation, developed previously,® is extended to the case vhere the turbulent
fluctuations have a real frequency w, comparable to the decorrelation rate Awg. The radial
correlation lengths of turbulent temperature and density fluctuations are calculated as well.
The ion thermal diffusivity x;, momentum diffusivity x,,, electron thermal diffusivity, x.,
and particle flux I' are determined, the last two assuming dissipative trapped electron
regime coupling. It is found that x; = x,, and that Q; = xinVT; > Q., with different
scalings. These transport coefficients, along with the linear instability threshold values

0

of VT;, and the corresponding coefficients for the weak turbulence regime!® can then be

utilized to asses the role of ITGDT in the flat density H-mode discharges.

The remainder of this paper is organized as follows. In Section II, the linear theory
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“of flat density ITGDT is reviewed briefly. Section III discusses the theory of saturated
ITGDT when Vn — 0. In Section IV, the fluctuation levels and trasport fluxes produced

by ITGDT are calculated. Section V consists of a discussion and summary.

II. Basic Model and Linear Theory

The renormalized nonlinear equations below, Eqs. (1)-(3), are adapted directly from

Ref. 1. They represent the ion continuity, ion parallel velocity, and ion pressure evolution

equations:
On; -
_6t— +V. (n,-v_]_,-) + V“ (n,-v“,-) =0
e (O N = _ens . 20
mini | —= + (O +9) - Yoy | = —eni V@ = VP + py Vi,
or; = ., | .
¥ + ('UE + 'U”i) VP +TPV)y; =0,

where @ is the electrostatic potential, and I' is the ratio of specific heats. Electrons are
assumed adiabatic, 7, = no%%; and the quasineutrality condition, n; = Ne, 1 assumed.
The perpendicular dynamics are due to Ex B , lon diamagnetic, and polarization drifts.
Temporal and spatial scales are normalized to units of Q' (inverse gyrofrequency) and
ps = ¢/, where ¢, = \/Tm is the sound speed. A sheared slab model of the magnetic
field is used, with B = B, (2+(z/Ls)9), so that the parallel wave number is given by
ky = (z —z,) ky/L, in the neighborhood of a rational surface, z,. The dominant nonlin-
earities are E x B convection of parallel velocity, and pressure fluctuations, and are given
in renormalized form on the right hand side of Eqgs. (2)-(3), respectively. The vorticity
nonlinearity in the continuity equation is small (of order k: / <k§)) for the low ky regime
considered here, which can be seen from a slight variation in the usual renormalization
procedure in which the back reaction of ¢ to Ex B vorticity diffusion is included.® A

derivation of these equations may be found in Refs. 2 and 9, and the renormalization

procedure is detailed in Refs. 9 and 11.

14n;
-

S

(1=V2)é+vpVyé+up ( ) ViV,é+ Vi =0, (1)
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%W + V8 + Vip — uVie) = %D?a—iﬁuz — by DEoye, (2)
%ﬁ +vp (1 = m) Vyd + gvuflu = %Dizggﬁz — K, DBy (3)
where ¢ = e®/T., = p;/7 P, and
d(InT}) d(lnng) 2182 Te
" qony PT T4 Mg TTT
The turbulent diffusion coefficients are given by
3 foe |
D% = Z o T A (4)
8¢ /31:' ’
DP=Y )

The linear beat frequency, wy,, has been written explicitly in Egs. (4) and (5) because in
the flat density regime the real part of the frequency is comparable to the growth rate, as
shown below,

In the flat density limit there are two changes in Eqgs. (1)-(3). The first is that that
vp(1l + n;) is replaced by —d(InT;)/dz, which does nothing to change the dynamics of
the mode. Second is the vanishing of the drift term, vDVy$, in Eq. (1). This term
represents E x B convection along the density gradient, and is important in the lowest order
dynamics of the (finite L, ) n;-mode since it allows V%) to be nonzero while maintaining
incompressible mass flow (i. e., V- (n¥)) ~ 0). Without the density gradient, 87 /8¢ assumes
this role, mass incompressibility no longer holds, and the theory must be reformulated.

Linearizing Eqgs. (1)-(3), Fourier transforming in y, z, and ¢, with k| = kyz/L,, taking

the drift term in Eq. (1) to zero, and solving for ¢, we obtain the following mode equation:

d? .
d$2k + Q(x7w)¢k =Y, (6)




where the “potential” function is given by

w k2 o2

Q(z,w) = "kg - T + L 5252 ) (7)
T R (T
where w? = —k, /7Ly (in dimensionless units).

Neglecting the term that varies as I' (which gives corrections of order \/Lr/L,), then
Eq. (6) is the usual Weber’s equation, with solution given by the Hermite functions, and

yields the following dispersion relation:

2
rL
(1+k§)<5—3~> +(k2+z21+1 Lj)( >+z

where [ is a positive integer. For the regime & S 7Lr/L, (€ 1) and | < L,/TL, the

TLT

=0, (8)

roots are, approximately,

Wt (i;;) (20 +1)? (T,-fsT)%‘”f’ (9)

of which one root is unstable.l* It is important to notice that here Re(w) ~ Im (w),

whereas for the finite density gradient case, a purely growing portion of the spectrum exists
at low k,, where w o~ zL m—w*e Physically this difference is due to the introduction of
mass compression into the basic dynamics, an effect also present in the turbulent regime,
which influences construction of the nonlinear theory.

The width of the mode may be found by taking the z2 moment of the Hermite func-

tions, and is, in the low [ and low k,-regime,

1/2 '
(Aa;) \/_ (2l+1)3/2 (TZ.ZEST> . (10)

Despite the imaginary component of Az, the mode remains a bound state since Im(Az) <
Re(Axz).

We have numerically compared the above fluid results with the more complete kinetic
theory by using a shooting code with a potential derived from the ion gyrokinetic equation,

similar to that used in Ref. 9. This analysis is tedious, and not presented here, but the
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basic result is that fluid and kinetic theory agree at least as well in the flat density limit
as in the usual finite L, regime. The neglect of ion resonances requires that

k ; 1/4
A% (91 1)1/ (-LLE> <1,

W Tlig

or LI%’- > 2l + 1, which may be interpreted to mean that the temperature gradient must
be well above threshold for a fluid theory to apply.

In Ref. 7 it was demonstrated that compression of the ion diamagnetic drift (where
V. ip [13 X (Z» . V)IA)] kP~ kyp/R, in undimensional units, and R is the major radius),
which is neglected here, can have a stabilizing effect on the mode. However, this study also
neglected the parallel sound wave dynamics, which is clearly the destab111zat1on mechamsm

in the slab limit. A comparison of these terms in the present ordering shows:

Vidp (&)’5’ _
V9 R

Thus, perpendicular compression is important in the weak shear limit where ¢/§ > 1

[y [T~

(i.e., the toroidal limit), whereas for strong shear (the slab limit) it is replaced by parallel
compression.

A mixing length estimate of the turbulent diffusion rate produces:

2
D &y (Ac)t =

(11)

The absence of L, in this estimate is a result of the dual role of the shear, which both
destabilizes the mode (which enhances D**), and localizes it (which decreases D*%),
with net cancellation. However, shear dependence will occur if the ion thermal trans-
port is strong enough to hold the temperature gfadient to the threshold value, given by
(Ls/LT)erit > 1.9(1 +1/7)(21 + 1). The threshold effect also limits the radial eigenmode
number to low values, since higher ! have a higher threshold and thus might be expected

not to be excited.



ITI. Nonlinear Theory

In this section, we seek to improve upon the mixing leﬁgth estimate given above by solving
for the renormalized diffusions as an eigenvalue of the system of differential equations.?
This method has the capability of taking into account all of the terms in the renormalized
equations. By comparison, the usual mixing length scheme; which employs such heuristic
concepts as “asymptotic balance” to estimate scalings with various key terms, is inherently
limited. The basic scheme here is to demand Im(w) = 0, at saturation, and solve an
eigenvalue problem for D (henceforth D will denote DZ%). Thus the calculation yields the
level of turbulent energy diffusion necessary to shut off the growth. Here, this technique
determines whether the renormalized nonlinear dynamics produce any modification over

the mixing length estimate, as can occur in other cases.!?

This approach was applied the case of finite density gradient n;-turbulence. In that
work, it was possible to drop all of the time derivative at saturation, since in the low
ky regime considered it represents growth only. However, in the flat density case Re(w)
assumes the important role of balancing parallel compression in the continuity equation.
This compression (which vanishes as ky) will persist in the saturated state, and cannot
be balanced by any of the nonlinearities in Eq. (1) (which vanish as kz or faster, which is
also a property of the unrenormalized E x B vorticity nonlinearity), in the k, — 0 limit.
Thus, for large wavelength (the limit of interest in this one-point, transport theory), it is

essential to retain Re(w) to balance compression in the continuity equation.

Thus, the analytical method proceeds as follows: restricting consideration to the low
ky portion of the spectrum (which is responsible both for energy feed and for transport), we
solve Egs. (1)-(3) for ¢ retaining both w, and the renormalized diffusivities. The resulting
differential equation is then manipulated into “Schrédinger” form, and a WKB approxima-
tion produces a complex dispersion relation for D. The other “eigenvalue” Re (w), remains

at its linear value, since any nonlinear frequency modifications are contained in Im (D).

Proceeding along these lines, we Fourier transform Eqgs. (1)-(3) in ¢, y, 2, and = and

solve for ¢, neglecting terms which vary as kg and higher. This results in the following
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second order differential equation:

1 d 21/) L_§w+(wf+w)k§¢_o (12)
w + 1Dk2 Ok, k2wl +w+iDE2 "
where, |
¢_wz+W+w%$
T w+iDEZ T

Applying the WKB phase quantization approximation to this equation produces:

1 [ kp . 2
sl [T DR e eyt JTeien, )
ky Jokp (Wl +w +iDk2)? “
where,
2 W
ki = Tao

The choice of k7 as the turning point recovers all the characteristics of the linear mode in
the D — 0 limit, which demonstrates that this branch is the nonlinear extension of the
linear theory. Expanding the denominator of the integrand to order k% and integrating,
yields the following dispersion relation:

D 1 w ky, [wT +w 2
(wT Z({1-= = — 2y (2 T 7
i(wy +w)+ 1 (1 2w3’+w> (20 +1) I ( - ) : (14)

In the saturated state, the growth is shut off, so only the real part of w remains, which
is given by Eq. (9). Solution of Eq. (14) then yields:

D:&ufﬂ(l—i ! ) (15)

1—-3s7/2 z

[

21-s7

where s; = (14 1/2) %11, and ’%‘f— & 1. The basic scaling, D ~ wl, agrees with the
mixing length estimate, Eq. (11). However, there is a discrepancy of (2! + 1)2, missing in
Eq. (15). Possibly, this is a consequence of Eq. (15) being calculated in k, space (which
leads to Dejg ~ Awg,, / (Ak)?), while the linear estimate uses a mode width calculated in
z-space (so that Dyr, o Awg, (Az)?). While it is true that Az ~ 1/Ak, for the | = 0
mode, one can easily show that for the higher ! Hermite functions this must be generalized

to Ak ~ (I+1/2)/Az. This could account for the discrepancy between Eq. (11) and
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Eq. (15). Since it is the mode width in z-space that determines the step length in the
random walk, and hence the radial diffusion, we expect the mixing length estimate of
Eq. (11) to yield the correct ! scaling. However, in light of the ambiguity, we shall consider
only the diffusivity of the [ = 0 mode:

Dy = 27T,

Use of only the [ = 0 mode is reasonable in light of threshold effects, which allow only the
lowest radial eigenmodes to be unstable for realistic values of Ly/Ly. This may be used
for rough comparison with the transport of the finite L, case as described in Ref. 2 (which
also considers only the / = 0 case).

Finally, it is useful to estimate the rms fluctuation levels at saturation. This is done

using the approximation

i IG5
D)

sz,, Aw;;

Estimating Aw; ~ D/Az?, and using Eq. (16) for D, we find

1
TLp\* p,
(¢)rms ~ D/Amky ~ < Ls ) :/"—f/;

in undimensional units. This also represents the level of density fluctuation, via adiabatic
electron response. The saturated level of pressure fluctuation is estimated by balancing
pressure diffusion with E x B mixing of the equilibrium pressure gradient (the second and

fourth terms in Eq. 3), yielding:

1
T (e
TLp Ly

Finally, since 2 < P, then p is dominated by the contribution from temperature fluctua-

tions, so that:

1
a3 L; \* ps
T/~ (TLJ Ir



IV. Transport

Having obtained the saturation level of turbulent diffusivity, we next apply this knowledge
to finding the saturation levels of ion and electron thermal conductivities, x; and y., the
momentum diffusivity, x,, and the particle convection velocity, V.. The basic technique
and formulas are given in Refs. 2 and 9, and since these formulas do not change in the
L, — oo limit, here we apply them without rederivation. |

The ion thermal flux is calculated from the correlation between ion pressure fluctua-

tions and radial velocity fluctuations, which yields:
I;
%=-7_(Dg),
with resulting ion thermal conductivity:

(k p3)rms
Xi= (DE> >~ 2—?{}‘ET——'0§CS. (16)

Evaluation of (k,p,).. . would require solving a two-point spectrum equation, which is
beyond the scope of the present study. For the purposes of an estimate, one may use
(ky ps)rms ~ (.4, which was calculated in Ref. 2 for the finite L, limit. This is done in the
summary provided in Table I.

Formal evaluation of the momentum diffusivity, x,, was done in Ref. 1, which exam-
ined the effects of a shear flow on the ITGD mode in the limit L, < /I7L,. The result was
that the momentum diffusivity is equal to the ion thermal diffusivity (because of the sonic
nature of the mode), and that both are enhanced by a small amount from the additional ‘
shear flow free energy source. Although here we have eschewed the detailed consideration

of the shear flow, the analysis would proceed in an analogous fashion, yielding:

kyps)ims 2
Xe = Xi 2%1);%- (*7)

We neglect the shear flow enhancement factor, which is generally small.
The electron thermal conductivity () is derived from the trapped electron response

to the turbulent potential fluctuations in the dissipative trapped electron regime.!® (w.. <

)

Veff o). Here, X, is estimated as:

edr,
Te

= 15\/563/2ﬁ Z k'
Xe - Ve 4 Y

kl
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z 2
Using the approximation )z, k2 %f’-‘ ~ (ny,DE,), we find:

&7 (rLo\} (K2p2)
e = 30 L2l pic?, 17
X Ve < L, ) (TLT‘.)zp ( )

where € is the inverse aspect ratio and v, is the electron collisionality.

For particle flux in the central region, the necessary phase shift between g, and 7,

(here adiabatic to lowest order) is also prbvided by dissipative trapped electron dynamics.!?

)

in the high-collisionality limit of the banana regime where veg ¢ > w,Wp.. Redimensional-

In the flat density limit, the flux is:

6¢7c',
T,

L. 3mped/? 9
F,- = ('U,-'n) o~ -é' yeLT Z kly

kl

izing, and applying the same approximation that led to Eq. (17), we find that the particle

convection velocity is given by:

3/2 3 L2 2
V, =T,/no ~ 215 (TLT> (yeh e (18)
e La LTe (TLT,)

This represents a purely outward particle flux, although for different collisionality regimes

the flux can be inward.1*

11



V.

Discussion

This paper has developed the theory of ion temperature gradient driven turbulence in the

presence of a flat density profile. The principal results of thes paper are:

1.

For Vn — 0, ITGDT has real frequency w, = % (-TTII’—,T-) : w?, turbulent decorrelation
rate Awg & wg, and radial correlation length (Az)y ~ (LS/TLT)1/2.

The ion thermal diffusivity x; in this regime is given by x; = 2 (kyps)rms pies/TLT.
This value is equal to the the momentum diffusivity, x.,.

For dissipative trapped electron response coupling (w D,e < Wr < Vesf.e, the electron -

heat diffusivity and particle flux are given by, respectively,

Xe =~ 30

/2 (rLT> (k2p2) , ,

C7
ve \ Ly ) (rLp) '™

1

v, P (TLTY (Eyps) picl.
Ve L, LT¢= (’I‘LT;)2 o

Saturated flat density ITGDT supports fluctuations with

1 1
. Ly \% ps. TLr\? p,
A7) ~ () > (o (2

TLp

These results are summarized in Table 1, along with their finite density gradient counter-

parts. Roughly speaking, either regime can be derived from the other by interchanging

(14 mn;) /7 with \/L, /T L.

The results of this study can be used, along with transport experimets and analyses,

to assess the role of ITGDT in flat density discharges. However, it should be remembered

that the results of this paper are valid only for strong turbulence, where Aw 2 w,. Thus,

a complete theory of flat density ITGDT requires a model for weak turbulence, where

Aw < wr, which occurs near the instability threshold. Work on the weak turbulence

theory of flat density ITGDT is in progress and will be discussed in a future publication.
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Physical Quantity L2 < LrL, L2 > LpL,
Threshold Iang 221901+ %)
wr O(L2/1%) < 4 (=)} uTva
A () o, (=) e
Xi 1.3 (42)" p2¢, /L, 0.8p5¢s/7 LT
Xe 1057 (22’ el 1857 (42)" oy
Xo 1.3 (11)° e, /L, 0.8p3¢a/TL
T, Mg (14 §n.) (Bm)’ el ()" i
7/ ()" g2 (%)
o/ () ()" %

Table I: Summary of finite and flat density gradient results (slab limit only).
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