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Screening action of the hybridized 4d-1s electrons in PdDx is ana-
lyzed in the Fermi-Ihomas approximation; charge-form factors for Pd and D
are derived. The resulting D-D interaction is a sensitive function of
both density x of the deuterons and energy levels E;s of D-induced s-
electron states; it exhibits an attractive part arising from interference
between the ls-screening electrons ahd strongly coupled (rs &~ 2) valence
electrons. Nuclear reaction rates of hydrogen isotopes in Pd are calcu-
lated at various combinations of x and Eis by including D-D many-body
effects through the ion-sphere potential; effects of fluctuations in x

and/or E,s are discussed.

PACS numbers: 24,90.+d, 71.45.Jp



Possibility of nuclear fusion between isotopic hydrogen nuclei in a
laboratory condensed matter through electrolysis!’? or through the absorp-
tion/desorption processes® has prompted us to investigate how two posi-
tively charged nuclei such as deuterons come to fuse by overcoming the
Coulombic repulsive forces in such an environment. In an earlier report,*
we have shown that in a heavily deuterated palladium metal ( Pde ) a
pair of deuterons exhibit attractive interaction at short distances (0.14
- 0.7A) due to strong Coulomb correlations in the ion-sphere model and
due to screening by the hybridized 4d-1s electrons; the rates of enhanced
thermqnuclear reactions at room temperatures have thus been elucidated.

In this Letter, we carry out Fermi-Thomas analyses of the screening
action of the 4d-l1s electrons coupled with the f-sum rules, calculate the
effective masses of such screening electrons, and thereby derive the
charge-form factors of ionic nuclei for Pd and D. The resulting D-D
interaction, containing an attractive part due to strongly coupled valence
electrons,® depends sensitively on the deuteron density and fhe energy
levels of those s-electron states which are induced by deuterons around
the octahedral sites of the fcc Pd crystals. We take account of D-D many-
body effects via the ion-sphere potential®'® of strongly couéled plasmas,
to'predict the rates of nuclear reactions between hydrogen isotopes in a |
metal such as PdDyx.

We begin with an f-sum rule expression” for the frequency-dependent

dielectric function,

e(w) =1 - ¥

. (1)

where m is the bare mass of an electron, n; and E; = hw ; refer to the

number density and excitation energy of the electrons in the j-level.

- 92 —



Since ® << w; at a room temperature T, the dielectric constant of our

concern is
e (0) = 1 + 4nzjnj/£«:j2, (2)

where and in what follows we use the atomic units (m = €2 = % = 1) unless
specified otherwise, It has been shown® by this formula that the contri-
bution of (4s)%(4p)® electrons in the Kr-core of Pd produces a core die-
lectric constant ¢ ¢ = 1.25 for the number density of palladium, npa =
6.25 x10%% cm 2, corresponding to a lattice constant, 4A.

Photoemission studies® ® of the Pd/H system have shown a band of
hydrogen-induced energy states centered at 1 eV below the bottom of Pd-
derived 4d bands of width 4.4 eV. Ve assume the same state-density struc-
tures applicable to a PdDx system with x = 1. It has been pointed out?*
that a band width AE4a = 4 eV would lead to a band mass mp ~ 7 for the
ten (per atom) Pd-derived d-electrons. Analogous calculation with AE.1,
x1-2eV would give an estimate m, @ 3 - 6 for the D-induced
s-electrons.

Let us first analyze the screening effect of ten 4d-electrons of Pd
by separating them into % 44 screening electrons and Z ( = 10 - » 44 )
valence electrons, The latter electrons are those occupying the states
near the Fermi surface; observations® 1° of the density of states and the
specific heats have indicated their effective masses in the vicinity of
the bare mass., We assume Z =2 - 3 for Pd.

In a partial system consisting of Pd ions (i.e., Pd nuclei plus the
Kr-core electrons) and their screening and valence electrons, the static
dielectric constant for the 4d-screening electrons is then calculated from

Eq. (2) as



€49 = 1 + 86%4a/[EsaleV)]? . | (3)

Assuming %44 =8 and Es4q = 4 eV, we find € 44 = 44.

Since %44 >> 1, we adopt the Fermi-Thomas continuum model! for an
approximate representation of the screening electrons around a Pd ion.
The screening constant for the electrons with density nsa = ¥ salpg

and effective mass msq is then given by
Kea = 1,7)(108 v4d1/s m4d1/z (cm'l) . (4)

For internal consistency of such a screening picture, we require that the
ksa be greater than the inverse radius of a (hypothetical) 5s electron
around a Pd ion, which in turn is equal to or greater than Z. We thus
find that the lower bound of msa in this model is around 8 at Z = 1 and
increases with Z. We take this finding together with the band-mass esti-
mates cited above as an evidence suggesting that the 4d-screening elec-
trons are highly localized objects with effective masses, msa > 7.

At a distance sufficiently greater than 1/Z, the 4d-screening elec-
trons’ should produce a (homogeneous) screening effect represented by ¢ 44.
Retaining this requirement, we derive the charge-form factor of a Pd ion
in the wave number (k) space arising from the spatial distribution of 4d-

screening electrons as
frak) = [Zo + wo k®/ (K + kea? ) 1/ Zpa " (5)

where Zo = Z + % 44/ € 44 is the effective valence of Pd, and Zpq = Zo +

Yo = 10.



We next consider the screening effect of a ls—liké electron around a
deuteron, by separating it into % 1s Screening electrons and 1 - % 1s
valence electrons, Again in a partial system of deuterons and their
screening and valence electrons, the static dielectric constant via (2) is
€1s =1+ 86 xv1s/[E1s(eV)]? . The value of % ;s can in fact be
determined from the aforementioned requirement related to the homogeneous
scréening with € 15, that is, € 1<~ ! must be equal to that part of the
deuteron charge, 1 - 4, which remains unscreened. At x = 0.75 and Ei1s =
5.5 eV, we thus find » 1s = 0.53.

Since the D-induced ls-screening electrons with an effective mass mis
are hybridized with the Pd-derived 4d-screening electrons, their specific
volume is (nsa + X% 1sNpa)” ' = naa”'. Hence, the Fermi-Thomas screening

constant for the ls-screening electrons is
Kis = 1.7x10% % 4475 mys172 (em™t) . (8)

The screening constant of » 15 1s-Bohr electrons, on the other hand, is
given by ke = mis ¥ 1s. Equating this with (6), we find mis = 5.6 when
vaa =8 and v is = 0.53. This effective-mass value falls in the range
of our band-mass estimates mentioned above,

Physical origin of such an increase in the effective masses of the D-
induced ls-screening elecprons may be traced to a many-body effect arising
from hybridization with the Pd-derived 4d-screening electrons, which acts
to restrict their specific volume to nsqe”'. The charge-form factor of a

deuteron with the ls-screening electrons thus takes the form,

fok) = 1 - wis + v 1sk? / (k% + k1% ) . (7)



The origin of the D-induced s-states can likewise be understood in
terms of the Wigner-Seitz model®' !! of localized electrons in the charge
density nsa. In such a model the binding energy of an electron with a
mass mis is given by the electrostatic self-energy minus the energies of

the zero-point oscillations, i.e.,
Ews = 9.21awv.4q*® - 8.04 (v4d/mls)1’/2 (eV) . (8)

In a spherical model, « = 0.9, a theoretical upper bound; bcc/fecc/hep
Coulombic Madelung energies suggest o = 0.896, which we adopt here. For
» 44 = 8 and mis = 4, we obtain Ews = 5.1 eV; Ews increases in Eq. (8) as
mis does. These features agree with the predictions from Eq. (8) (see
Table 1 below).

The density of valence electrons with mass my in PdDx is now given by

n = [2

e 0 (9)

I n = 7 n

*x(l -y pd e pa

ls)

with the rs parameter calculated as
rs = (3/4zne)* mv = 2.95 7Y% my . (10)

For Ze =3 and my 2 m , rs=~ 2.0, Since rs > 1 , additional screening
effects of those valence electrons, represented by the wave number-depend-
ent dielectric function® ¢ .(k), will create attractive interactions be-
tween deuterons at short distances when the local-field effects produced
by strong electron-electron correlations are appropriately taken into
account,®’ 1?2

Finally, in terms of the palladium and deuteron charge-form factors
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and the dielectric screening function of the valence electrons, the poten-
tials of binary interaction between ions of o and B species (a, 8 =

Pd, D) are expressed in the Fourier components as

Oy () = [4nZ,2

o/ KPe ey ()] £,(6) £,30) (11)

with Zp = 1. In the short-range liﬁit (i.e., k & o), fd(k) and ¢, (k)
approach unity, so that (D“F(k) reduce to the bare Coulombic interactions
(in a dielectric medium with ¢. ). This limiting behavior is particu-
larly essential to ®pp(k) for a correct treatment of nuclear reactions.

Let us therefore look into the detailed features of the D-D interac-
tion ®pp(k) as presented in Eq. (11)., For Ei;s = 5.5 eV and x = 0,75,
the bare (i.e., unscreened) part of D-D interaction is reduced by a factor
of (1 - %i1s)2 =0.22; the remaining part is confined within a distance
of kis™? = 0.18 A by the screening effect of localized ls-electrons with
mis = 5.6 when Zo = 3 . Both of those fields are further subjected to
the ¢ v(k) screening of the valence electrons.

We here point out that ®pp(k) is quite a sensitive function of both
density x of the deuterons and energy levels E;s of the D-induced s-elec-
tron states, as the screening parameters in Table . I illustrate. Figure 1
shows the D-D interaction potential ®pp(r), the inverse Fourier transform
of ®pp(k), at various values of Eis; this energy quantifies a trapping
characteristic of individual octahedral sites. We observe an attractive
part created at outside the ls-screening electrons; this attractive inter-
action is a consequence of interference between the ls-screening electrons
and valence electrons in Eq. (11).

To estimate how those potentials in Fig. 1 affect the rates of nuclear

reactions, we take account of D-D many-body effects in the ion-sphere
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potential,®' ® that is, the increment in the Coulombic chemical potential
of a reacting pair before and after a nuclear reaction. In so doing, we
regard the second (screened) part of Eq. (7) as representing a hard-core
interaction with a diameter d determined by the point of contact at a rel-
ative kinetic energy, (2% 1s2/d)exp(-ki1sd/2) = T/2, and then evoke the
equivalence®’ ' between a hard-sphere system and a dense Coulombic systenm
[cf. Eq. (5) in Ref. 13], to derive an effective charge associated with

the screened part.'* We thus find at T = 300 K
AZ15 = 1 - Ys
+ 0,075 (n/x)¥5(1 + 27)/(1 - 7)2 (12)

where 17 = 0,033x[d(A)]® refers to the packing fraction of the equivalent
hard-sphere system,!®
The nuclear reaction rate App per a pair of deuterons is calculated,

as we did in Ref. 4, for the effective pair potential
®(r) = ®oolr) - 1.17¢(AZ1:)57%/ ¢ ca (r<0.7a) (13)

where a = (3/4nne)*”® . Table I lists the predicted values of the
nuclear reaction rates in the cases of Table I with €. = 1.25 for
various pairs of hydrogen isotopes.

The values of App in Table I, representing an enhancement some 30 to
50 orders of magnitude over those in a D, molecule, may be regarded as
reasonably close to those suggested in the experiments?'® if x ~ 1 can be
assumed. Thus we have been able to show in a theory without a free'(ad—_

Jjustable) parameter that an enhancement of such a magnitude can take place
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by attractive interactions between deuterons and by the ion-sphere poten-
tial created in a Pd metal.

We remark that the calculated rates of reactions are extremely sensi-
tive to the evaluation of the potential (13). The largest reaction rates,
obtained in (D) and (F), are due mainly to the contributions of the ion-
sphere potential, and as such may contain a certain degree of uncertainty.
In Table I, we nevertheless observe a steep increase in the reaction
rates as functions of x, which we take as a real and significant physical
effect. This observation would then lead us to predict an important role
played by fluctuations of x and/or Eis in determination of the reaction
rates: if a state with x > 1 (i.e., more-than-one deuterons in an octahe-
dral site) is realized by local fluctuations, net nuclear-reaction rates
will be greatly enhanced. We speculate that such fluctuations may be
realized more easily in non-equilibrium experimental situations.?'?3

Since the binary potentials of ionic interaction in PdDx are given by
Eq. (11), we can proceed further with a microscopic investigation of ef-
fective D-D interactions by taking account of lattice fields produced by
Pd ions, together with many-body cérrelations and quasi-bound states de-
veloped in strongly coupled deuterons. Theoretical analyses in these

directions are in progress.
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FIGURE CAPTION

FIG. 1 D-D interaction potential for the cases in Table I : dashed

curve, (B); solid curve, (D); and dotted curve, (F).

_12'_.



T *b1g




TABLE I. 1s-screening parameters.
-1,¢°

Eig (eV) X Vis kig™ (A) Mg
(A) 4.5 0.75 0.69 0.23 3.4
(B) 4.5 1 0.77 0.26 2.7
(C) 5 0.75 0.61 0.21 4.2
(D) 5 1 0.71 0.24 3.1
(E) 5.5 0.75 0.53 0.18 5.6
(F) 5.5 1 0.65 0.22 3.6
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TABLE II. Nuclear reaction rates in s '.
ADD ApD ADT App
() 1e-39 6e-36 Cde-42 3e-48
(B) 1e-20 3e-20 2e-21 ‘2e-34
{C) 7e-43 1e-38 9e-46 1e-50
(D) 4e-20 7Te-20 6e-21 4e-34
(E) 1e-43 . 2e-39 1e-46 3e-51
(F) 4e-36 4e-33 2e-~-38 9e-46




