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Motivated by the need for a novel, ultra-high energy particle accelerator,
the nonlinear interaction between a short optical pulse and plasma is studied.
Assuming a steady state in which the ponderomotive force on the electrons is
balanced by the electrostatic force, it is found that, for appropriate parameters,
the inherent diffraction of a Gaussian beam can be balanced or overcome by
plasma lensing brought about by the nonlinear effects. The critical quantity
is determined to be the total power of the beam so that for values greater
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Chapter I
Introduction

1.1 A Brief History of Particle Accelerators

The quest for the fundamental building blocks of matter has led to the
birth of an entirely new field in physics, the accelerator physics. As the ob-
jects of interest grew smaller, the wavelength of the probe (whether a photon
or a particle) also had to be reduced to achieve the required resolution. The
wavelength associated with the motion of a particle decreases with increasing
| energy, and the first devices accelerating subatomic particles were developed in
the early 1920’s. These particle beams were used to carry out experiments ad-

vancing and testing the rapidly developing fields of atomic and nuclear physics.

The first devices were electrostatic accelerators in which a beam of sub-
atomic particles gained energy by passing through a potential difference. The
convention of measuring particle energies in units of electron volts (eV) is a relic
from this time period: if an electron passes through a 500 Volt potential dif-
ference, its energy gain is 500 eV. The upper limit for electrostatic accelerators
is set by sparking and material breakdown due to the high voltage. To achieve
higher energies than a few MeV one would need to either let the particles tra-
verse several such potential differences in succession, or discharge several high
voltage capacitors in sequence across the accelerator tube. The latter scheme
carries the name of Cockecroft-Walton generator! whereas the first scheme led

to the development of the first circular particle accelerator.
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In the early 1930’s E.O. Lawrence of the University of California intro-
duced the concept of forcing the particles into circular trajectories.?%%5 Then,
rather than having a long and expensive linear structure with several high volt-
age. fields, o.nly one alternating voltage field is neéessary. Based on this idea
the first cyclotron was constructed. A cyclotron consists of two D-shaped metal
boxes (“dees”) connected to the two outputs of a radio-frequency power supply
and imbedded in a static magnetic field. The particles are injected from the
center of the system. They accelerate in the gap between the dees due to the
alternating potential difference, and inside the dees their trajectory is curved by

the magnétic field. Thus the particles spiral outward as their energy increases.

The maximum energy gained in a cyclotron is limited by the relativistic
effects. For relativistic energies the rate of increase in velocity is slower than
the rate of change in energy and so the particles will run out of phase with
the alternating voitage field. For heavy particles this does not happen until
their energy is up to 20 MeV, but for the light weight electrons the dephasing
becomes a problem already at:500 eV.

The first circular accelerator suitable for accelerating electrons was con-
ceived and built by D.W. Kerst® 7 in 1940 at the University of Illinois. The
device was called a betatron and it operates analogously to a transformer: the
windings of an electromagnet act as the primary coil and the electron beam to
be accelerated as the secondary coil. The guiding of the electrons on their curvi-
linear trajectories is provided by the slowly increasing magnetic field. Betatrons

provide electrons with energies up to 70 MeV.

To produce even more energetic particle beams, E.M. McMillan® from




the University of California and V.I. Veksler® from the U.S.S.R. came up‘inde-
pendently with two ideas for circumventing the relativistic limit on the cyclotron
energies. The first idea was to synchronize the rf-voltage in a cyclotron, reduc-
ing its frequency according to the rotation frequency of the ion beam. This
device was called synchrocyclotron, and the first such device was operated at
the University of California in 1946 producing 350-MeV proton beams. The sec-
ond idea was to increase the guiding magnetic field as a function of time. This
resulted in the electron synchrotron. Since electrons with energies of 2 MeV or
higher travel at velocities within 2% of the speed of light, they will circulate

at practically constant velocity and so no frequency modulation is necessary.

" These devices have produced electron beams of up to 1 GeV. Combining the

ideas of the electron synchrotron with the frequency modulation one obtains a
device suitable for ion acceleration, the proton synchrotron. Such devices have

produced proton beams of several hundred GeV.

Parallel with the evolution of the circular accelerators the linear acceler-
ators were being developed. R. Widerde!® of Germany built the first drift-tube
linear accelerator in 1928. In a big glass cylinder he placed up to 30 metal
cylinders lined up, with alternate cylinders connected electrically to a radio-
frequency power supply. These cylinders are the drift tubes. Within a tube the

particles do not feel any force, but between the tubes there is a potential dif-

 ference and the particles will be accelerated. Because of the increasing velocity

of the particles, the drift tubes down the line have to be longer than the first
ones in order to phaée the particles properly. Due to their inertia heavy ions

are thus best suited for this kind of an accelerator.

The major limiting factor for a drift-tube linear accelerator is its phys-



ical size (and thus, its cost). However, the higher the frequency of the power
supply, the shorter drift tubes one can have. Thus-a significant improvement
was obtained by replacing the glass cylinder by a large copper one. Coupling
the copper cylinder to a high frequency power supply, it is excited and will act
as a resonant cavity reversing the microwave field 200 million times in second.
Linear accelerators of this type have been able to produce protons of up to

70 MeV.

In 1934 W.W. Hansen of Stanford, needing energetic electrons for pro-
ducing x-rays, came up with the idea'! that has persisted as the basic principle
* for linear accelerators for over fifty years now. Hansen suggested using a high

voltage field oscillating at such a high frequéncy that there would not be time

for material breakdown. Coupling a small copper cavity to a high frequency

power supply would make the cavity oscillate so that the ends would be op-
positely charged and alternate from positive to negative. One would line up
these cavities and bore holes at the center of the end caps to let the electrons

to fly through. The timing problem was solved by the utilization of a traveling
| radio wave, as Hansen described: “Now, if a particle be introduced onto the
leftmost wave crest with a velocity equal to that of the wave, the particle will
feel a steady force to the right and Wﬂl, therefore, be accelerated. We have
assumed that the wave velocity is controllable; let it be adjusted in such a man-
ner that as the particle is accelerated, the wave is also, and at just the same
rate, so that the particle will always ride the crest of the wave and will always
feel an accelerating force. The particle will then gain energy at the expense
of the field, and, if all the above can be made to happen as assumed and the

numbers are favorable, we may have a practical means of accelerating charged




particles”.!? In 1947 the first Stanford traveling wave electron linear accelerator

was in operation producing electrons of up to 6 MeV.

Today the original scheme of Hansen, although the principle is un-
altered, is viewed somewhat differently. Currently this accelerator scheme is
described as having an electromagnetic wave propagating in a waveguide. Due
to the presence of conducting walls the field will have a longitudinal component
necessary for particle acceleration. The waveguide is periodically loaded with
irises, metal rings extending from the walls, to adjust the phase velocity of the
wave which, in the absence of the irises, would be greater than the speed of
light. A linear accelerator based on inductive accelerating field similar to the

cyclotron is called an induction linac.

In Fig. 1.1 12 the energies available from different machines are shown
in the form of a Livingstone diagram. Currently the best performers are seen
to be circular accelerators combined with storage rings. Two features emerge
clearly from the diagram. First, the envelope shows an exponential trend.
During the past forty years or so, the energy of the particles produced by the
particle accelerators has increased by a facfor of 107. Experimental high eﬁergy
physics, despite this phenomenal progress, still lags behind theoretical high
energy physics. High energy physicists are now dreaming of experiments with
projectiles of energies beyond 10 TeV. But the second feature emerging from
the diagram is that the energy increase for a speciﬁvc accelerator scheme is very
slow. The exponential envelope has been maintained mostly because of the
appearance of new technologies. Thus it appears that, in order to keep up with
the exponential trend, the future accelerators should be based on some new
ideas. Another observation is that the most current high energy accelerators

are colliders, as these achieve much higher energy in comparison with the fixed
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target accelerator. The reaction rate of colliders, however, is much smaller than

that of fixed target accelerators.

One should also note that in the present energy level the physics of

interest is such that lepton accelerators can look directly at the “interesting”




physics as reactions are more elementary, while hadron accelerators have to sift
through an overwhelming amount of “garbage” reactions to uncover the inter-
esting ones. Further, because hadroﬁs are composed of constituent elementary
particles such as quarks and gluons, the relative colliding energies for the con-
stituent elementary particles are typically considerably less than the nominal
hadron colliding energies. These disadvantages of hadron acceleratérs are com-
pensated for by the fact that it is easier to accelerate hadrons to high energies
than to do the same for leptons. The principal reason for this is that leptons are
much more radiative than hadrons (and thus lose energy a lot more profﬁsely),
as the synchrotron radiation is proportional to the inverse of the fourth power

of the mass of the particle. Hadron accelerators can thus be of a circular shape

'~ and the present limitation for the final energy in hadron accelerators is given by

the strength of magnets and the radius (and the cost) of the accelerator ring.
The accelerating gradient is not an issue here. The lepton accelerators, on the
contrary, more and more tend to be linear. This is because the synchrotron
radiation prevents further increase in the electron energy after 100 GeV or so
on a circular trajectory. This upper limit on the electron energy for a circular
collider will most probably be reached already in the LEP-2 collider and in
TRISTAN. Presently the most important limitation on the energy gained in
linear lepton accelerators is set b}\r the accelerating gradient and the leﬁgth of

the devices.

To obtain electrons of energies of the order of 10 TeV or higher, the

particle accelerator has to satisfy two requirements: (1) It has to provide a

very intense longitudinal electric field (so that the accelerator can be built on a

terrestial scale), and (2) this fleld has to be able to interact with the electrons
for a long time, which implies—in the case of ultra-relativistic particles—that

the phase velocity of the accelerating wave has to be very close to the speed



of light (recall the quote from Hansen). The most effective linear accelerator
technology at the moment can provide accelerating gradients of the order of
E; <20 MV/m. Thus, in order to produce 10 TeV electrons, the length of a
conventional accelerator would be at least 500 km. Therefore it is clear that a
novel acceleration scheme is necessary before one can reach the desired energy

region.

Currently the most intense sources of electromagnetic radiation are
provided by lasers. There are, however, limiting factors for the accelerating
gradients that can be utilized in a conventional linear accelerator consisting of

a large number of resonant cavities. These include
¢ breakdown of the residual gas in the cavities
e surface heating
e plasma limit (i.e. superficial ionization due to high vacuum fields)

The onset of all the above processes is frequency dependent; the higher
the frequency, the higher the acceptable accelerating gradient. Thus the acceler-
ator technology has been slowly moving towards optical frequencies — another

reason to consider lasers as a source for accelerating gradients.

Moving up in frequency cannot, however, totally eliminate the problem
of material breakdown. If accelerating gradients of the order of 10 GeV/m or
higher are ever to be used, that would be equal to 1 eV/ A which is high enough
to inevitably modify the electron wavefunctions in the atoms of the surrounding
medium thus leading to material breakdown. Apparently there is only one way

to avoid the plasma limit and related problems — to start up with a plasma.

Thus, in the quest for an ultra high energy particle accelerator, it is



well worth while to investigate what the laser-plasma combination has to offer.

~21 in some only lasers are used (e.g.

There are various methods proposed;!3
an inverse Cerenkov device proposed by Shimoda in 1962, an ink jet device
proposed by R. Palmer!® in 1972), and in others plasma only is used (e.g. the
wakefield accelerator 15:16:17:18 ) In this work, however, we shall concentrate

on schemes based on the nonlinear interaction of a laser beam (or beams) with

a plasma.

1.2 Laser-Plasma Accelerators

The most developed of the particle accelerator ideas based on the inter-
~ action of laser beams and plasma is the beat wave accelerator. ?2:2%:24 Besides
extensive analytical and numerical work done on the scheme, 2%26:27:28,29 there
is also a fair amount of experimental evidence favoring the soundness of the
principle.2%31:32 To show at least one possible mechanism of turning the trans-
verse electric field provided by the laser beam into a longitudinal accelerating

gradient, we will now briefly present the basic operating principles of a beat

wave accelerator .

The plasma we are interested in here consists of two particle species of
opposite electric charge, electrons and ions (most likely protons). In equilibrium
the densities are uniform énd the medium is electrically neutral: n; = n, = no.
The electron component of the plasma, due to its minute inertial mass, responds
readily to any kind of external electromagnetic perturbation. As a result the
electron density will oscillate around the equilibrium value. These oscillations
propagate as longitudinal waves with frequency close to the so-called electron
plasma frequency, w, = \/57-';-;2;29 . In what follows we shall call this quantity
simply the plasma frequency for briefness, and specify separately if that for the

ions is needed. Due to their longitudinal nature, these waves could be used to



accelerate particles.

In a beat wave accelerator the plasma waves are generated by resonant

beating of two electromagnetic waves.?? If the beat frequency and wavenumber,

Aw = wo —w;

(1.1)
Ak = ko - k]_ 3

coincide with those characteristic of the plasma wave,

Aw = w, 12)
Ak =k, , '

the two laser beams will resonantly excite a plasma wave in the plasma. A
rough estimate for the maximum field strength of this wave can be obtained by
considering the maximum electron density available for the excitation. Writ-
ing the electron density in the form n, = ny + én., where én. is the density
perturbation, and assuming that the time scale is short enough to ensure the

immobility of the ions (n; = ng), we may write Gauss’ law as
kpEp = —4mebn, (1.3)

which yields

m ,6n mec én -
Ep| = —w?— n — s 1.4
| Ll ekp L e Wp no ’ ( )

where 6n. is the perturbation in the electron density. The electron density
perturbation cannot exceed the equilibrium density and thus the maximum

field strength is bounded by the extremum case, én, = ng:

mowp

—(“’P)( )_( 2) x 0511 MV = \/—— (1.5)

IEL,ma.:cl .<

where the electron plasma density ng is given in units of cm'3. Therefore the

desired accelerating gradient of 1 GeV/m could be attained by using plasma

10
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of density 10'® cm ™2 and, under idealistic conditions, the acceleration distance

for electrons with the final energy of the order of 10 TeV would be of the order

of ten kilometers.

But as mentioned earlier, a high accelerating gradient is not enough.
The second requirement for the future linear accelerator is that the accelerating
particles have to be able to phase-lock with the accelerating field so that they
can gain energy from the wave over a relatively long distance. The phase

velocity of the plasma wave is given by

=Y _ Y"1
Vph = E ok (1.6)

If the plasma is sufficiently underdense or, equivalently, the laser frequencies wq
and w; are high enough compared to the density-dependent plasma frequency,

wyfw; € 1 for i=0,1) , the phase velocity can be brought very close to the
P ) g

speed of light:

Aw dw c

PR TR g 1

where we have used the dispersion relation for electromagnetic waves in plasma,

Wwo = 4 /wg + c2k2. The phase velocity of the plasma wave is thus, under these

circumstances, equivalent to the group velocity of the electromagnetic waves.

Assuming now that we have produced a plasma wave with a very large
amplitude and moving at phase velocity very close to the speed of light, we shall
find what is the maximum energy gained by the electrons accelerated by the
wave. This is best done by making a Lorentz-transformation specified by 38, =
b o= 11— wl/wf and 7, = %: to the frame moving with the plasma wave.

This is useful because in the laboratory frame the acceleration corresponding to

the maximum energy gain takes place over a long distance until the electrons run




out of phase with the wave. In the wave frame, however, this all corresponds
to a distance of one half of the laser wavelength during which the electron
experiences the maximum potential drop. The maximum potential drop in the

laboratory frame is

mwyC

Ao /2 |
€L maz = 26/ EL,ma:cdz ~ /\p ~ mc® y (18)
0

€

which, Lorentz-transformed to the wave frame, yields

680’maz = m’chz ) (19)

where the prime stands for the moving frame. This is the maximum energy
gained by the electrons in the wave frame, W,,,, = epl,,,. The corresponding

momentum is

) :
p;na.z = _c'\/lena.x —mict = mIBP’YPC : (110)

Thus, transforming back to the laboratory frame,

(Wmaz> — < Tp ﬂp’)"p) ( m’)’pcz ) _ (m73c2(1 +:3;2;)> (1.11)
= 2 | = 2.2 ; .
CPmaz BoYs o mBpYpc 2mcy, By

the maximum energy gained by the electrons is

' 2
W
Wiae = (1 + ﬂg)m’)’gcz ~ 2 (u)—()) mc? y (112)
p

and the maximum energy is seen to increase with increasing laser frequency.

1.3 Problems In Laser-Plasma Schemes

The beat wave accelerator scheme, as described above, is a very at-

tractive candidate for an ultra high energy particle accelerator. However, the

12



‘there is no free lunch’ -principle applies equally well in physics as in any other
field that has a touch-point with real life. The beat wave accelerator , as well
as all the other novel accelerator concepts based on plasmas and/or lasers, has
some inherent problems®#:23:26 that need to be addressed.3®:3® Many of these
problems are specific of a certain scenario, but there is one problem that faces
all the schemes utilizing lasers: that of the finiteness of the active interaction
region of the laser beam and plasma. To produce very high field intensities,
the laser beam has to be focused to a very small spot. In free space this spot
corresponds to the waist of the beam, and the focusing of the beam would be
immediately followed by a defocusing phase. In the case of a beam with a
Gaussian intensity profile, E = Eoe“rz/ "’2, this defocusing is characterized in
free space by the so-called Rayleigh range, Zp = %k'owg, after which the beam
radius w has increased by a factor of /2. Here kg stands for the wavenumber
of the wave and wy is the initial beam radius. This spreading of the beam
corresponds to inevitable decrease in the intensity as the beam propagates. In
a nonlinear dielectric medium like plasma, however, there is a possibility of

self-focusing of the laser beam.

It is this problem of the decaying laser intensity that we wish to address
in this dissertation. The analysis is not directly tied to any specific accelerator
scheme but the plasma fiber accelerator,®” which will be introduced in the end
of Chapter III, seems to emerge naturally from the work. Chapter II serves as

an introduction to the problems faced as a finite beam propagates in plasma. In

this context we also give a brief summary of the work done earlier on the nonlin-

ear self-focusing of laser beams in plasmas. In Chapter III we study analytically
the possible self-focusing of a very short laser pulse with a Gaussian intensity
profile in plasma. We also obtain a beam profile that should be stationary (i.e.

no diffraction, no self-focusing) as it propagates in plasma. In Chapter IV we

13



describe a numerical particle simulation code that we constructed to study the
transport of laser beams in plasma. In Chapter V the preliminary results from
the simulation code, relevant to the earlier work presented here, are presented.

Chapter VI consists of conclusions and discussion.

The original work in this dissertation is presented in Chapters 3, 4

and 5.

14



Chapter 11
Propagation of an electromagnetic wave

2.1 A Uniform Plane Wave In Vacuum

An electromagnetic plane wave propagates in vacuum at the speed of
light. This, as well as the dispersion relation, follows directly from the relevant

Maxwell’s equations:

chE=—aa—?
VXB_a_E (2.1)
c =5

. An electromagnetic plane wave in vacuum can be represented in terms of its

Fourier components:

E, B o eilkoz—wot) | (2.2)

where the z-axis is chosen as the direction of propagation, and the electric and
magnetic fields are then oriented in the z- and y- directions, respectively. The

Maxwell’s equations now become

cikoE = iwoB
(2.3)
—ctkoB = —wo
and since, in the Gaussian units we are using, the magnitude of the electric and

magnetic field strength is the same, the dispersion relation for electromagnetic

plane waves in vacuum is found to be

wo = cko . (24)

According to the Huygen’s principle, every point on the wavefront acts

as an instantaneous point source, and since the intensity profile of a plane wave
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is flat, all these point sources are uniformly distributed all along the wave front,

and the wave will propagate without distortion.

2.2 A Wave With Gaussian Intensity Profile in Vacuum

A more interesting situation arises if the wave propagating in vacuum
has a nontrivial intensity profile in the radial direction. For a wave with inten-
sity maximum near the axis of the beam, the point sources in the central region
are more intense than those lying further out along the wave front. Therefore
the outward component of a spherical wave emitted in the central region will
be only partially cancelled by the spherical waves emitted further out, and the
" phase front will start to curve. This leads to a diverging beam. In the case of

a Gaussian intensity profile,
I=1Ie /% (2.5)

this diverging is called Rayleigh spreading. We will concentrate here on a Gaus-
sian beam pfoﬁle because the basic mode of a laser beam is usually represented
by a Gaussian beam. Because of the nonuniform initial state, the Fourier anal-
ysis used above is not applicable here, and we have to resort to other means to
find the behaviour of the bearnAfrom the Maxwell’s equations. From the wave
equation it can be derived (see, e.g., Demtroder®® ; we will go through this
derivation later for the two dimensional case) that for Rayleigh spreading the

evolution of the beam radius is given by

w(z) = woy/1 + 22/2% Zp = —;—kowg , (2.6)

where zp is the so-called Rayleigh range. The phase shift ¢ for Rayleigh éprea.d—

ing is given by
koT2
2R’

¥ = arctan(z/zr) — R=2(1+2%/2%). (2.7)
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For a non-dissipative system the total power remains invariant: Py o< Jw?.

Therefore the intensity of the wave reduces according to

I(t) = 1—5‘;—/% . (2.8)

2.3 A Uhiform Plane Wave in Plasma

Replacing the vacuum by a medium (in our case a plasma) with non-
trivial dielectric properties will add further complexity to the propagation of an
electromagnetic beam. The dispersion relation for a plane wave will be modified

due to the induced plasma current. The relevant equations are the same as in

" the vacuum case except that now we have to include a source term due to the

plasma current:

chE=—2E
OE 2.
CVX.B=E—47TJ.

Taking the curl of the first of Eqs. (2.9) and utilizing the second, we arrive at

the wave equation for an electromagnetic wave in plasma:

2
OB _ 9. (2.10)

2 g
c“Vx(VxE)= 5 T

Assuming that the electromagnetic wave is a plane wave propagating in a uni-

form plasma, we can apply the Fourier analysis as we did before:

—C2k0 X (ko X E) = ng -|-47l’%; y (211)

and since the electromagnetic field components are transverse to the direction

of propagation of the wave, ko - E = 0, the equation simplifies into the form-

(W2 = EDE = 471"%% . (2.12)
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A good approximation for the plasma current under the influence of a
uniform plane wave is given by keeping only the electric field in the equation
for the electron velocity (ions, being very massive, can be taken as stationary

in the first approximation):

o7 ~ —en ov
8t %ot
. (2.13)
~(Z0E,

where e = elementary charge, ng = equilibrium plasma density, m = electron
mass, and we have assumed non-relativistic electrons. Relativistic effects will

be discussed later. The wave equation now becomes

4dreng

(3 - B = (T

)E, (2.14)

and the requirement for non-trivial solutions (E # 0) for the equation leads to

~ the dispersion relation for electromagnetic waves in plasma:
wp = w2 + kp (2.15)
where w2 = 4me’ng/m is the electron plasma frequency.

The qualitative difference introduced by the presence of plasma is the

appearance of a cut-off frequency at the plasma frequency :
Weut = Wy, (2.16)

so that waves with frequencies less than wcyt will not be able to propagate in

plasma but are damped exponentially:

E x e "% K= 4—. (2.17)
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2.4 A Wave With Gaussian Intensity Profile In Plasma
Non-linear Self-Focusing

The linearized Maxwell’s equations (i.e. taking only the first order
contribution of the fields on the plasma current) used above are not appropriate
in studying the propagation of a beam with non-uniform intensity profile in
plasma because the nonlinear interaction between the beam and the plasma is
crucial.®® This can be understood when we look at the electrons of the plasma
under the influence of a laser field. An electron located near the beam axis is

kicked outward by the large amplitude transverse electric field of the laser beam:.

. As the beam propagates, the direction of the field rotates and soon the electron

- feels an opposite force pulling it back towards its original position. However,

since at this instant the electron is located further away from the intensity
maximum, the restoring force is not quite as strong as the one bringing the
electron out. Thus there will be a net increase in its outward velocity and the
electron will not return back to its original position. Thei‘efox_'e, after several
laser oscillation periods, the electron will have drifted outward and the electron

density—together with the dielectric properties of the plasma—gets modified.

Mathematically this net drift of electrons can be viewed as a result of
a second-order force, called the ponderomotive force,? acting on the electrons.
In the case of a circularly polarized electromagnetic wave with nonuniform

intensity profile the ponderomotive force is given by (see Appendix A)

f e2F?

The ponderomotive force does not depend on the sign of the charge of the

- particle, and thus the ions will eventually follow the electrons provided the
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laser pulse is long enough.

The end result of the outward drift of electrons is that a density de-
pression is produced in the central region. According to the dispersion relation
for electromagnetic waves in plasma, the phase velocity of the wave depends on

the plasma density:

[o? L c2k2 _
wo wp + C7Ky 4me2-
= e & ——— T 1 1o ltes .
Uph o W cy /14 mczkgn (2.19)

Thus the phase velocity will be lower in the central region, where the electron

density is suppressed, than in the outer regions where the density is further

. enhanced. This leads to a curving wave front as indicated in Fig. 2.1. This

curving is directed in opposite direction to that taking place in the Rayleigh
spreading, and therefore the nonlinear interaction between the laser beam and
the plasma has the potential to lead to focusing of the laser beam. It is called
nonlinear self-focusing?! because it is the laser beam that produces the density

perturbation that acts back on the beam.

One way of describing self-focusing mathematically is to say that the
dielectric properties of the plasma are altered in such a way that the modified
electron density profile acts as a convex lens (sometimes referred to as "plasma

lens”). The dielectric function of a plasma is given by

20

e=1- wz/wg. (2.20)

Since w, depends on the electron density, modifying the density profile will also

modify the dielectric function of the plasma.

It is important to notice that, although very suggestive, the pondero-

motive force is not the only mechanism for self-focusing. Differences in thermal
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phase front at t=0 phase front at t > 0

Fig. 2.1 - Plasma Lens - Provided that the plasma density profile
exhibits a depression then, according to the dispersion relation of electro-
magnetic waves in plasma, wj = w2 4 ck§, the phase velocity of the electro-
magnetic wave is less within the depression than further out: vph in < Vph,out-

This leads to a curved phase front and thus to focusing of the beam.

pressure can modify the electron distribution, leading to thermal self-focusing??
in qualitatively the same way as in the ponderomotive self-focusing: An intense
electromagnetic wave induces heating in plasma. The temperature increases
most in the central region and leads to hydrodynam.i/c expansion there. As in
the case of ponderomotive self-focusing, this rarefied region acts as a convex

lens focusing the beam.
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Furthermore, the plasma frequency depends not only on the electron

2

5 & 1/m. Therefore, increasing the

density but also on the electron mass: w
electron mass has qualitatively the same effect on the plasma dielectric function
as lowering the electron density. This process is called relativistic self-focusing
and it is brought about when the electrons oscillating in the laser field are
accelerated to relativistic velocities during one oscillation period. Formally this

can be seen when we include the relativistic effects in the expression for the

plasma current in Eq. (2.13) :
@RJ‘—GE v=2 v =1/1+4 p?/m2c?
dt ’ my ’
81 2 |
= =~ (f—ﬂ) E (2.21)

at my
=>wi= “o + c?k¢,
Y
where wy, is defined using the rest mass of the electrons. Relativistic self-
focusing differs qualitatively from the ponderomotive and thermal self-focusing
in that it does not require bulk electron motion to modify the plasma dielectric
function. Therefore, with appropriate laser and plasma parameters, the rela-
tivistic self-focusing can take i;lace almost instantaneously (in the time scale of
a laser oscillation period), whereas in ponderomotive and thermal self—focusing'

there will be a delay before the electron density is reshaped to bring about the

lens effect.

Sometimes the self-focusing of an optical beam in plasma is referred
to as self-focusing instability because of the feed-back nature of the process.
For instance, in the case of ponderomotive self-focusing, the intense beam ex-
pels particles from the central region thus modifying the dielectric constant in
such a way that the beam starts to focus. The ponderomotive force is thereby

reinforced, more particles are expelled, and the dielectric constant is further
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severed leading to even more tightly focused beam, and so on. A similar feed-
back loop takes place in relativistic and thermal self-focusing. This physical
picture misled the early investigators to believe that the self-focusing instabil-
ity would eventually cause the beam to collapse. However, this is not the case.
For instance, in the case of ponderomotive self-focusing, as more and more par-
ticles are expelled, the beam will eventually be propagating in an evacuated
channel where the nonlinear plasma effects necessary for further focusing are
absent.*3:4%45 At that point the beam starts Rayleigh spreading as explained
in the beginning of this chapter.

The above, mostly phenomenological and over-simplified introduction
to the evolution of a laser beam in plasma can lead one to a conclusion that the
problem of non-linear self-focusing of a laser beam is straightforward and well
understood. This is, however, not the case. The interaction between a laser

beam and plasma is highly nonlinear and even non-local, and the situation is

‘made even worse by the statistical nature of plasma as a many-body system.

Therefore, each of papers published on the subject of laser self-focusing in
plasmas addresses the problem only under some very specific conditions chosen
typically in such a way that only one mechanism producing self-focusing can be
considered. We will now briefly present the highlights of the work previously
performed on the subject.

F.W. Perkins and E.J. Valeo*® addressed the problem of linear thermal
self-focusing in both underdense and overdense bounded plasmas by studying
the stability of small scale perturbations using linearized fluid equations in slab
geometry. It was discovered that thermal self-focusing can take place even for
weak incident powers provided that the plasma.is highly collisional. R.S. Crax-

ton and R.L. McCrory*” carried out a two-dimensional hydrodynamics simu-
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lation to study thermal self-focusing of laser beams in plasmas with long scale
lengths. They observed whole-beam self-focusing when the beam diameter was
less than approximately one-half of the plasma scale length, and in underdense
plasma a low density channel was seen to develop. They also concluded that
thermal self-focusing is less likely to occur in an initially hot (and thus weakly

collisional) plasma.

Self-focusing due to ponderomotive force (as full exponential nonlinear-
ity) was first studied analytically by C.E. Max.*® Using a fluid model (obtained
by assuming quasineutrality) for the electron current, and assuming that the

beam retains its Gaussian shape at all times, she found that for any incident

* intensity it is possible to find such a beam radius that self-focusing will take

place. The study also‘ indicated that the self-focused beam will oscillate in ra-
dius after initial focusing rather than reach a catastrophic focus, as had been
speculated earlier. C. Joshi, C.E. Clayton and F.F. Chen3° observed resonant
ponderomotive self-focusing of laser light experimentally. The ponderomotive
force of a plasma wave is much larger than that of the laser beam, as can be

seen from the expression derived for the ponderomotive force in Appendix A:

e? 1

1 2
F,(laser) = ~3mat — V Eq |
' 1+ m2wic?
(2.22)
1 €2 1 9
F,(plasmon) = —= VE
2 mw? e2 E2 p
YRR o
so that for nonrelativistic (e B2 /m?w?c? < 1) field amplitudes
1 e?
F,(laser) ~ ~ 3ot VE?
1 2 (2.23)
~ ¢ 2
F,(plasmon) = _§WVEP

p
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where Ey is the amplitude of the laser wave, and E, is the amplitude of the
plasma wave. From Poisson’s equation one obtains an estimate for the plasma
wave amplitude in terms of the electron density perturbation én. caused by the

laser wave:

E, ~ 4—;357% , (2.24)
P

where k, is the wave number of the plasma wave. Thus the ratio of the pon-

deromotive force of the plasma wave to the laser ponderomotive force is

Fp(plasmon) w? 4me. ,6n? 6Ny, Vgn
| F,(laser) = w;( kp ) B2 = ( o ) (vq) ) (2.25)

. where vy = c is the phase velocity of the plasma wave, and vy, the so-called

quivering velbcity, is a measure of the laser intensity, v, = %%%, that will
be shortly discussed in more detail. Joshi, Clayton and Chen®° noted that this
ratio of the ponderomotive forces can be very large; as a representative case they
showed that for a density perturbation of %’? = 1% and laser with wavelength
of 10.6 um and intensity of 10'® W/cm?, the ratio is over a hundred. Thus, to
benefit of this enhanced self-focusing, they inpinged laser light containing two
frequencies, w; and ws, on a plasma and resonantly excited a plasma wave when
the plasma density had a proper value to allow for the resonance condition:

wp = wi —wsy. In their experiment Joshi, Clayton, and Chen observed self-

focusing as a dramatic increase (up to 10° -fold) in the central intensity.

C.E. Max, J. Arons and A.B. Langdon*® addressed the problem of rela-
tivistic self-focusing by performing linear stability analysis on the system while
treating the plasma as a cold, uniform fluid with fixed ion density. (Notice, that

in the studies described above both the electrons and ions were similarly sub-

ject to the ponderomotive force as implied by the assumption of quasineutrality.

Thus the characteristic time scales in them were long, being dominated by the
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ion dynamics). Max, Arons and Langdon*® discovered that, under their ap-
proximations, even weak lc’;- relativistic corrections could produce self-focusing.
They also concluded, quite credibly, that at high intensities the ponderomotive
effects (when acting on both electrons and ions as a single fluid) are negligi-
ble compared to the relativistic effects. D.A. Jones, E.L. Kane, P. Lalousis,
P. Wiles, and H. Hora?® constructed a two-dimensional time-dependent laser-
plasma interaction code and used it to model the interaction between a 5 psec
Nd glass laser pulse of peak power 1013 W and a 35 times ionized tin target. The
code was based on Maxwell’s equations for the electromagnetic fields and the
two-fluid conservation equations for the plasma. In addition to a strong mod-

ification of the plasma density after the initial (relativistic) self-focusing, they
| observed acceleration of tin ions up to a maximum energy of 5 GeV. G. Schmidt
and W. Horton%? investigated self-focusing due to relativistic effects on the os-
cillating electrons and concluded that the phenomenon has a threshold power of
%(%’})2 x 10° W which the laser has to exceed in order to attain focusing. They
also studied the asymptotic state of the light channel produced by self-focusing
in slab geometry and arrived at a transverse beam profile having a form of hy-
perbolic secant with characteristic width of a few collisionless skindepths. The
most recent — and most complete — treatment of pure relativistic self-focusing
is given by P. Sprangle, C.-M. Tang and E. Esarey.®! Neglecting the effect of
possible phase modulation and assuining that the beam remains Gaussian as it
propagates through plasma, they derived an envelope equation describing the
radial evolution of a laser beam propagating in plasma, and arrived at a critical
power for self-focusing of 17 x 109(‘;‘3)2 W. For powers exceeding the critical
power the beam envelope was found to either oscillate or propagate through

plasma with constant radius.

There have also been a few attempts to study the behaviour of the laser
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plasma system under the combined effect of relativistic and ponderomotive self-
focusing. F.S. Felber5? studied analytically the relativistic nonlinear equations
governing the steady-state diffraction of intense, circularly polarized electro-
magnetic beams in warm, quasineutral plasmas. His work thus includes both
the relativistic and ponderomotive effects in guasineutral regime, and forms a
natural continuation to the work by Max described above.® Assuming that the
beam remains Gaussian while propagating in plasma and using paraxial-ray
and slowly varying envelope approximations, Felber concluded that, under this
set of approximations, tlie beams cannot self-focus but can self-trap (propagate
without diverging) at powers above the threshold power of 2 X 105(%‘15—)2 MW |,
~ where Ap is the Debye length. Relativistic and ponderomotive self-focusing in
another regime, that of a very short laser pulse, was addressed independently by
G.-Z. Sun, E. Ott, Y.C. Lee, and P. Guzdar,** and by D.C. Barnes, T. Kurki-
Suonio and T. Tajima.* In this regime the ions, due to their great inertia, can
be taken as stationary, and only the electrons will respond to the laser fields.
Therefore the ponderomotive effects are no longer dominated by the ion time
scale — only the electrons are expelled from the central region. The analysis
of the evolution of a laser bedm in this regime will be described in detail in the

next chapter.

More recently two papers have been published on self-focusing of cou-
pled waves. W.B. Mori, C. Joshi, J.M. Dawson, D.W. Forslund and J.M. Kindel
studied laser self-focusing using a particle simulation code.’® Carrying out a
simulation of two parallel laser beams in very underdense plasma they observed
relativistic self-focusing taking place initially, being followed by a “ponderomo-
tive blow-out” and filamentation of the beam aé the edge of the channel bound-
aries. This work will be discussed in more detail in Chapter V. C.J. McKinstrie

and D.A. Russell 5% addressed nonlinear self-focusing of coupled waves more
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generally. Unlike all the above mentioned studies, they concentrated on time
dependent focusing and performed a spatial averaging. They established the
threshold power for self-focusing to be P, = 1.7 X 1010(3;%)2 W.

In the following chapters we will concentrate on collisionless plasma and
thus study the ponderomotive and relativistic mechanisms only, leaving out the
thermal effects. In the next chapter we will investigate the conditions under
which the nonlinear self-focusing of a short laser pulse would be strong enough
to overcome the natural diffraction of a laser beam. Evidently, both the severity
of the electron density modulation and the strength of the relativistic effect, and
hence the total effect of the plasma lens, will be stronger the more intense laser
 we use. Therefore we anticipate that the deciding factor in determining the
qualitative behaviour (i.e., to focus or not to focus) is the laser intensity. A
convenient measure for the laser,intensity is the so-called quivering velocity, v,

that was already mentioned :

vy = nf"i‘;c , (2.26)
where Ej is the peak amplitude of the electric field. It is important to no;cice
that, although in the case of weak electric fields v, is a direct measure of the
maximum velocity gained by an electron under the electric field,

eE, 2

MeWC

Vmaz = 0.25v,, <<1, (2.27)

this is not the case with very intense laser fields. Strictly speaking the quivering
velocity is solely a measure of the laser intensity and can therefore exceed the
speed of light. We will be repeatedly using the square of the dimensionless

quivering velocity, which we call the normalized intensity:

L=Gp=(20y (2.28)

mewgC
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The physical, measurable intensity for a Gaussian laser beam is given by
[= —E2e /v (2.29)

Therefore the normalized intensity is related to the value of the physical inten-

sity evaluated at the beam axis (r=0) by

2.3
Metoc L W (2.30)

-~ 18
I(’I‘=O): Sre? In~137><10 )\% W ,

where Aq is the wavelength of the laser given in micrometers.
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Chapter III
Self-Trapping of A Laser Beam in Plasma

3.1 Introduction

In this chapter we investigate the behavior as well as the conditions
for self-trapping of a single short laser pulse. The analysis is analogous to that
performed by Felber®? but the physical picture is quite different. Felber studied
the effect of relativistic and ponderomotive effects assuming a steady state in
which the interaction between the plasma and the laser has lasted long enough
to assure quasineutrality. The ponderomotive force of the laser light expels
plasma from the near-axis region until this repulsive force is balanced by the
pressure force of the plasma in the outer regions, and the net result is a low
density channel along the beam a;xis. The plasma density is then represented

by a Boltzmann type response,

n ~ erp (;—?—) , (3.1)

where x is the ponderomotive potential defined in Appendix A, and T, is the
plasma temperature. Thus the plasma behaves as a single fluid and the time

scale of the ponderomotive effects is set by the ions.

The situation is quite different for a very short laser pulse. When the
interaction time for the plasma and the laser is short, the ion inertia becomes
significant. In a very short time scale the ions can be considered stationary and
only the electrons respond to the rapidly oscillating laser electric field. The time

scale of the system is therefore essentially that of the electrons, and the system
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should be free of instabilities generated by the ion dynamics. Thus we are op-
erating in a region void of parametric instabilities,®* which makes this scenario
Véry attractive for various laser-plasma acceleratbr concepts. The behavior of
the laser-plasma system, as speculated on physical grounds, could be as fol-
lows: As described earlier, if the intensity of the laser beam is large enough,
the photon (ponderomotive) pressure of the laser beam may blow out the elec-
trons from around the beam axis and thus form a ‘vacuum’ channel in plasma
(‘vacuum’ in the sense that almost all the electrons are absent). The channel
of low electron density that is created by the ponderomotive force of the laser
pulse can then act as an optical fiber trapping the laser light. In this chapter
" we investigate theoretically the behaviour of a short laser pulse launched in a
plasma. The main emphasis is on the possible initial self-focusing/defocusing,
but in the end we will also make a rough sketch of the later evolution of the
beam. (At the same time as this analysis was published in IEEE Transactions
for Plasma Science,*® there came out a similar work by Sun et al.** in Physics

of Fluids)

In Section 3.2 we derive a model for the plasma response assuming
a very short laser pulse. In Section 3.3 the general evolution equations for
the electromagnetic field are developed. A possible asymptotic beam profile is

obtained in Section 3.4 using the equations derived in the previous section. In
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‘Section 3.5 the dynamical aspects of the beam are addressed using Hamiltonian

dynamics, and in Section 3.6 this is carried further with special emphasis on
the nonlinear self-focusing. In Section 8.7 possible application of self-focusing

to plasma based particle accelerators is discussed.



3.2 Model For Plasma Response

As mentioned above, we consider a short laser pulse so that ions do not
have enough time to respond to the laser field and only the electrons respond
to the rapidly oscillating electric field. The self-consistency of this assumption
will be examined later. Taking ions to. be infinitely massive, only the electron

density can fluctuate and the ion density remains constant,

Ne = No + 0N,
(3.2)

n;=ng ,
where ng is the equilibrium density of the plasma and én. stands for the electron

~ density fluctuations. Gauss’ law can then be written as

V- E = —4medn, . (3.3)

A laser beam has always a radial profile: in the basic mode the intensity
peaks at the beam axis and reduces rapidly as one moves away from the axis.
Therefore the amplitude of the electric field is non-uniform. This induces the
non-linear ponderomotive force, which we introduced in the previous chapter.
In Appendix A, for circular polarization the ponderomotive force was found to
be given by:

F,=-Vx , (3.4)

where ¥ = mc?y/1+ I, and I, is the normalized intensity introduced in the
previous chapter, I, = e?|E|?/m2wdc?. Thus, for Gaussian intensity profile,

I=Ie /v | (3.5)

the ponderomotive force acting on the electrons is

me2 r I,
F, = — r . 3.6
P wo Wo /1 -+ Inr (36)
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The radial ponderomotive force pushes the mobile electrons outward
from the near-axis region leaving a positive net charge there. The consequent
charge separation and the associated radial electrostatic field will eventually

balance the ponderomotive force so that the net force on the electrons vanishes:
F,—eE=0 . (3.7)

Taking a divergence of this force balance equation and using Gauss’ law given
by Eq.(3.3), we obtain a partial differential equation for the ponderomotive

potential:
10 0 &*x 18%
T or 32 T oe

- Inverting this equation in the case of axisymmetric (—5‘% = 0) and slowly varying

= 4re?bn, . (3.8)

or marginal (ai:f = 0) variations we get an expression for the electron density

fluctuations:
én.

rOr Or

The self-consistency of the marginal approximation is discussed later. Under

Ng

= (i)2—_r'— 1 +In . (39)
Wp

these assumptions the normalized electron density can be written as

_Me_ ., .18 0
Ne_n0_1+/\crarrar 1+1, (3.10)

where A, = -‘f: is the collisionless skindepth. Here and henceforth the plasma
frequency wy, is defined using the equilibrium density no and the electron rest
mass me, 1.e. no density fluctuations or relativistic mass effects will be hidden

in the plasma frequency but will be written out explicitely.

It should be noted that N, should never be negative, since that would
correspond to a situation where the fluctuations in the electron density were
greater than the equilibrium density. This restriction is not (yet) built in this

particular mathematical model.
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3.3 Evolution Equations for Laser Intensity Profile

Having derived a model for the electron density variations, we now turn
our attention to the equations governing the evolution of the laser beam. Our

starting point is Maxwell’s equations and the equation of motion for relativistic

electrons:
V- -E =4nie;n;
V-B=0
1B
E=—-——-—
VX c Ot
vxB=122 4y (3.11)
c Ot c .
op 1
—6—t—+v-Vp——e (E+EVXB)
mv

P=—F— ,
N

where p and Vv are the electron momentum and velocity, respectively. The ions,
being infinitely massive, are at rest. The electron pressure gradient is neglected
in comparison with the ponderomotive force and the electrons are treated as
a cold fluid. (A more detailed justification of this approach appears in the
following chapter). The assumption of immobile ions allows us to write, using

Eq. (3.2)
Yejn; = —edn, and
(3.12)
J = —e(ng + éne)v

We express the electromagnetic fields in terms of the scalar and vector poten-

tials:
B _10A o5
c Ot (8.13)
B=VxA

Writing Maxwell’s equations in terms of the potentials and combining them we
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get the wave equation for electromagnetic waves:

Eroaial VA +c*V(V-A) +CVE 47ch . (3.14)

To simplify the form of the equations to come, henceforth we shall use
a normalized vector potential: A — A, = —n-;:-g To single out the rapid laser

variations we take a trial function of the form
A, = an(r,t)eiFor—wot=vm0) (g 1 §9) | (3.15)

. where an(r,t) and 1(r,t) are real functions of space and time, ko and wq are
the (constant) wavenumber and frequency of the laser wave in uniform, unper-
turbed plasma, and we have chosen the coordinate system such that the z-axis
coincides with the direction of propagation. The wave is taken to have circular

polarization, as mentioned before. Using this trial function the wave equation

becomes
1 Bzan o Oan 61/) 62¢
{ (G — 2o+ ) gl — (o + 3t2}
- [V an + 2Zko%ﬁr_z —2i(Va) - (V)] + (ko — --—)2 . (3.16)
9 2 e 00  Ame
FIVIYR + iV A+ Y = o

Next we apply the so-called slowly varying envelope approximation.
That is, we assume that the characteristic spatial length of the structure in
our system is much greater than the wavelength of the laser wave, and that

the characteristic time period involved is much longer than the laser oscillation
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¥(r,t) are slowly varying quantities,

l da,

| |<<k0

l <K koan
8an

| <L wpa, ,and
(3.17)

(Notice that this is consistent with the marginal approximation employed in
deriving the model for electron response). The advantage of using a circularly
polarized wave here is that for this polarization the intensity |A|? does not have
~ any high frequency components (or any phase information, whatsoever):

A = ae®(% +iy)

(3.18)
= A - A = a%(cos® ¢ +sin® ¢) = o?

Since we are using potentials rather than physicai fields, we need to
choose an appropriate gauge condition to complete our equations. As discussed
earlier, the variation in electron density takes place because of the nonlinear
ponderomotive force. The time scale of the electrons drifting under the influence
of the ponderomotive force is much slower than the laser oscillation time, as
will be shown in the next chapter. Therefore we conclude that the electron
density, ne, is a slowly varying quantity. (This can be seen also formally from
the expression derived for n.: n. ~ Va2, which, according to the Eqs. (3.17)
and (3.18) is slowly varying). According to Gauss’ law, then, the divergence of
the electric field should also be slowly varying:

V-E=—v2q>—%v %—‘?—Me( —ne) . (3.19)
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We will now arrive at very clear separation of the fast and slowly varying parts

of the electric field by choosing Coulomb’s gauge:
V-A=0 . (3.20)

Then the vector potential disappears altogether from Gauss’ law and the scalar
potential, ®, will be purely slowly varying and will stand for the low frequency
electrostatic oscillations, whereas the rapid laser oscillations will be entirely
given by the vector potential A. Notiée, that had we chosen, say, the Lorentz

gauge, this separation would not have been possible.

An expression for the plasma current can be derived by assuming that
the equation of motion for electrons is dominated by the transverse laser electric

field E:

N e OA
a6 T T et
A (3.21)
> V= = —
my mcy/1+1,
2 N
=>J=—enev=—m <

and the wave equation becomes

1 82an a¢ 6(17;

{_{ g Bt )]~ (W t %) " im )T
! —[Vzan + 2tkg 9an —2i(Vay) - (V’z/))] + (ko — 8_¢)2
| 0z 05 0z (3.22)
+ VTl +iV )} An + — ° SV =

1 N, A
NI,
where N, is given by Eq. (3.10). The right-hand side represents all the relevant

nonlinearities, i.e. the ponderomotive force (buried in the normalized electron
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density N.) and the relativistic electron mass effects (appearing in the form of

the inverse square root factor).

Taking an inner product of the wave equation with the normalized

vector potential A, gives

1 b%a, .. O Oan 2 o, 0%
{GonlGa — 2o + 5] = anllwn + 50V + i}
an[Vzan + 2ik0§g-7i — 2i(Vay) - (V)]+
9z 3.23)
(ko = LY 4 (Voo + iV} + ——An - V2 = @
n* 5, T med” " Ot
1 N,

— -5\—%-———___1+a%an .

Since we assume that the modification of the laser beam (and plasma) take
place at slow pace compared “to the rapid laser oscillations, there will not be
any significant development at the time scale of one laser oscillation period.
Therefore we can average the wave equation over the laser oscillatioﬁ period
Ty = %;— . All terms except the one involving the scalar potential remain
approximately constant under the averaging integral, and thus can be pulled
out from under the integral. The term involving scalar potential is proportional
to the rapidly varying phase factor and will thus average to zero. (The scalar
potential itself is a slowly varying quantity as a result of the Coulomb’s gauge,
as was shown above, and is thus pulled out of the integral). Averaging over

the laser oscillation period, we thus arrive at an equation describing the slow
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evolution of the beam envelope:

1 o Ban. op., 0%
z T S~ 260 + 50) 5t = all(wo + 57 ) iy
[V an + 21k Oax, —21(Vay,) - (V¥)]+
5z
(3.24)
(ks — 22 41924l +59%y] =
1N,

_/\21/1—{-(12%

Henceforth we shall drop the subséript ‘n’ for convenience.

- Since the amplitude a and the phase shift i) were chosen to be real
quantities, the terms multiplied by the imaginary number s’ will decouple from
the real terms and the wave equation splits into two indepeﬁdent equations; the

real terms yield an equation describing the evolution of the amplitude,

8%a

o'a _ o | 2o
502 —a(wo+a) +c¢*V*a

N (3.25)

o4
2 2 2 2
Fallho = 3p) T IVEUl) e 7=

and the imaginary terms give a similar equation for the phase shift,
2 2
% (“2%% = w0y - czk"%a?+ (3.26)
¢ (Va ) (V) + c2alViyp
Since we assume that the system has reached a situation where there is no
net force acting on the electrons, we will look for a stationary state solution
for these equations. Letfing the time derivatives equal to zero, the equations

become

Ne

0z r

1 |
o) Tae o Nvita 5.2

A <a¢>2 10 0a B
+az
2 2 2
_ (Yo g2 16% %
(c2 k0> a0z% +<3z ’

2ko——
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and

9z Oz

0> 0a20p a0 Op O [ ,0p
Bl P =i el i =i ( —> o (3)

where we have also applied the assumption of axial symmetry by taking the

transverse Laplacian operator as V& = -}E-a;r% .

3.4 Asymptotic Form of the Laser Profile

To start with, we shall look for a possible asymptotic intensity profile
for the laser beam under the combined influence of the ponderomotive and
relativistic effects. That is, we shall assume the asymptotic intensity profile to
. be independent of the variable z. This can be accomplished by choosing the

following ansatz for the vector potential:

a(r, z) .: a(r)

| (3.29)
P(r,z) = f(2) +9(r)

where, for generality, we have still allowed for phase modulation in z. The above
equations (3.27) and (3.28) become separable under this ansatz: The amplitude
equation yields '

2

d d
‘ ? (3.30)

2
where A2 = %2— — k% , and C; is the separation constant. The phase equation

becomes

d?f c 1d dg 1 dadg

a2 ?Trdr dr @ dr dr

(3.31)

where C5 is the separation constant.
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According to Eq. (3.31) the z-dependent part of the phase shift 1 can

be written in a general form given by
L 2
f(Z) = —-2-022 + 032 y (332)

where Cj is the integration constant and the (arbitrary) constant phase shift
has been neglected. Substituting this expression for f(z) into the z-dependent
part of Eq. (3.30) we get

—2ko (—Caz+ Cs) — Al +(~Caz+Cs)’=Cy . . (3.33)

For this to be satisfied for all values of z, the coefficients multiplying the different

- powers of z on the left-hand side have to equal those on the right-hand side.

Matching the coefficients in this manner yields

0250

(3.34)
Cs =koﬂ:1/k§+Ag+Cl R

and thus f(z) is given by the linear expression

f(2z) = koz £ 4/ LZ—,? +C1 2 . (3.35)

The assumption of slow modulations, | 32| < ko, implies that we have to choose

square root with the negative sign to retain consistency, and thus f(z) is given

by
| w2
f(z) = koz - ?2- + Cl zZ . (336)

The radial equations can now be written as

llirda— dg 2— 1N = C and
ardr dr dr X /ita 7 (3.37)
1d dg, 1datdy

;drrz a? dr dr
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For simplicity, we will study these equations in slab geometry. Formally this is

accomplished by doing the following substitution:

1d d d?

Then the above equations become

92 2
L d a <dg> ——i—Ne-—zCl, and

E d:IJz B dm )\g \/1 -|— a2 (3‘39)
dg
2 =
a dz 04 s

where the phase equation was integrated once over z, bringing about the inte-

- gration coefficient Cy. Using the expression for the first derivative of the phase

factor g, one may write the amplitude equation as

1 d2 cC? 1 N,

aE T w N iys O (3:40)

Recalling from Section 3.1 the expression for the electron density in our

rﬁodel, we will write it here in the form

2

1 & —
Ne = 1+€-;\—%-a?' 1+a2 ) . (341)

where the perturbation produced by the ponderomotive force is labeled by a
parameter € = [0,1]. This parameterizing is done to facilitate comparisons to
earlier works in some of which the ponderomotive force is included (e = 1),
whereas in others only the relativistic effects are considered (e = 0). The

amplitude equation now becomes

2 2 2
LI S S S S 20 v AP
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This equation is directly integrable, if one notices the following;:

14+ a2 = ag

d
dz VIt a?

(3.43)

d? aa' !

—1+a?= .

dz? V1 a2
Then, multiplying both sides of the equations by the factor aa’, where the prime

stands for differentiation with respect to = , the amplitude equation becomes

a' 1 ad . aad aa' !
- C? — € = Ciad . 3.44
@ XNVita? Vit (\/1+a2) ' (3:44)

- This equation is directly integrable yielding

2 2 12
2y ci FomVive e s~ O’ =05 (3.45)

where Cj is the integration constant. For the solution given by this first integral
of the amplitude equation to be physical, i.e. for the total power of the beam
to be finite, both the amplitude and its derivative should vanish at infinity:
a,a’ = 0 asz ‘—-> oo. This implies that the coefficients C4y and Cjs have the

following values:

04 =0
: 2 (3.46)
Cs = ——/\—2 .
and hence the amplitude is given by the first order differential equation
12 __ 1 2 2 _ 1 -~ 3
il e [Cla +<C’1 )\2)a /\2+ (1+a) . (3.47)

The three-halfs power within the expression on the right-hand side of
Eq. (3.47) complicates the analytical integration for general values of the am-
plitude, and thus we start by expanding the right-hand side for nonrelativistic
field amplitudes, a? < 1: |

(C’l+>‘2>a + [01+4i2 —(1—¢) (Cl-l- A2)]a4+0(a‘3) . (8.48)
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Introducing the following shorthand notations,

CtE/\ECl-{—l
3.49
ﬂ_-—zea—;‘- ( )

the equation for the field amplitude becomes

d —a = :I: s/oza2 + Bat (3.50)

or, multiplying the equation on both sides by a , calling I = a?, and moving all

the terms involving I to the left hand side, we obtain

dI 2 ;
—_— = j:—/\—-\/ada: . (3.51)
IJ1+ L1 ;
The expression on the left-hand side has an exact integral®® and thus the.equa-

tion can be integrated to find the amplitude:

Ji+Lr-1
Y2 | = :1:2\/5/\i + constant (3.52)

J1+Er+1

which can be inverted to yield

In

I(z) = 4= Coe™*V*%: | (3.53)
— — - 2 . .
ﬂ(l—cwihﬁv)

This is the nonrelativistic (stationary) solution for the asymptotic field ampli-

tude under the specific assumptions given above.

The solution obtained posesses a curiosity worth noticing. The integra-
tion constant Cg corresponds to merely a shift of the solution along the x-axis.

This is evident when we write

Coe?Volt = 2VaietinGe (3.54)

44



Thus the general solution consists of a set of identical profiles disfributed evenly
over the entire x-axis. This ”translational invariance” of the solution is actually
manifested already in the first-order differential equation for the amplitude; it
is seen that the expression for the derivative of a does not depend explicitly
on the variable z, and therefore, for a given initial value of the amplitude, the
solution will always be the same irrespective of the location on the x-axis. This
translational invariance is a consequence of the slab geometry: in cylindrical
geometry the z-axis (r = 0) has a special significance as the beam axis, whereas
in slab geometry there is no reason to have the beam centered around z = 0.
Formally the difference between these two geometries is manifested already in

" the second-order differential equation: the Laplacian operator has an explicit

reference tQ the transverse coordinate in cylindrical geometry (V% = %-a‘a—rr% =
%% + 33?2;), whereas in slab geometry that is not the case (Vz = 8%2; .

To further study the qualitative aspects of the solution we simplify the
notation by introducing a dimensionless variable { = §=. The solution can now

be written as

+2/¢
(6 =43-S (3.55)
B (1 — Cset2vat)
and its first derivative with respect to ¢ is given by
+2/a
U 18% 0, Jaetrvas LT Coe . (3.56)
dé B (1 — Csex2v/ae)

From Eq. (3.55) for the intensity profile, it is seen that the integration constant
Cs has to be negative, Cs < 0, because the solution should remain finite for all

values of £&. We therefore replace Cs by another constant C7 according to

0<Cr=—-Cs s | (357)
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whence the solution can be written as

I(§)—-42 Cret2V/aE (3.58)
B+ CrervEe)® o

and its first derivative as

al _ 82 Cyo/aet2Vat 1 — Cre*2ves
5 ;

df (1+ c7eﬂ:2\/55)3

(3.59)

A good first picture of the solution is obtained by finding the number
of extrema of the function. Looking at Eq. (3.56) for the derivative of I, we
see that the profile will have one (and only one) extremum only if C7 > 0, a
condition that coincides with the one already established above for the finiteness

of the solution. The extremum locates at z,,, given by

_ In 07
2\/a

As described above, the general solution consists of a set of profiles covering

(3.60)

Tm =

the x-axis but identical in form. Therefore it is convenient to pin down a single
solution that we will be considering. A natural choice is to pick the solution

centered around z = 0. This implies that we choose C7 = 1, whence the solution

is given by
o  eF2VeL
(9 =~45———
(14 e*2va¢) (3.61)
__2_ 1
B cosh?(y/af)
The intensity of a laser has to be positive, which resritcts the value of « as
follows:
e
—T <0 . (3.62)

4
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A comparison of the solution obtained here to an earlier work performed
by Schmidt and Horton®® can be done by simply letting the artificial parameter
€ equal to zero since their work included relativistic effects only. The solution

Schmidt and Horton arrived at is given by

1
I(€) = 2asm : 3.63
(&) cosh?(/@smé) (3.63)
where the constant asgy is given by
1
asg =1+ F(kzc2 — w2) , (3.64)

Po

and the dispersion relation connecting the wavenumber & to the frequency w is
yet to be determined. At the peak of the profile we find the connection of asH

to the maximum (normalized) intensity Iy = I(£ = 0):
1 :
aAgH = §I0 . (3.65)
From this we can derive the dispersion relation as

1
w? = w,l(1 - 51o) + k. (3.66)

The complete solution for the asymptotic field amplitude, which Schmidt and

Horton chose to present in the form

47

A= A(x)e* p=kz—wt (3.67) |

is thus specified by

1
asg = =1

1
2 ?
cosh”(\/asu¢) 2 (3.68)

1 1
Y= z\/{.«)2 -|-wp(2)(-2-I0 - 1) z—wt

IO =48 =1




In our approach, we have presented the field amplitude in a general form given
by
A = A(z)e' , p =koz —wot— P(z) (3.69)

where ko and wy are the constant wavenumber and frequency connected by
the equilibrium dispersion relation, and v(z) is the phase shift. The intensity
profile for purely relativistic focusing is, as given by Eq. (3.61) with € =0,

I(£) = 4a (3.70)

1
cosh®(\/at) ’
where o = A2C; + 1. The constant C; can be determined by evaluating the
. profile at the center of the distribution, as was done in the case studied by

Schmidt and Horton:

1 wp2 (1
a=zlL = O= %’- (ZIO — 1) : (3.71)

The phase shift 1, as recalled from expression (3.36), is given by

P = (ko —f'\'l%(;z--l-cl) z

5 . (3.72)
— wy | Wpg,l
= <k0— -c—2-+—c_2—(ZIO —1)) z .,
and thus the complete solution is specified by
1 1
I(§) = p———— , a=-=1I
h? 4
cosh®(y/af) (3.73)

1 1
(€)= z\/wg +wpd(7o —1) 2 — wot

Therefore, for a given frequency w = wy, the solution discovered here coincides

within a factor of two with the one obtained by Schmidt and Horton. The
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difference of the factor of two will be discussed in detail later when we are

comparing the critical intensities for self-focusing.

The more interesting case, including the ponderomotive effects, is ob-

tained by letting the parameter € equal to unity. The profile then becomes

a 1
I(¢) = — , 3.74
(&) a — 3 cosh®(y/af) (3.74)
The condition on «, given by (3.62), is now
1
O0<a< = (3.75)

4

which suggests that we replace the constant o by another constant x? defined
by |
(3.76)

AN

The intensity profile can now be written in terms of a single parameter « as:

K2 1

— k2 cosh?(k¢) (3.77)

I(é.) =71

The interpretation of x is obvious: it is the inverse of the beam width in units

of the collisionless skindepth.

The parameter « is found to be directly related to the peak intensity
of the profile at £ = 0. Evaluating the intensity at £ = 0 we obtain

2

K
ry
which can be inverted to yield
1 I 1
2 __ = 0 -
/~c—41_'_1_0<4 , (3.79)
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which is consistent with the definition of x given earlier. The total power of the
beam can be expressed in terms of k, too. If we define a normalized power, P,
of the laser beam by
+-c0
Pz [ ned (3.80)
— 00

then, for the profile derived above in terms of the parameter &, it becomes

K2 +oo 1
Fn = 1 _k? cosh? (k&)
3 —o0 (3.81)

The profile we have thus derived bears a close resemblance to a soliton:
for a soliton with a sech?- profile, if the width of it scales as %, the intensity

scales as k2. For the profile obtained here the intensity scales as -%-'-}2;5 .

It is also important to notice that phase modulation is necessary for
a nontrivial solution: If one assumes no phase modulation, ¥ = 0, the profile
one arrives at is that of a plane wave, I(£) = const. This is because no phase

modulation implies 2 = 0.

As a final consideration of the asymptotic profile we will investigate
how the profile looks for relativistic amplitudes, a> > 1. It could be quite
plausible that the qualitative behaviour of the profile could be different at these
amplitudes. We shall here include both the relativistic and the ponderomotive
effects and thus set the parameter € equal to unity in the differential equations
for the amplitude. The first order differential equation for a genez“al value of

amplitude, as recalled from Eq. (3.47), can be rewritten as

do _

dé i\/[(nz —1)a? — 2] (14 a?) +2(1+a2)3/2

=:l:\/[(/s2—1)a2+2(\/1+a2—1)] (14 a?)

(3..82)
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Changing variable according t0°®
u(é)? =a(€)* +1, (3.83)

~ the equation becomes

du
— = ++/(u? — 1)[(k? — Du? + 2u — (1 + &2
% ==/ D - ) ) 05
— /@ - DEF D - Du+ A+ )] -
Introducing yet another variable defined as®®
y(§) =u(§) -1, (3.85)
the differential equation can be written as
fl—g =£+/(k2 - 1)y +2(2x2 — 1)y + 42 y , (3.86)

which can be recognized as an elementary quadrature and which, upon integra-

tion, yields

1 1
4+ Cs =— — 1In|-{24/4x2[(k2 — 1)y? + 2(2K2 — 1)y + 4k2
§+Co=—g Il V4r2(( )y + 2( )y ] (3.87)

+8x% 4+ 2(26% — 1)y}| .
Defining E = exp (—2x(€ + Cs)) and inversing the relation we obtain an implicit

expression for y:

+ By = 4r+/(k2 — 1)y? + 2(2k% — 1)y + 4k% + 8x% +2(2* — 1)y . (3.88)

The solution to this equation is given by

+16x2%2E

VEETF4EQRE 1)+ 4 (3:89)
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Unraveling the changes of variables made on the way the solution for the inten-

sity becomes

;g ERABEYRE (3.90)
Tt [(E+2)?F8k2E] ‘

Since the intensity has to be positive, and the variable E is positive definite,

we have to choose the upper sign in the expression for the intensity. As in the
nonrelativistic case, we want to center the profile at £ = 0. The maximum
of the profile takes place at E = 2 corresponding to the integration constant

Cs = ~% In2. The amplitude profile centered at £ = 0 thus becomes

4 —ké (,—2KE 1
L G 2 (3.91)
(e72K8 + 1) — 4k2e288 7
which can be rewritten in terms of sech-function as
_ 2sksech(x)
T 1— k2 sechz(/s:f) '

The profile is seen to coincide with that derived for the nonrelativitic amplitudes

(3.92)

n

when both profiles are evaluated for k? < 1. The important feature of the
solution for general amplitudes is that it is qualitatively similar to that obtained
for the nonrelativistic case, i.e. the profile has only a single hump’. Figure 3.1

shows the profiles for various values of maximum amplitude ap,.

Rewriting the basic differential equation, Eq. (3.82), in the form
da

(d—g)z +V(a) =0, (3.93)

we obtain an expression for the characteristic potential for the system:

V(a)=—(1+a®)[ (k¥ = 1)a® +2(v/14+a® -1)]. (3.94)
In Fig. 3.2 this potential is plotted for various values of the beam parameter .
It is seen that for all possible values of % there exists a homoclinic orbit. This
homoclinic orbit corresponds to the soliton-type profile we derived analytically

above. The other possible orbits most probably correspond to multisolitons.5”
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'Fig. 3.1 - Soliton-type Beam Profiles - Solutions to the equation
for asymptotic beam profile as given by Eq. (3.92) are plotted “»r different

values of &.

3.5 Hamiltonian Dynamics of Laser Light

In this section we shall allow variation in the direction of propagation
(which in our model has been chosen parallel to the z-axis). We then wish to
study the dynamics (in the direction of propagation) of the laser light under the
combined influence of relativistic and ponderomotive effects. We still assume
that the system has reached a stationary state where there will be no net force

acting on the electrons so that we can use the model for electron response
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Fig. 3.2 - Potential Approach - The potential curves corresponding to

the beam profiles shown in Fig. 3.1 as given by Eq. (3.95).

derived in Section 3.2.

As our starting point we use the basic evolution equations (3.27) and

(3.28) derived for the laser beam in Section 3.3:

o (), 10 8an 1 N _
0 or a.r or or S g az (3.05)

0z
2 2 2
(% _ g2 _‘-ia On @.)
<02 k0> an, 0z2 +<az ’

54



and

B Pl = sl = miia ol G (3.96)

a2  dd? O a 0 81,!) 0 ( 8¢>
As with the model for electron density, also here we assume marginal variations
and disregard all second-order derivatives in the z-direction. Equations (3.95)

and (3.96) then become

_2k06¢+(8¢> 1 0 dan 3 N, _

—_— —_— + —
0 or anT 07' or J1+a2 (3.97)
w
(3-4)

Oa%  Oai O  af 0 O¢
0z +0r 3r+r6r ar

and

—ho—== =0 . (3.98)

The zeroth-order solution corresponds to a situation where all the

derivatives can be neglected:

an, = constant = qq
(3.99)
¥ = constant =¢ ,

i.e., to a plane wave. From Eq. (3.10) it is seen that a uniform plane wave does

not excite net fluctuations in electron density:

1

Ne

Therefore the zeroth-order solution yields the familiar dispersion relation for
electromagnetic waves in plasma:

2

1 1 _ W0 g2
N ira @ |
. ° (3.100)
= wh = %k,

1+ad
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in agreement with our initial definition of wy and kg. The square root factor
dividing the plasma frequency is due to the mass increase of the electrons that

follow the oscillating field:

eE eA
Posgce = ——— = —
wo c
P3sc e?A?
= Yose = \/1 o T \/1 +t o5 (3.101)
=+/1+ad2
= Mrel = YoscM = 1+ agz m

Using the zeroth-order dispersion relation, we write the first order am-
plitude equation in the form

o 1 ,(0p\* 1 0 da,
“a?+_{<53~”> e 0r O T
1

v (3.102)
— ¢ =0
A2 [\/1 +a2 \/1 +a0]}
Equation (3.102) has the form of the Hamilton-Jacobi equation,
%j— +H=0 , (3.103)
when we identify :
action S — -y ,
(3.104)
time ¢t — z
and
2
Hamiltonian H — -1—{ ( ) -1—--597 %+
) . OnT : " (3.105)
A_{\/1 T it ag]}
The canonical momentum is then given by
__% (3.106)

p'l‘ ar )
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and the Hamiltonian can be alternatively written as

1 ., 1 0 Oay,
H=s i~ o5 o
N, 1

1
N ira Vira

Applying Hamilton’s equations, with z corresponding to "time”,

(3.107)

I}

dr O0H
dz ~ Op,
dpr _ OH

= N

dz - Or

(3.108)

the relation between the canonical variables r and p, is found to be

dr 1

peial e (3.109)

and Eq. (3.98) for phase will give the conservation of beam power. The beam

E/I-dS=27r/Irdr:£/|El2rdr
2
_ %o 2
——4c/a rdr

power is defined by

Thus (aside from a constant factor) the rate of change of the beam power in.

variable z is

dP da® dr
— x | —rdr + a*r—

dz dz
/{ - 37‘ <a27'——> }rdr
2 o d a8 (3.111)
/{ 6rdz+r8r< >}rdr

a® 1 Oa® a® 8
=/{ dz + E_ or prt kor??-;(rpr) }rdr

(3.110)
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On the other hand, with the Hamilton-Jacobi formalism the phase equation
(3.98) can be written in form
da®*  9ad? a9
R B P T () =0

_a_cﬁ_i_la_az +a2'6( )=0
0z kg Or Pr kor Or TPr)=

(3.112)

But according to this equation the integrand in the expression for the rate of
change of power is seen to vanish, and thus the beam power is, under these

approximations, conserved:
dP
dz

0 . (3.113)

From Hamilton’s equations we can also derive an equation of motion

for the beam rays:

£ _ 1,
dz?2 ko dz
1 6H
= —k—OE'- (3.114)

_ __}_ﬂ{i_%_ 10 /(.0 )
O 2k2Or '\ M2\ /T+a2 ardr \ Or
In order to discuss the global properties of the optical beam, from hereafter we

assume the form of the solution near the beam axis to be Gaussian:
1 r2
a=ame 2wt r<uw (3.115)

where an, the value of the amplitude on the beam axis, and w, the width of
the beam, are slowly varying functions of z . This assumption allows us to
carry out the calculations analytically, but at the expense of reduced accuracy.

The solutions obtained using paraxial approximation are somewhat different

o8

from the solutions for the wave equation using the full slowly varying envelope .



approximation (see discussion in Ref. §2). This discrepancy arises because the

paraxial approximation forces the beam into Gaussian shape at all times.

Substituting the paraxial (Gaussian) trial function into the ray equation
Eq. (3.114) we obtain

?r 1 {97' 1 r a? i A2 a? y
dz?  2k2Vwt A2w? (1442320 w?1fa?
P2 2 g2
(-2 t s

2

1 a '

e ———— 3.116

w21-|—a2>< ( )
AP (P LR

w? w? 1+ a? w2  w?l+4a?

2 2 2 2
_ol (g% Y_4r & [([{__% _ 1}
w? 14 a? w* 1+ a? 14 a?

Our primary interest is not in what happens in the outer skirts of the beam
but rather in what takes place near the beam axis. Therefore we shall evaluate

the ray equation, Eq. (3.116) in the near-axis region by letting
r = ew , €1 , (3.117)

and neglect the second-, or higher-order terms in e. Expanding the Gaussian

intensity profile in this manner we see that the first term is sufficient:
a(r = ew) = am + O(€?) . (3.118)

The ray equation now becomes

6d2w N {2 1 aZ, [ 2/\§ a, ]
dz? 2k ‘'wd  A2w (14 a2,)3/? w? /T + a2,
1 a? a? a2 (3.119)
2 _9m g0 Zm _o9fog__Tm
+w31+a$n[ ¢+ 1+ a2, ( 1+a,2.n>]}

+ O(e?)
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Reintroducing the normalized intensity, I = a2,, and rearranging the terms, we

can write the equation in a more simplified form:

Po_1,1 11
dz? k2 'wd 2)\2w (1+I)*?

_i_f_[1+__1_]+i(_{_>2} |

(3.120)

1+ wd \1+417

which is formally the equation of motion for the beam radius, w(z). The terms
on the right-hand side of the equation represent the forces acting on the beam
'ra,dius. The first term stands for the diffraction of the beam due to the ﬁon—

uniform radial profile. The other terms represent plasma lens effects.

3.6 Self-Focusing of Laser Light in Plasma

In the limit when the intensity goes to zero, the inherent diffraction
of the beam overcomes the plasma focusing (which is, of coufse, what ha.ppéns
also in the absence of plasma, when all but the diffraction term disappear) and
we recover pure Rayleigh spreading. In this limit the equation of motion, Eq.

(3.120) becomes

d*w 1
—_— = 121
dz?  kiw? (3 )
which upon integration in z yields
22
w? = wi (1 + —2> , (3.122)
RL

where Rz, = $kowf = mwo (—’,{’—OQ) is the Rayleigh length, z=0 was chosen as the
location for the beam waist: w(z = 0) = wp, and the initial divergence was
assumed to vanish. As the intensity increases, the effect of the plasma focusing
becomes more and more important. until it equals in magnitude the effect of
the Rayleigh spreading term. This situation corresponds to zero force in the

equation of motion, and thus to a constant beam radius, w(z) = const.



Self-focusing occurs when the "total force” acting on the beam radius

is negative in Eq. (3.120). From Eq. (3.120) this happens when

2

1
1-2I < E%I\/l—!-I , (3.123)

c

or, removing the normalization and rearranging terms,

1+

e? B2 by, <mwOC)2 _ g

> 2=
2 - w2[ eE

— (3.124)

2
Equation (3.124) defines the critical intensity as a function of plasma and laser
parameters, Icr(%f), above which the self-focusing dominates defocusing. That
- is, if the initial intensity of a laser beam is higher than the critical intensity, the

beam will start to focus as it enters the plasma.

It is instructive to carry the particle analogy of the ray dynamics further
and calculate the effective potential responsible for the defocusing/self-focusing
of the beam. We.let P, = Iw? be the power at the entrance to the plasma,
and, according to Eq. (3.113), we assume it to be practically constant: P,(z) ~
P,(0). Integrating the force term in Eq. (3.120), we write the equation of

motion in the form

d?w ov
== (3.125)
where
1.3 1 1 P,
Vo) = g G e (14 3)
11 1 (3.126)
+—— + constant}

2
20 1+ B

is the Sagdeev potential for the beam radius. It is important to notice that
this potential cannot be applied as such for all values of beam radius — the

potential diverges as the beam radius goes to zero, V(w — 0) = —oo . This
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feature can be traced back to the model for electron density:

Ne(r—0)=1-2 (%) \/1f+_I +0(e%) . (3.127)

From this expression it is seen that the model describes the early stages of the

laser-plasma system correctly. As the beam narrows and the laser intensity
accordingly increases, the electron density near the beam axis is depleted even-
tually reaching zero for sufficiently high intensity (sufficiently narrow beam).
For intensities higher than this, the electron density should remain zero. In the
model, however, the electron density will become negative for these intensities,
corresponding to an unphysical situation as described in the end of Section 3.2.
- This fault in the model results from the assumption of immobile ions — in

reality, by the time the electrons are depleted, the ions start following them.

We find the intensity I, and corresponding beam radius w, at which

the depletion of electrons near the axis happens:
N, =0

2
wy, _
#E\/l-‘i—Iv—QIv s

(3.128)

where I, = %‘g. The beam radius corresponding to vacuum fbrmation is plotted
as a function of the invariant beam power in Fig. 3.3. For w < w, the equation
of motion as given by Eq. (3.120) is not valid as such. As the vacuum is formed
in the axial region, the plasma lens terms should disappear and we should
recover pure Rayleigh spreading. This defect of the model can be remedied by
writing the equation of motion, Eq. (3.120) in two parts:

d*w 104 I 1 2 (I \?
?1?=_k_g{$1+1[1+1+1]"55<m>
1 I 2
+)\Zw(1+1)§—55

(3.129)

}'for WS> w,
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Fig. 3.3 - Vacuum Formation - The beam radius wy(Pr) and intensity
I,(P,) corresponding to complete electron depletion on the beam axis, as
functions of the normalized beam power P,.

and <h

d*w 1 :
F = k_g-w—s for w<w, . (3130)
where the plasma effect is absent once the electron density becomes zero in
Eq. (3.127). Equation (3.130) contains only the vacuum Rayleigh diffraction.
Integrating the right hand side of Eqs. (3.129) and (3.130) with respect to w ,

the potential becomes

1.3 1 1 P,
Vo) = gy praae (14 =)

1 1 1 (3.131)
— } for w> w,

A2 /1_1__133_ 2)2

L
2

€
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and

1
V() =5 (%% + o) for w<w, | (3.132)

where
111
2N I1FT,

and the constant of integration has been chosen such that the potential vanishes

1 - Ly
112-1 —iln(l-i-f,,)—l-

¢ 2w2l+4+1I, P,

1], (3.133)

at infinity.
To see the qualitative nature of the potential, we look for its extrema

by setting the first derivative equal to zero. This leads to an equation for the
extremum radius, w, ,.
Pn Pn Pn .
—4/1l+—==2(1-2— 134
AT w?) (3:134)
from which it follows that an extremum exists only if the normalized power

satisfies the condition

P, < P.,=2)\ . (3.135)

Calculating the second derivative of the potential we determine that the ex-
tremum corresponds to a maximum, and for P, > P, the potential behaves
qualitatively as shown in Fig. 3.4. The qualitatively different cases for the
beam radius are also indicated. It is important to note that the cusp in the
potential at w = w, is a mathematical artifact arising from our model when

N, — 0.
Thus the condition for self-focusing is
P,>P,=2\ . (3.136)

or, in terms of the normalized intensity,

)\2
L 22— . (3.137)
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Fig. 3.4 - The Classical Particle Analogy for the Beam Radius -
For a given initial power of the beam, P, > P.,, and initial beam radius
wg, the behavior of the beam radius is determined by its initial divergence
(or convergence). Four qualitatively different processes can take place: (1)
With very large initial divergence the beam misses the attractive part of
the potential and diffracts to infinity. (2) With large initial convergence,
the beam focuses until it hits the diffractive part of the potential and then
diffracts to infinity. (3) The beam has vanishing initial convergence and gets
trapped. (4) The beam has vanishing initial divergence and, after initial
defocusing, gets trapped.

Defining the beam power by

2
P=c / Egr) omrdr = %E?,,w"’ , (3.138)

where E,, is the field amplitude on the axis: E,, = E(r = 0), the critical power
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is given by

2 2 2 .
Py =< (T°—> 20 100w (3.139)
4\ e/ wpy Wpo

The threshold power obtained here compares favorably with work done
earlier on the subject. As mentioned earlier, Schmidt and Horton®® addressed
the possible self-focusing of a laser beam in plasma including relativistic effects
only. They found that the focusing effects dominate over the diffractive effects

once a threshold given by the normalized power,
Pnsu =\l (3.140)

is exceeded. If we repeat the analysis given above for relativistic effects only,

we find that our threshold power remains unaltered:
Pore =222 . ' (3.141)

Therefore, aside from a factor of two, the result obtained by Schmidt and Horton
agrees with the one yielded by the analysis given here. The difference of the
factor of two is in this case actually a difference of three factors of two combined:
First, as mentioned earlier, Schmidt and Horton used linearly polarized wave
whereas a circularly polarized one was used in this work accounting for one
factor of two. Secondly, Schmidt and Horton expanded the relativistic gamma
before obtaining the expression for the threshold power thus introducing another
factor of two. And thirdly, Schmidt and Horton never assumed any specific form
for the profile (e.g. Gaussian, as was chosen here). Therefore, what they call
the width of the beam wgy is somewhat arbitrary. In deriving the threshold
power they replace the transverse part of the Laplacian (in slab geometry) by

the inverse of the width squared,

d? 1
T wSH
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whereas in our case, evaluating the (cylindrical) Laplacian near the beam axis

we obtain

Sor—A—o —A o (3.143)

and the third factor of two is revealed.

An important consequense we wish to emphasize is that the threshold
power for self-focusing is entirely defined by the relativistic effects. This seems
quite reasonable because, as discussed in Chapter II, the relativistic effects are
practically instantaneous whereas it will take a finite time before the pondero-

motive effects can produce the lensing effect necessary for the self-focusing.

The analysis carried out by Felber®? who assumed quasineutrality and
an equilibrium in which the ponderomotive force is balanced by the thermal

pressure, yielded the following threshold power for the self-focusing:

Por=4\% (3.144)
where Ap is the Debye length. It is formally similar to the condition obtained
by Schmidt and Horton and ws, but the scale length of Felber’s system is the
Debye length rather than the collisionless skindepth. This implies a strong
temperature dependence of the plasma response, which could cause thermally

unstable plasma profiles in the quasineutral regime.

Another comparison can be made with the filamentation mode.5® Felber
and Chernin®® have found that laser light in a plasma goes unstable with respect

to filamentation when

1
ekiw? > = (3.145)

C= 5

[NV
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where

ko = unperturbed wavenumber of the laser field,

€ .
6 =—— evaluated near the beam axis,
€0 n

where the electric field can be approximated by a plane wave, (3.146)
e = scalar dielectric constant of the plasma, and
€y = dielectric constant evaluated near the beam axis.

In the short pulse regime (immobile ions) the plasma response may be described

by the dielectric constant

2
w N,
=1-—(=2£ z 3.147
‘ (w) O (3.147)

where N, is defined by equation (3.10). This gives

1/ w 2
C*'z‘(x)

The condition for a plasma to go unstable against filamentation in Eq. (3.145)

2

1 I, A\ I,
SATFLNE (E) TEAL (3.148)

is now equivalent to :
- ) 2
L1+ 1,>2 ("J) (1+1%) , (3.149)

which, for nonrelativistic amplitudes (I < 1), resembles the condition for the
self-focusing given by Eq. (3.123). Thus the self-trapping of the laser light seems
to be closely related to the filamentation instability, at least for nonrelativistic

amplitudes.

After addressing the question “to focus or not to focus”, we shall now

study what happens to the beam after initial self-focusing,.

According to our analysis above, provided that the beam power (or

intensity — notice that for P, > P., also the condition (3.123) for intensity is
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satisfied) is high enough, and that the initial divergence, %‘;", is small enough (in

our analysis the initial divergence was assumed to be zero), the beam entering
the plasma will self-focus. In our model there are two possible mechanisms
to halt this focusing. Either (1) the self-focusing continues until the intensity
reaches a high enough value for electron evacuation to take place (cf. Eq.
(3.128)), after which the central beam is propagating in vacuum and will thus
Rayleigh spread, or, (2) the natﬁral diffraction of the beam, which increases with

decreasing beam radius, takes over the fbcusing as the beam shrinks to small
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enough radius. The equation of motion for the beam radius, Eq. (3.120) shows

that the net force guiding the evolution of the beam radius is still negative for
the evacuation intensity I, given by Eq. (3.128). Therefore we conclude that,
within the framework of our model (including the assumption of vanishing initial
divergence) the electron depletion (and thus the vacuum duct formation) will
always take place once the self-focusing has begun. If the beam has a substantial
initial divergence, it is possible that the diffraction takes over before the electron

depletion occurs.

After the beam has shrunk enough to bring about the electron deple-
tion, it will thus propagate in vacuum and start to diverge. The diverging beam
will encounter ever increasing electron density outside the central vacuum duct.
The beam will now have two options depending on the initial divergence, which
in the classical particle analogy plays the role of the kinetic energy. If the ini-
tial divergence was large enough, the beam will diffract forever. However, in
the case of vanishing initial divergence, the plasma lens effects brought about
by the increasing electron density will eventually dominate, and the beam will
start to focus again. These different cases are illustrated with the help of the

classical particle analogy in Fig. 3.4.



In what follows we study the behavior of the system in the situation
where the potential has an attractive part ( i.e. P > P, ) and the initial diver-
gence of the beam is vanishing. Then, according to our model, the beam will
self-trap, i.e. the beam radius will oscillate around an equilibrium value corre-
sponding to the minimum of the potential. The oscillations are not, however,
symmetric since the potential is not symmetric across the minimum. This asym-
metry arises because the physical mechanism responsible for the self-focusing
is not the same as the mechanism that causes defocusing; self-focusing is due
to the nonlinear interaction between the laser wave and the plasma, whereas
defocusing is due to the absence of plasma. Thus the forces responsible for the

different phases are necessarily different.

The equation of motion, Eq. (3.120) in the neighborhood of the mini-

mum of the potential, wy = w,, can be rewritten as

dw . OV v

a2 gyl t ey (v o)
¢ | 5, _

=gz Tk {=-8 ,

(3.150)

where
E=w—wy |,

4
IH = 'a—w|wo ; and
A%

l€2 = WIWU

Equation (3.150) has to be applied separately in the defocusing and self- fo-

cusing regions, because the quantities x and S have different values in these
regions. We shall denote the quantities related to self-focusing and defocusing

phases by subscripts 1 and 2 , respectively.

Consider now a laser beam with initial radius w; and initial divergence

w} . Assuming that the intensity of the beam is high enough and w} is weak
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enough, the beam starts self-focusing as it enters the plasma and the solution

for this phase is given by

1

&1(2) = A—, sin(k12) + (Ao -+ é—;—) cos(Kk12) — —'i% , (3.151)
1

2 —

where Ag = w; —wo , Af = W}, kK = P3_‘f ,and f; = 1w . After half of the
0 0

period, at z = z9 = n—1r1 , self-focusing gives way to defocusing and the beam

starts to obey the second solution
€2(z) = Asin(kqz) + B cos(kaz) — '6— , (3.152)
K3

where
1 3- SIZ - 117,

K3
T GRS A
ﬂ:—.i _2_2[,,—1_*_ 1 I,
2_—k2 wd (14 1,)? /\ﬁw(l_{_j)% '
Matching the two solutions at z = z; we obtain the amplitudes A and B, and

il
©
=}
0.

the solution can be written i in the form

£2(z) = {& - il Ao}‘cos(%w — Koz)+
K o ! (3.153)
(ﬁ> sin(ﬁw — Koz) — ]
Ko K1 Iﬁ?%

The behaviour of the beam radius in the case of self-trapping is sketched in

Fig. 3.5.

The shortcomings of our model are now obvious from the expressions for
the beam radius. For w = w, to be a true equilibrium value, the constant terms
in the expressioné for the beam radius should disappear since they correspond
to the first derivative of the potential at that point. The problem lies égain
in the model for the electron density and in the fact that, in order to prevent

the electron density from getting negative, we wrote the potential in two parts.




cos(k2z) cos(k12)

beam axis

Fig. 3.5 - Self-trapped Laser Beam - In the case of a trapped solu-
tion for the equation of motion for the beam radius, the beam radius will
undergo oscillations. Since the effective potential is not symmetric across the
equilibrium radius w,, these oscillations are asymmetric with characteristic
wavenumbers k1 and k.

Therefore the equilibrium radius w, is a forced one, located at the kink of
the potential. The true form of the potential at w = w, should, of course,
be smooth. Despite of this weakness of the model, this analysis gives us a
qualitative picture of the behaviour of the beam as well as an apﬁroximation

for the equilibrium beam radius w,.

For very high powers it is not correct to treat the ions as infinitely
massive because in reality they start following the electrons. For the present
model to be self-consistent the characteristic time #; for ions has to satisfy

ti > tpulse , Where t5y14 is the laser pulse length.
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The equation of motion for ions gives the acceleration:

(3.154)
where M is the ion mass and the radial electric fleld is given by Gauss’ law:
10
e (rE,) = —4medn,

Using Eq. (3.10) for the fluctuations in the electron density we obtain

2R
=4 il - . .
E meny (w ) rm (3.155)

(The integration constant was set to zero in order to make the electric field
vanish at infinity). The electric fleld is seen to vanish on the beam axis, and
since we are looking for the maximum value of the electric field, we have to
evaluate Eq. (3.155) away from the axis. Because of the exponential radial

dependence of the intensity, we can approximate /1 + [, ~ 1 and obtain
By~ ——rle~m /%" (3.156)
ew

where we have used the defifiition of the collisionless skindepth, A, = a";— The

maximum electric field is found at r2 = %wz :

7’)’&62

Ermas ™ 04— (3.157)
ew
2
or, equivalently, recalling that I = %Z- <1,
E mazx AC ’02
EErmaes _ 04252 (3.158)
My C w

Using this value for the electric field in expression (3.154) we find

2

) m 1lv
V; R 0.4—-——;«:2

Mwc

(3.159)
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Taking all the electrons to be displaced by the vacuum channel radius w, ,

2
given by 3¥,/1+(2)? = 2(%2)? , we get a rough approximation for the ion

oscillation time:

M w, ¢ 1
i 0.2m A vgwy (3.160)
>t~ 10——1— R ].40i ,
m wp Wp

for a hydrogen plasma. The laser pulse length should be sufficiently shorter
than t; given by Eq. (3.160). .

3.7 Plasma Fiber Accelerator

The picture of laser self-focusing given in the preceding sections ap-
pears very suitable for the plasma fiber accelerator scheme.?” Assume we have
produced a rarefied channel around the beam axis in the manner described
above. This channel acts as an effective plasma waveguide thus providing a
longitudinal component of the electric field. Letting & denote the wavenumber
of the wave parallel to the waveguide, we have the familiar result for the phase
velocity of an electromagnetic wave in a waveguide:

v = “l:—l‘l’ >c . (3.161)

Thus, although the plasma waveguide provides the longitudinal component of
the electric field necessary for particle acceleration, the phase velocity of the

field is too high for efficient coupling to the particles.

If, however, the walls of the waveguide are rippled instead of straight as

shown in Fig. 3.5, the system pro{rides a slow wave structure of electromagnetic

waves 260

w

N (3.162)

'Uph
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where « is the wavenumber of the ripples. (The ripples are called irises in ac-
celerator physics, and a "rippled” waveguide is called a loaded waveguide). By
varying the parameters of the laser-plasma system we can adjust the wavenum-
ber of the ripples and can, at least in principle, provide ideal coupling between

the wave and the particles:
Uph = Uparticle ¥ C . (3163)

The proper wavenumber of the ripples « for this case can be obtained using the

dispersion relation, w? = c?(k2 + k%),

Cc = d = k2+7r—2____(.:___
ko + & 0 w% ko + & (3.164)
I}
4 w?

Using this expression we can check the self-consistency of both the
marginal and the eikonal approximation. In the radial direction, from the Eq.
(3.128) for the radius of the vacuum channel it is seen that it satisfies the

condition for eikonal approximation:

Wy L A K Ao - ' (3.165)
Therefore
1 Wy
Lripple = ; ~ (':—\—0—) Wy > /\0 ’ ) (3166)

and the eikonal approximation is valid also in the z-direction. Furthermore,

since

Lripple > Wy : . (3167)

the marginal approximation is self-consistent.
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The parallel electric field available for accelerating particles is roughly
given by?®!
E”_]_ T 5w1§<1 ™

Er  2kow w2 = 2kow

(3.168)

2
where 6—:} describes the fraction of plasma density that forms the ripples, and
b4

Er is the transverse laser field.



Chapter IV
Numerical Model for Self-Trapping
4.1 Motivation for a Numerical Model

The theoretical study of the. previous chapter provides us with great
promises: it seems that the problem of reduction of laser intensity due to diffrac-
tion can be overcome with the help of nonlinear self-focusing, and the phase
mismatch between the laser fields and the particles to be accelerated can be
eliminated by a rippled plasma wave quide. However, the laser-plasma system
. is extremely complex and so, in deriving these predictions, we were forced to
employ several approximations. Therefore it is desirable to have a means to
verify the validity of these predictions. Many potential disasters can be avoided
and valuable insight gained if, before setting up elaborate experiments with real

plasmas, the problem is further explored with computer simulations.

The interrelation between high frequency electromagnetic waves and
plasma oscillations has been an active area of research, and computational
efforts are fairly well documented.?%2422 However, the investigation of the beam
dynamics over longer time scales and larger spatial extent is less developed.
Some attempts have been made but these tend to lack self—consis"cency.26 It 1s
of vital importance, therefore, to develop a numerical model that encompasses
time scales much longer than the radiation time scale and that can follow the
overall dynamics (i.e. transport) of the optical beam. Only with such a model
one can fully study, for example, the long time scale evolution and transport of

the beam in applications to the beat wave accelerator?? and the plasma fiber
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accelerator.3”

Most numerical studies of laser self-trapping have been attempts to
numerically integrate the field equations using various models for the plasma
response. There are very few papers: reporting studies of self-trapping using a
. particle simulation code.53:62:63 The difficulty in using a conventional particle
simulation code to simulate the self-focusing of a laser beam including the pon-
deromotive effects lies in the disparity of time and spatial scales of the problem.
The electromagnetic radiation has typically very high frequency (unless it is in
resonance or propagates in an overdense plasma), wo ~ cko, where kg is the
wavenumber of the wave and c is the speed of light, and so, in order to re-
solve the rapid oscillations, the time step of a conventional particle simulation
code has to be minute. The ponderomotive modulations, on the other hand,
take place in a time scale much longer than the laser oscillation period. An
estimate for the ponderomotive effects is obtained by finding the approximate
time it takes for the electron density to get deformed, i.e:, how long it takes
for an electron to drift a characteristic distance, say, the beam radius wy. As
described in the earlier chapters, the electron will experience net drift outward
due to the nonuniform iﬁtensity profile of the laser. Assuming that the electron
is at rest on the axis when the laser electric field starts acting on it, it will
accelerate during the first quarter of the oscillation period, Ty = 27 /wq, to a

maximum velocity roughly given by (for non-relativistic case)

€

E, (4.1)

C To/4
[vmaz]| < _e_/ Ey coswytdt
0

m MUV

During the second quarter of the oscillation period the laser field will, after

reversing its direction, slow the electron down to rest again. Thus the average
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velocity of the electron is, during the first half of the. oscillation period

°_E, (4.2)

1
<v> N~
2 muwyg

and the distance it has moved in this time is

T
AZpyr = <v> 30 = "\/ I, (4.3)

where I, = (e2E2 /m2w} c2) is the normalized intensity introduced in Chapter II.
The electron will then experience a force pulling it back towards the axis and
thus it reverses its motion. Since the electron is now displaced from the axis by
Atz,yt, the electric field acting on the electron is smaller than the field bringing

it out. The electric field accelerating the electron inward is given by
E;, = Eoe_Azgut/wg coswypt (4.4)

and so, repeating the simple calculation performed above, the distance the

electron traverses during the latter half of the oscillation period is given by
Azip ~ T Toe~8%0u/we = cfo VIne T (‘”°) I, (4.5)

where we have used ¢TIy & A¢ in the expression for Az,,:. Noticing that for

realistic beams A\ € wq and, recalling that we assumed the beam to be non-
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relativistic, I, < 1, we estimate the net outward drift of the electron during -

one oscillation period to be

T, 1 /)’ To [ Ao \?
Az put — Ammfvc—“«/ [ (1—1—6<—‘l> Inﬂ—_-%f(w—Z) 32,

(4.6)
So the fraction of the beam radius wgy that the electron traverses in one oscilla-

tion period is given by

3
Azoyt — Azip ~ i <_}L(_3_> Ig/2 (47)
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Thus, for nonrelativistic beams with rea,listic'beam parameters (Ag /wofSO.l)
the time it takes for an electron to drift across one beam radius is of the order
of 104T,! (This is actually not quite accurate since the electron will also have a
net increase in its outward velocity after each oscillation, as mentioned earlier.
Nonetheless, the fact remains that this second-order drift is very slow compared

to the laser oscillations).

Although it is not necessary for the electrons to drift quite this long
distances in order to produce a density perturbation significant enough to re-
fract the beam, an enormous number of time steps is required in order to both
observe the evolution of the beam under the ponderomotive effects and resolve
the rapid laser oscillations. The laser oscillation period and the ponderomotive
effects are not the only time scales present in the plasma laser system. Plasfna
oscillations involve the electron plasma frequency w, = 4—"71-'%2 which is typi-
cally much smaller than the photon frequency wg in an underdense plasma. In
what follows we concern ourselves primarily with underdense plasmas. There
é,re also time scales associated with ions (such as the ion plasma frequency wpy;,
and ion acoustic frequency koc; with ¢, being the sound speed) and those asso-

ciated with the transport of the optical beam (including diffusion, diffraction,

scattering and dissipation (depletion)).

A similar hierarchy of spatial scales can be discerned as well. They
are the electromagnetic wavelength, the plasma wavelength associated with the
plasma frequency and the Debye length, the dimensions of the optical beam (the
width and the length), and the transport length such as the depletion length.
The grid cell size is restricted by the wavelength éf the laser, which is much less

‘than the characteristic length in the problem, say the beam radius. Therefore,
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in order to simulate self-focusing including ponderomotive effects using a con-
ventional, 2 1/2 dimensional, fully electromagnetic particle simulation code, we

would need an immense grid and an unacceptable number of time steps.

Since a particle simulation is much closer to a real plasma experiment
than a mere numerical solution of the equations, we have pursued ways of
avoiding the practical problems mentioned above. In this chapter we present
a scenario conceived to circumvent the severe limitations imposed by the rapid

laser oscillations.

The present effort of model development may be regarded as an elec-
tromagnetic counterpart to the Zakharov model® of electrostatic pulses and to
the subsequent numerical calculations.®%%6 In Section 4.2 we present our model
of time-averaged (or phase-averaged) equations. The equations governing the
evolution of the electromagnetic fields and the particle dynamics are averaged
over the rapid laser oscillations as was done in the previous chapter. This way
only the secular changes in field quantities will be followed. Also, since typi-
cally the amplitude of the modulation is much smaller than the amplitude of
the electromagnetic oscillations, this scheme has the additional advantage of
making the signal cleaner by averaging out the masking dominant oscillations,
see Fig. 4.1. In Section 4.3 computational algorithmic considerations are dis-
cussed. Test results of the code are discussed in Section 4.4. The field solver is
tested by using the code to propagate a Gaussian laser beam in vacuum. The
soundness of the particie solver is then tested by following the propagation of

a plane wave in plasma. To test the particle pusher we use a nonuniform field

and monitor the collective behavior of the electrons.



n nUﬁ“I\\J(\ “W)Dﬂ

//rapid laser oscillations

Fig. 4.1 - Motivation for Phase-averaging - The secular behavior of
the system is masked by the rapid laser oscillations. Performing the phase
averaging of the field equations substracts the dominant oscillations and only

the slow evolution will be followed.

4.2 Mathematical Formulation

The basic idea in developing the mathematical model for computation

is to average the equations evolving the electromagnetic field and the equations

governing the electron motion (the ions are assumed to be stationary in this
first version) over the short laser oscillation period. That way we eliminate
the fast time scale of the uninteresting rapid oscillations and follow only the
slower time scales associated with the net changes in quantities of interest as
illustrated in Fig. 4.1. The averaging in space and time can be carried out

simultaneously prbvided the ansatz is chosen appropriately.

Consider the wave equation for the vector potential instead of the set of
Maxwell’s equations for the electric and magnetic fields. This is done because

averaging Maxwell’s equations over the laser oscillation period would lead to a
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set of trivial identities. Further, if we had chosen to study the wave equation in
terms of either electric or magnetic field, the plasma contribution would appear
as the time derivative of the plasma current, whereas with the vector potential
the plasma current as such appears in the wave equation. Writing the electric

and magnetic flelds in terms of their potentials,

E:—V@—%%—E, B=VxA, ~ (4.8)

and choosing the Coulomb gauge (for justification, see previoﬁs cha,pter),‘

V-A=0, (4.9)
~ the wave equation, rewritten from Eq. (3.14), becomes
1 %A 9 1_09% 4
=57 VA + - V—a-%- = (——c—-) J. (4.10)

As in the previous chapter, the electromagnetic fields are assumed to

- have circular polarization and the vector potential is written in the form
A(x,t) = a(x,t) exp {tkoz — twot — 1h(x,1)} (X + 1Y) , (4.11)

where amplitude a(x,t) and phase shift 1(x,t) are slowly varying (compared to
the laser oscillations), real quantities:

! |<< l |<<ko
(4.12)

=<k
'at|<<‘”°“ 'az|<<°“

The averaging over laser oscillations now becomes stra,ightforward for most
terms in the wave equation: |
L [ Apd =LA A% = o(x, 1)
T 2 ’

. . (4.13)
— /|A|2dz =z A A* = a(x,1)?,
0
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where A* is the complex conjugate of A. If we use Eq. (4.11) for the vector
potential‘and multiple the wave equation by the complex conjugate of A, the
real part of the wave equation yields an averaged partial differential equation
for the amplitude, a(x,t?), and the imaginary part yields an averaged equation

for the phase shift, ¥(x,t):

—g;;a—czvza-{-a (%%)2 EIVYP | + (wh —*k) a .
e (Draay
and
-%<a2%%>=c2v.(a2v¢)—za( %+c2ko g“) (‘“)1 (3-A%),
(4.15)

where use was made of the fact found in Chapter III that the term involving
scalar potential does not survive the averaging integral. Equations (4.14) and

(4.15) are essentially the same equations as Eqgs. (3.25) and (3.26).

In deriving an expression for the plasma current we assume that the
ions, being much heavier than the electrons, can be regarded as stationary
over the period of interest. This is motivated by our desire to operate in a
regime void of parametric instabilities. In applications to the beat wave accel-
erator or the plasma fiber accelerator it is important to make the length of the
optical beam sufficiently short so that it does not induce instabilities related
to ionic responses. This simplifies the experimental situations along with the
computational considerations. In what follows we confine ourselves to these
circumstances only. With the assumption of immobile ions the current can be

written in the form:
J = Z GaNaVa N —€NeVe . (4.16)
x
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The electrons are treated as a fluid when deriving an expression for the electric
current in the averaged wave equation. The electron contribution to the plasma

current is obtained by using the relativistic equation of motion:

ne-aa—tp-i-nev'Vp: —en.E — <ene)vx B-VP
¢ (4.17)
p =myv y=1/1+ 2
bl m2627

where P is the pressure of the electron fluid. (The subscript ‘e’ has now been
dropped from the electron velocity). We will expand the electron velocity (as
well as momentum) in terms of the normalized quivering velocity a, = & <1
introduced in the previous chapter. In order to include the ponderomotive and

- relativistic effects consistently, it is necessary to keep terms up to the second

order in a,. To incorporate the effects due to the electron density depression

we need to keep terms up to the third order in a,. Keeping terms up to the

- third order only we can drop the pressure term, because it is of the fourth order
in an:

2
VP|~ T.Vén, ~ 04 Vén, ~ [ 22} a2Vén,, = (418
th n
Vq

where v, is the quivering velocity introduced in the second chapter. As recalled
from the previous chapter, én. is of the order of aZ, and so
v\ 2 |
|VP| ~ (vﬂ) O(a?). (4.19)
q :

The equation of motion for electrons, therefore, can be written as

0
= (P1+P2+Ps)+ Vi -V(p1+Pp2)+Vv2-Vps

ot
OA

. ] (4.20)
— eVd + (-c-> 5+ (Z) (vi +va) % (V x A),

and the plasma current as

J =~ —eng(vy + vy +V3) — ednevy . (4.21)
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Here the subscript ¢ indicates the order of the quantity so that, for instance p;

is the electron momentum first order in a,.

It is important to notice that even though the thermal velocity of the
electrons does not contribute to the plasma current explicitly, it still affects the

current through the relativistic mass increase of the electrons:

)

7:\/1+ (Po + P1 + P2 +Ps)’

— (4.22)

where pg denotes the momentum corresponding to the thermal velocity. For a

cool plasma the effect of pg is, of course, negligible.

The electron momenta in different orders, as obtained from the rela-
tivistic equation of motion, are given by:
e
P1= (—) A)
c

0 e '
5;P2="V1- VP +cV&— (2)vix (v x &), (4.23)

5} e

5; P3 =v1-Vp2 +vy-Vp; — (-c-)vz x (V x A).
In order to express the momenta in terms of the field quantities only, we need
to define the different order electron velocities v;, 7 = 1,2,3. This may be done

by expanding the relativistic gamma in powers of an:

v=2L_
”
11
T\ 1+ Ee (4.24)
'Z_._L____{1_*_2P0'P1+P%+2P0'P2+2P0‘p3+2p1~p§]
1+ 2y m?c? + pg

With a short hand notation v = 4/1 + —n%g;;, the expansion gives

1 1
1— —5—=(Po-P1+5Pi +Po- : -p2)|. (425
[ m2ci? (Po-P1+ sP1 + Po P2+ Po-P3s T P1 pz)} (4.25)
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Using this expression for gamma we can now write down the different order

electron velocities:

2
1 1
vV =—— [Pl - <—> (Po 'Pl)Po}
m'yo mfyo
1 1\’ 1,
Vo —m—% {Pz - (%) [(Po ‘P1)P1 + (-2'P1 + Po 'Pz)Po} }
2
va=—{ps— (=) {(bo p1)pz + (55 + Po- Po)pa+t
3 ——m% P3 — Po * P1)P2 21’1 Po - P2)P1

(Po* P3 + P2 -pz)po}} .

~

" But the thermal velocity cannot contribute to the macroscopic plasma current
because its particle average is zero. Therefore, for our purposes, we can neglect

the terms involving po; hence the velocities contributing to the plasma current

vy = (.P.L)
m~o

vy = (B—) | (4.26)

m’)/o

1 1/ 1\,
Vvi=\—— ] |Ps— 5\ —— ) PiP1|-

mYo 2 m~o

where the terms with odd powers of the thermal velocity have vanished. Using

are:

these expressions for the electron velocity, we can now write all the different

order electron momenta in terms of the field quantities:

SO

9 e?
E P2z = eVo — (W) Va2 and (4:27)
0

§p3=_< - )[A-sz+(VA)'P2] ,

mayoC
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where we have used the fact that for a circularly polarized wave given by ex-
pression (4.11):
A-A=d (4.28)

The expression for the second-order momentum consists of only slowly
varying terms (@ and a) and it will be kept in the differential form. In the code
we will store py as a grid quantity and advance it explicitly. The third-order
momentum, however, consists of both slowly and rapidly varying terms, and
we find an expression for p3 by approximating the behavior of rapidly varying

terms by exp(—iwot):

pem i () A YR+ (VA) ol (420

The different order electron velocities are now given by

e (i) i ) o (& n s o)
(4.30)

Having expressed everything in the plasma current in terms of the field
potentials, we can now average over the rapid laser oscillations. As in the case of
the left-hand side of the wave equation, thié is done by multiplying the plasma
current by the complex conjugate of the vector potential and averaging over

the laser oscillation period. The first-order current is

J; = —engvy , and so

2 4.31
<—1->/J1-A*dt=—z<e”°>a2. (4.31)
To myeC
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The second-order current is slowly varying and therefore it vanishes

upon averaging.
Jz = —€engVva

1 1 '
— [ Jo A*dt~ —=—J,- | A*dt =0.
= T / 2 To ™ ? / 0

The third-order current calls for special care. It contains terms that
are not proportional to the vector potential. Therefore, if we multiply it by the
complex conjugate of the vector potential, unphysical terms will arise due to
phase mixing. To avoid this, the term not proportional to A must be averaged

using real representation. The third order current is given by

J3 =—e(novs +énevy) =
en 1 4.32
- (;7;-:)/90_) [Ps ~3 (meyo)? P?Pl] —ednevy . (4:32)

The two latter terms, being proportional to A, can be averaged using complex
p

<_T}_) /5nev1 CAXdt 2 ( ebne ) a?
mc
° 0 (4.33)

() foin wams

Averaging the first term in the expression for J3 we return to real notation.

notation:

Recall the expression for pg:

ps = —1t (mc70w0> [A -Vp: + (VA) . p2] . (4.34)

Carrying out the averaging term by term using the real components of these

quantities, we find

1 1
(ﬁ) /A ‘[A - Vpg]dt = (To) /AjA,‘@ipgj dt
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~ 0;pa; 1 A;A;di
To (4.35)
1

= Oip3; (§a26,~’j) for i,j =2,y

1
= §G2VT'P2 ,




() 8w 3 [ [
~ [G) aja+z'a,-¢] P, (%) / AiA;dt
1

1 .
=3 [5 (p2 - Vra®) + ia’ps 'VTSO] )

(4.36)
where ¢ = koz — wot — . Thus the averaged value of the first term in the

expression for Jj is

<—L) /Ps CArdE = — ( - ) {a2p2 - Vrip+
TQ mcyoWo

(4.37)
Z [GZVT ‘P2 + % P2 VTGZ] } ,
where we have used Vo = —Vrv, and have multiplied the term requiring

averaging in real representation by a factor of two. This is necessary to com-
pensate for the difference arising from the two averaging schemes (see e.g. Egs.

(4.28) and (4.35)). The averaged third-order current can now be written as

1 . e?ng 5 ea \° 8ne
— J; - A¥dt = a -2
To mypc mYyoc ng

(4.38)
1 . 1
+( )[a2p2-VT¢+z<a2VT-p2+—p2-VTa2>]},
maoWwo 2
and the total current is given by
2 2
(L) [3-aram () {o [ (i) -on]
Ty maypc myoc :
' (4.39)

1 , 1
+ ( ) [a2p2 Vb +1 <a2VT-p2+—p‘2-VTa2>] } ,
mYyowo 2
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where N, = 1+ % Using this expreésion we can now write the amplitude and

phase equations from Eqs. (4.14) and (4.15) as

0? _ 292 oY 2 2 2 o 2, O
&za—cVa-l—a (5?) -—C|V'l/)| -|—2(.Z wo—a—t--f—c ]COE
L o . ) . (4.40)
ea
()] () - () e
Yo mvyoC mYoWo
wd ey 5 5
5 (a 6t> ¢V - (a V¢) 2a (wo 5 + c“kg az)
(4.41)

2
1l fw w 1
—o () (22 Ve po+ 3 b2 Vid?|
2 \wp mg 2
The explicit electrons in the simulation code are needed for calculating
the electron density, N, appearing in the amplitude equation. The equation of

motion for electrons under the influence of an external electromagnetic field is

d 1 :
E pP= —CES — € (EM + zv X B> , (4:4:2)

‘where Eg is the electrostatic field due to the (possible) induced charge separa-
tion, Eps is the external electric field, and B is the external magnetic field. In
the case when the external eiéétromagnetic field is that of a powerful laser, the
external electric field dominates the other terms in the equation. We can thus
facilitate the phase averaging of the equation of motion for electrons by again
evaluating the electron momentum in different orders. As a matter of fact, this
was already done in the second chapter and, recalling the results derived in Ap-
pendix A, the phase-averaged equation of motion for electrons can be written

as
Z;lz p=—eEs —mc?V4/1+a2 . (4.43)
where we also recalled from Chapter III that the electrostatic field is a slowly

varying quantity. Thus the phase-averaged equation of motion for the electrons
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consists of two terms: the electrostatic force and the ponderomotive force, which

are both second order in the quivering velocity.

Equations (4.40), (4.41) and (4.43), consisting of the phase averaged
wave equation in terms of the field potentials and the equation of motion for
the electrons averagedhsimilarly over the rapid oscillations, constitute the basic
set of equations for our system in the slow time scale. As we remarked earlier,
they may be considered as the electromagnetic counterpart of the Zakharov

equations®® in electrostatics. In the following we shall try to solve these basic

equations.

4.3 Numerical Algorithm

From the form of the field equations one notices that the direction
of the beam propagation singles out. Furthermore, the transverse directions
appear only in terms involving inner products. This allows us to represent
the transverse dimensions by one scalar variable (instead of a two-dimensional
vector), which we will call ‘z’. The direction of beam propagation is labeled by

‘y’. With these conventions the amplitude and phase equations are as follows:

& _aorg . a| (2 _ 2ivup o 0
ét—za—cVa-i—a (E) — ¢*| V9| +2w0a[—é-£+c8—y]
i\ T 1 o (4.44)
1wy ea '\ 9 :
2 (70> ’ -<m7002> 2t <m70w0>p2z 0&:]
and
0 ( 200\ 5, 202 2 _ Oa Oa
a(a E)-c(aV¢+Va - Vb)) — 2woa E_!—c-é—g;
(4.45)

_L(wo) (w0 ) [p0p2s 1 Oa?
2 \wp med “ oe T2P5g | 0
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The code solves for the four interdependent quantities, a, a¢, ¥, and ¢
by the standard leap-frog integration over the four first-order partial differential
equations obtained from Eqs. (4.44) and (4.45). In addition the electrons are
pushed according to Eq. (4.43) and the electron density updated at every time

step. The structure of the code is as follows:
e initialize fields
e initialize particles
.' loop over the main program:
- push particle positions
- accumulate charge density and compute electrostatic field
- update the amplitude and the time derivative of phase shift

- calculate total force on particles and advance the grid momen-

tum by half time step
- update the phase shift and the time derivative of amplitude

update grid momentum and particle momentum

The boundary conditions are chosen to be periodic in both longitudinal
(y) and transverse (z) directions. This implies that we are simulating an infinite
number of identical, parallel beams. The width of the simulation system has to
be chosen large enough compared to the width of Gaussian beam so that the

parallel beams do not interact significantly with each other during the run.

The spatial differentiation could be performed using fast Fourier trans-

forms to retain as high accuracy as possible.%” Unfortunately, the theoretical
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behavior of the phase shift, 1, is such that at the edges in the transverse direc-
tion there is a discontinuity in the spatial derivative of . This discontinuity
is, of éourse, an artifact of the model due to the finite simulation box, but for-
tunately it takes place in the region where it should have no significance (the
amplitude, having Gaussian profile, has dropped to practically zero). However,
with Fourier transform this effect will no longer be localized, but the sharp,
unphysical structures will be instantaneously reflected all over the grid. For

this reason we have adopted finite differencing for the spatial differentiation.

To further suppress the artifacts arising from the finiteness of the sim-
ulation box, in the outer skirts of the beam (about 15% of the total width of
" the box) where the intensity has dropped off to practically zero, we use a bino-
mial filter on the phase shift and its time derivative to smooth out the sharp
structures arising from the discontinuity of the spatial derivative. The filter is
not applied at every time step but every fifth or tenth time step appears to
be sufficient to remove the unphysical high wavenumber components from the

system.

Furthermore, it is important to notice that whenever the amplitude
vanishes, the phase information is lost. This is reflected in the leap-frog equa-
tions in that the calculation for i, involves division by a?, an operation that
diverges as a vanishes. To circumvent this problem that has arisen from our
choice of independent variables (amplitude and phase instead of field compo-
nents) and equations (wave equation instead of the set of Maxwell’s equations),

we introduce a ghost factor in evaluating the time derivative of the phase shift:

by = (a®y) _ a’(a’ty) | (4.46)

a? at +62 ?

where €2 is a very small number (typically we have used €2 = (0.0001 - a —

(0.001 - ag)?). The ghost factor will have a negligible effect in the computation
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when the amplitude is finite, and it will prevent a divergence without altering

the value of phase shift when the amplitude vanishes.

Despite of these nice features of the ghost factor, one should be careful
in interpreting the simulation output in the outer skirts of the beam where the
ghost has a noticable effect. It is important to keep those regions as small as
possible. Thus we are in a situation where good compromises are necessary. In
order to prevent the parallel beams from overlapping we would like to have as
wide a simulation box as our resources would permit, but on the other hand
it is necessary to minimize the physically insignificant area in the outer skirts
of the beam, which not only doesn’t provide us with any interesting physics
" but also can be a source of all kind of numerical trouble. Experimenting with

different widths has proven to be the best guide in making these decisions.

In accumulating the charge density on the grid we have chosen to use
area weighing. This was done because the SUD-method ordinarily used in many
electromagnetic particle simulation codes produces unphysical spikes near the

edges of the simulation box where the situation is already troubled.

Initially the electrons and ions are loaded uniformly on top of each other
so that, since the ions are taken as stationary, the initial electron distribution

can be used for the constant ion density during the simulation run.
4.4 Testing of the Code: The Rayleigh Spread and Self-Focusing

We started the testing of the code by first testing the field solver sepa-
rately. This can be accomplished by removing the plasma altogether from the

code, thus simulating an electromagnetic wave in vacuum.

A nontrivial, meaningful test is produced by launching a beam with a
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Gaussian intensity profile:
a(t = 0) = age™=" /%5 | (4.47)

where ag is the initial amplitude and wq the initial radius of the beam. The

initial conditions for the other field variables are thus (see Appendix B):

2\t 2 1 )
at(t = 05At) = —ao—f— 1+ -+ QL + 6—:1:2/w0
wp

Tr \©  T% 2 2T%
P(t = 0.5At) = —;-arcta,n(t/TR) — %azz , and (4.48)
1 1, z?
vel=0)= o7, ~3harg

where the initial values are properly staged.

The evolution of a Gaussian beam is reasonably well understood theo-
retically. In a stationary state, the behavior of the beam radius is given by the

Rayleigh spreading ( for derivation in a two dimensional case, see Appendix B),
: y?

w(y)? = wj [1 + —2] ) (4.49)
SN yR

where yr = kow} is the Rayleigh range. In the code, instead of assuming a
stationary state (g—t = 0), we give initially a beam uniform in y (a% = 0). In
doing this, the roles of time and direction of propagation get interchanged and
we expect to see Rayleigh spreading in time rather than in space:

w(t)? = wi [1 + %} : (4.50)

where Tg is the Rayleigh time corresponding to the Rayleigh range, Tp =
%wo %‘2’- Instead of monitoring the beam radius, w(t), which would involve

complicated evaluations, we monitor the central amplitude, which can be simply
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looked up. The theoretical behavior of the central amplitude can be obtained

by noting that the total power is invariant:
Py = dlw? = a(t)2w(t)2 in 3 dimensions
P, = a2wy = a(t)w(t) in 2 dimensions .

The behavior of the central amplitude is thus completely specified by the be-
havior of the beam radius, and so we can equally well follow the evolution of

the amplitude.

We launched a Gaussian beam in a simulation where the radius (or
waist) of the beam was wo = 4, the width of the simulation box was L, =
~ 25.6), the number of the grid points was N, = 128, and the time step was
At = 0.01wp‘61. In Fig. 4.2 we have plotted the time behavior of the peak
amplitude obtained from the simulation run, together with the theoretical curve.
The two curves are identical until after about three Rayleigh times they start
to diverge. This is due to the significant overlapping at the skirts of the beam
we are monitoring with the identical beams parallel to it (see Fig. 4.3) that
exist outside the simulation box due to the choice of the periodic boundary

conditions.

Having a reasonably good verification for the soundness of the field
solver, we now turn to ‘test the particle solver. No major complications are
expected because the particle solver is basically the standard one used in most
particle simulation codes — only in the equationi of motion the effect of the
electromagnetic fields is represented by the ponderomotive force (see Eq.(4.43))
rather than the field components. To make sure, however, we tested the full
particle simulation code by launching a uniform plane wave. Since the profile of
the ‘beam’ is now uniform, it should propagate unaltered through the plasma, if

the code is working correctly. This is exactly what was observed. In Fig. 4.4(a)
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Fig. 4.2 - Gaussian Beam In Vacuum - The time history of the central

amplitude as given by the simulation code. Superimposed on it is plotted the
theoretical behavior.

we have plotted the initial and final profiles demonstrating that, besides the
fluctuations characteristic of any particle simulation, the wave is propagating
without a net distortion. In Fig. 4.4(b) is plotted the time history of the total

energy showing that the system does not posess any sources or sinks of energy
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Fig. 4.3 - Rayleigh Spreading - The initial beam profile and the profile

after three Rayleigh periods as given by the theory.

but that the total energy is conserved.

A test with a uniform plane wave can convince us that the particle
pusher does not have any absurd features, but it does not really show if the
particle pusher will do its job as expected. This is because the ponderomotive
force term in the pusher will never get activated. To test the ponderomotive part
of the pusher we have to launch a beam with a nonuniform intensity profile.
We will here concentrate on the particle dynamics and will not address the
behavior of the laser beam since that will be the topic of the following'chapter.
In Fig. 4.5 are plotted the kinetic and electrostatic energies of the system
as given by the simulation when a Gaussian beam is launched into a plasma.

The beam has identical parameters with the beam used in testing the Rayleigh
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Fig. 4.4 - A Plane Wave In Plasma - (a) The initial (t=0) and final
(t=50w, ') beam profile plotted on top of each other. (b) The total energy
of the system as a function of time.




spreading in vacuum. The grid had 128 cells and there were 100 electrons per
grid cell. The thermal velocity of the electrons was taken to be one-tenth of
the speed of light, corresponding to the plasma temperature of T, = 5 keV.
If the particle pusher is operating properly, the ponderomotive force due to
the radially nonuniform intensity profile should first kick the electrons outward
corresponding to an increase in not only the kinetic energy but also in the
electrostatic energy because of the induced charge separation. Eventually the
electrostatic field due to the charge separation should balance out and overcome
the ponderomotive force, the electrons should start to decelerate, and the kinetic
energy should start to drop. The electrostatic energy, however, continues to
. increase since the electrons are still moving away from the axis. It is only when
the electrons come to a complete stop and reverse the direction of their motion
to that of the prevailing laser electric field that the electrostatic energy starts to
drop. At that time the kinetic energy starts to grow again. Therefore, both the
kinetic and the electrostatic energies are expected to oscillate — the former at
a frequency twice as large as the latter. This behavior is very clearly manifested

in Figs. 4.5(a) and (b), respectively.

A closer look at the time histories (particularly'Fig. 4.4(b)) reveals that
superimposed on the expected behavior there are high frequency oscillations
with very small amplitude. The amplitude of these oscillations is completely
insensitive to reductions in the size of the time step or increases in the grid
density. Thus they are probably not due to numerical inaccuracies of the inte-
gration scheme itself. Notice also that the oscillations are present from the very
beginning and that the amplitude of the oscillations does not grow or diminish

but retains a constant value.

The amplitude of the oscillations is, however, extremely sensitive to

101




102

Ekin(t)/Ekin(0)

e Y - ™ ™

(a)

5.0 10.0 t/wt

Ees(t)/Ees (O)

(b)

-

5.0 10.0 t/whe

Fig. 4.5 - Gaussian Beam In Plasma - (a) Kinetic energy as a function
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the initial conditions. This suggests that we should look at how accurately we
know the initial conditions of the beam-plasma system we are simulating. The
theoretical forms for the time derivative of the amplitude and the phase shift and
its derivative that are used in the field initialization are derived in Appendix B.
The derivation is based on the assumption that the amplitude and phase shift
were slowly varying quantities compared to the laser oscillations, and thus only
the first order derivatives are retained. The characteristic time scale for the
amplitude modulations is the Rayleigh spreading time, T = %09, and so an
appropriate smallness parameter is e = 1/woTr rolrwg Thus the errors in the
initialization of the fields in the code are of the order of €? =~ 7%1704- Therefore,
by comparing the relative amplitude of the small oscillations for simulation runs
with different parameters, we should be able to decide if the inaccuracies in the
initial conditions are the source of these oscillations. In particular, carrying out
two simulation runs with identical parameters except tha’g the beam waist of
one is set to be twice the beam waist of the other, we should see a difference of
a factor of 2¢ = 16 when comparing the amplitudes of the small oscillations as
observed in the two cases. That is, this should be the case if our hypothesis of
the origin of the oscillations is correct. We ran the simulation for a laser beam
with frequency wo = 5w,e and beam waist first set at wo = 4A. and later at
wgo = 8).. The ratio of the small oscillations observed in the two runs was about
13, which is quite close to the theoretical estimate, considering the crudeness
of the measurement of the amplitudes from the plots. Thus we conclude that
the small amplitude oscillations observed on top of the theoretical behaviour

are most exprobably due to the inaccuracies in the initial conditions.




Chapter V
Numerical Experiments

5.1 Introduction

In this chapter we shall reinvestigate the problems studied in Chap-
ter III, this time using the computer simulation code described in the previous
chapter. A computer simulation can provide not only solutions to nonlinear
problems but also the temporal evolution. Obtained numerical solutions may
thus inspire the physicist to look into more relevant regimes and béhaviors.
Also, a computer simulation can prove the existence of a certain set of solu-

tions, as the theory often has to assume their existence to begin with.

In Section 5.2 the soliton-type profile of a self-focused laser beam de-
rived in Section 3.3 will be tested. Running the profile through a particle
simulation should give a good indication whether or not this specific profile is a
feasible candidate for an asymptotic profile. In Section 5.3 we study the dynam-
ical behavior of a self-focusing beam. In particular, the threshold intensity for
self-focusing will be determined/confirmed from these numerical experiments,
but also the later evolution of the beam profile will be investigated. Compar-
isons to the theoretical results of Section 3.4 will be made. In Section 5.3.1
the plasma response is incorporated using various theoretical models for the
plasma density rather than explicit particles. This way we can turn off some
mechanisms if that is desired, and we can thereby study the self-focusing due to
a single process. In Section 5.3.2 the self-focusing is studied under the influence

of the full, phase-averaged electron dynamics.
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Most of the simulation runs presented here are carried out using the
same value for the laser frequency, wg = 5wp.. This is not because we have
not run the code with other values for wg, but because this specific value for
the frequency is convenient. For instance, the Rayleigh spreading time as given
by Eq. (4.51) increases as the frequency increases. Therefore, in order to see
significant spreading of the beam, we need to run the code longer for larger
value of wy. Although we do not have an analytic expression for the time scale
for self-focusing, running the code with various values of wy has shown that
this is the case for self-focusing, too. Thus we do not want to choose the laser

frequency too high. On the other hand, choosing the frequency of the laser
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smaller than 5wy, we are getting close to the quarter critical density region

(wo = 2wpe), where the parametric instabilities could pose a problem as far as

application to particle accelerators is concerned.

An important feature of the approach we have adopted in this work is

that the magnitude of the laser frequency does not enter in the critical quanti-

ties. Since we use the vector potential rather than the field components of the

electromagnetic field, the laser frequency disappears from the expression for the
quivering velocity of the laser beam, and thus the dimensionless intensity as well
as the power are independent of the laser frequency. Therefore the threshold
power /intensity for self-focusing should be independent of the frequency of the
laser. We are thus not sacrificing generality by running most of the simulations

using a fixed value of wy.

5.2 Asymptotic Form of a Self-Focused Laser Beam

In this section we wish to find out how realistic the asymptotic beam




profile derived in Section 3.3 is. That is, if such a profile is formed in a plasma,
does it indeed propagate without distortion of its shape? In particular, this

beam profile should not be subject to either defocusing or self-focusing.

The work leading to the specific profile obtained in Section 3.3 did
not incorporate any assumptions on the dynamics that would produce such an
asymptotic profile as its final state. Therefore we have to prepare an initial state
where the beam has already attained the presumed asymptotic form. If this
profile is indeed an asymptotic one, it should then propagate without distortion
even when we shall allow for the full electromagnetic interaction between the

beam and the plasma in the numerical experiment.

As mentioned in the previous chapter, the interdependent field quan-
tities to be evolved in the code are the magnitude and time derivatives of the
amplitude and the phase shift. The initial conditions for these variables can be
obtained from Section 3.3. As in the test case, we shall here replace the station-
ary state by a state uniform in the direction of propagation. This implies that
the z-coordinate in the expressions of Section 3.3 will be replaced by the time ¢
according to z = ct, and the dynamics will take place in time rather than in the
direction of propagation since we are effectively simulating an infinite beam.
This replacement is simply a change of variables and not a Lorentz transfor-
mation. Because the profile is supposedly asymptotic, the initial conditions for
the amplitude and its time derivative are:

2 sechz( 6¢)

1 — sech?(6¢) : (5.1)
ay(z,t =1%9)=0.

a(z,t =tg) =

The initial conditions for the phase shift and its time derivative are, from
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Eq. (3.72)

¢($,t = to) = (Ckg - \/.dg +wpg(%I0 - 1)) to
(5.2)

Yi(z,t =1) = (cko — \/wg +wpg(%fo - 1)) )
The run using this set of initial conditions will be referred to as FDFBCOSH.
The proper staging of the variables implies that, if the amplitude is specified
at to = 0, the phase shift and the time derivative of the amplitude have to be
specified at ¢ = %At, and the time derivative of the phase shift is specified at
to = 0.

We tested a soliton-type profile with the inverse beam width set at
k = 0.2);1. This corresponds, according to Eq. (3.83), to the normalized peak
intensity of Iy = 0.16. The frequency of the beam was wy = Swp.. The width
of the simulation box was set at L, = 51.2)\. and the total number of grid
points was N, = 256. There were 100 electrons per grid cell, and the thermal
velocity of the electrons was chosen to be vy, = 0.lc, corresponding to the

plasma temperature of T, = 5 keV.

To facilitate the interpretation of the simulation results, we also carried
out the same simulation runs using a Gaussian intensity profile. A Gaussian
beam with a form closest to the solitary profile described above, has peak

intensity of Iy = 0.16, beam waist of wy = 8. and frequency wg = Swpe.

We ran the code for fifty electron-plasma oscillation periods using a time
step of one tenth of the plasma oscillation period, At = O.pr_el. In Figs. 5.1 and
5.2 Wé have summarized the results from the numerical experiments. Figure 5.1
shows the time evolution of the central peak amplitude for both the solitary and

the Gaussian profile. Due to the high initial intensity, the Gaussian beam starts
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Fig. 5.1 - Amplitudes in Time - The central amplitude for both
Gaussian and sech-type profile is plotted as a function of time. Gaussian
beam self-focuses as indicated by the rapidly growing amplitude, whereas
the soliton- type profile propagates practically unaltered.

to self-focus, as indicated by the rapid increase in the central amplitude. The
soliton-type profile, on the other hand, remains constant within 1% . Figure
5.2(a) shows the initial soliton-type profile superimposed on the beam profile
after 50 plasma oscillation periods. The profile is seen to retain its shape well.
For comparison, in Fig. 5.2(b) we have shown the initial (at t=0) and final (at

t=50wp,') form of an initially Gaussian beam. The deformation of the profile
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is significant.

Based on this numerical experiment we thus conclude that the profile
given by the exact solution (Egs. (3.36) and (3.77)) to the nonlinear equations
retains its original shape quite well; if such a profile is produced — either
spontaneously in the course of the beam evolution, or initially by crafting the

beam — it should remain unaltered as it propagates through the plasma.

5.3 Self-Focusing of a Laser Beam

In this section we first establish the threshold power and intensity for
self-focusing of a laser beam from numerical experimenté, and then study how
the beam behaves after the initial focusing . The theoretical guidelines provided
by Section 3.4, however, are not as precise and unambigious as those provided
by Section 3.3 for the previous section. For instance, the theoretical work of
Section 3.4 was based on the‘assumption that the beam will always retain its
Gaussian shape. This assumption (or some other, similar assumption about the
shape of the beam) is traditionally introduced for convenience. This is not a bad
assumption very close to the beam axis, where any beam can be approximated
by an inverted parabola (and where our analysis was performed), but there is
no physical reason to believe that the beam as a whole would remain Gaussian.
Thus it should not come as a great surprise to us if the simuiation did, in the
course of time, produce a profile deviating from its initial Gaussian shape. In
fact, the results of the previous section already suggest that this is indeed the

case, although no detailed analysis was carried out yet.

5.3.1 Experiments with Models for Electron Density

In this section the versions of the phase-averaged particle simulation

code used will not have explicit, individual electrons. Instead, the electron
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Fig. 5.2 - Gaussian and Asymptotic Beam Profile - (a) The profile
of an originally soliton-type beam plotted at t=0 and t= 50w, 1, The beam
retains its shape well. (b) The profile of an originally Gaussian beam plotted
at t=0 and t= 50w;!. The profile gets severed.




effects are brought about with the help of various theoretical models. The
advantage of this kind of an “intermediate” approach is that we have complete

control over which mechanisms are present and which are not.

We start by simulating self-focusing produced by the relativistic elec-
tron mass effects only. This is accomplished by keeping the electron density
constant throughout the simulation run, n. = ng. This implies that the pon-
deromotive and electrostatic effects are then be absent, too. Therefore, for
modelling purely relativistic self-focusing, the amplitude and phase equations

given by Egs. (4.45) and (4.46), respectively, should be rewritten as

aa_:z =c*Via+a <aa—f)2 ~ E|VY|?| + (wi — 2kd)at
% [wo(z_'f + c2k0] —.wie—l“;j 7 (5.3)
1+
and
% (a%—‘f) = c*V - (a®V¢) — 2a <w0%5t‘- + c%o%) : (5.4)

Throughout this section the initial beam profile is taken to have Gaussian shape.

The code evolving the fields according to the above equations is called FD-
SANDH.

Using Egs. (5.3) and (5.4) in our field solver we carried out a series
of computer runs to check the theoretical predictions on the critical power (or

intensity) for self-focusing. This was done in the following manner: Choosing

- a fixed beam waist for the initial Gaussian profile we run the code for various

values of the beam intensity. Scanning through the intensity and monitoring
the time evolution of the central intensity for each run we can determine ap-
proximately what is the critical intensity corresponding to the specific beam

waist at which the beam starts to self-focus. The width of the simulation box
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quantity determining the evolution of the beam is not the intensity Iy by itself,
but rather the total power of the beam, P o« Iyw2. Figure 5.3 shows the ex-
perimental points from our numerical simulations together with the theoretical
predictions from Chapter III. The horizontal axis is the initial beam waist and
the vertical axis gives the critical intesity at which the beam is observed to start
to self-focus. An experimental point consists of the observed critical intensity
multiplied by the square of the corresponding beam waist. The experimental
points are indeed observed to lie approximately along a horizontal line, as pre-
dicted by the theory, but the magnitude of the critical power is higher than
the prediction given in Chapter III. The reason for this discrepancy between
the theory and the numerical experiment lies most probably in the near-axis
approximation applied in the theoretical approach of Chapter III. As mentioned
above, the near-axis expansion implies that we are approximating the beam by
an inverted parabola: e=®" /%" & 1—2%/w? , z2/w? < 1. This is a perfectly le-
gitimate approximation near z = 0, but in reality the whole beam, not only the
axial part of it, contributes to the self-focusing/defocusing. This is reflected in
the mathematical formalism by the fact that the critical quantity determining
the beam dynamics is the total power of the beam, not the central intensity
itself. It is plausible that the self-focusing of the entire beam has a threshold
power higher than that obtained by considering the dynamics of the beam only
in the neighborhood of the peak.

Except for the quantitative discrepancy discussed above, the qualitative
agreement between the theory and the numerical experiment is remarkable,

demonstrating clearly the existence of a threshold or critical power P,..

We then include the ponderomotive effects. Asin the case of the purely

relativistic self-focusing, also here we incorporate the ponderomotive (and elec-
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Fig. 5.3 - Onset of Self-Focusing According to FDSANDH - The
points with errorbars represent the values of power obtained by monitoring
the onset of self-focusing using the model-code FDSANDH (see text). Only
relativistic effects are included. The crosses stand for theoretical predictions
given in Chapter III

was always chosen to be about six times the beam width. The total number of
grid points was 128 or 256, depending on the width of the beam. The frequency
of the laser was varied from wy = 3wpe to wo = Swpe, and the time step was

At = O.Iw;l .

According to the theory, as presented in the Chapter III, the critical




trostatic) effects using a theoretical model. Assuming that the laser-plasma
system has reached a stationary state in which the ponderomotive force ex-
certed on the electrons by the laser beam is balanced by the electrostatic force
produced by the induced charge separation, we recall the model for electron
density from Section 3.2. Equation (3.10) gives the normalized electron density
under the combined influence of relativistic and ponderomotive effects, assum-

ing a stationary state described above,

_Ne _ .20
Ne= 2 =14+ N55V1th. - (5.5)

The field equations for the simulation code now become:

2 2
.é% =c?V%a+a (%%—) - c2|V¢|2] + (wd - 2k2)a
(5.6)
oy p 1 , 02 . e2a?
2a[w08t+cko} wpem, 1+A°ax2 1+m202 ’
m2c?
and .
0 [ 0%\ 2 fa ,, Oa
_8_2-{ (a E) =c°V (a V’l,b) — 2a wo—ag +c koa . (57)

The code evolving the field qﬁéntities according to Egs. (5.6) and (5.7) is called
FD2ND. ‘

We repeated the same set of runs as we did for the purely relativistic
case. Figure 5.4 shows the results from this numerical experiment together
with the theoretical predictions. As in the purely relativistic case, here too the
qualitative behavior of the threshold power accords with the theoretical work,
but quantitatively there is a discrepancy. The observed critical power is about
twice as high as the value given by the theoretical analysis. Again, it seems
reasonable to assume that this discrepancy is due to the approximations applied

in the theoretical approach. At least for narrow beam radii the presence of the
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Fig. 5.4 - Onset of Self-Focusing According to FD2ND - The points
with errorbars represent the values of power obtained by monitoring the onset
of self-focusing using the model-code FDS2ND (see text). The modifications
in plasma density are incorporated using the model derived in Section 3.2.
The crosses stand for theoretical predictions given in Chapter III.

ponderomotive effects is seen to lower the threshold power for self-focusing,.
From the equation of motion for the beam radius, Eq. (3.120), the purely

relativistic focusing term can be found to be proportional to

Freix vV1+a?, (5.8)




whereas the term describing the ponderomotive effects is accordingly given by
A2 :

Py 2w—3(a2 +3), (5.9)
where a common factor (-11; TITG:T)’) has been divided out. Thus the pondero-
motive effects are seen to be important for narrow beams and for very high
intensities, in agreement with the simulation results. For broader beams the
obserx\fed thresholds are quite close implying that for wide beams the relativis-
tic effects dominate the dynamics. The importance of ponderomotive effects
for higher intensities will be discussed when the later evolution of the beam is

addressed.

5.3.2 Particle Simulation Experiments

In this section we are running the simulation using the full, phase-
averaged electron dynamics. The ions are still taken to be stationary. The
essential equations of the code are thus those given by Eqs. (4.44), (4.45) and
(4.46). The run is called FDFIB1D.

To begin with, we study how the results from the "model”-runs of the
previous section compare with the results given by a full particle simulation.
To determine this we ran both FD2ND and FDFIB1D for a beam with beam
waist of wg = 4\, frequency wy = 5wy, and intensity Iy = 0.16. The width
of the simulation box was L, = 25.6A. and the number of grid points N, =
128. The run extended over fifty electron oscillation periods with time step of
At = ,O.lw;el. In Fig. 5.5 we plot the output from the computer runs so that
in the same frame, on top of each other (to facilitate the comparison), are the

corresponding quantities given by the particle simulation code and the model-

-1

run. Figure 5.5(a) shows the beam profiles in the end of the run, t = 50w,

and in Fig. 5.5(b) we have plotted the time histories of the central amplitude.

116




117

afay ————————

0.5

-20 00 10 0 x/A

Fig. 5.5 - Comparison of The Model and The Particle Simulation
- (a) The final (t=50w,) beam profiles from the model (FD2ND) and
particle simulation (FDFIB1D) plotted on top of each other. (b) The time
development of the central amplitude as given by FD2ND and FDFIB1D.




The corresponding plots from the different runs are qualitatively very similar,
and thus we conclude that the model for electron density derived in Section 3.2
is reasonable. Quantitative differences do arise, however, as the intensity of the
beam is increased. The self-focusing is stronger for FDFIB1D-runs, which have
individual electrons, and the code produces self-focusing slightly earlier than the
runs using the FD2ND-code where the relativistic and ponderomotive effects
are incorporated using a model. The reason for these differences is discussed

below when comparing the threshold values from various runs.

We now address the question of self-focusing using the particle simu-
lation code. Since the model for electron density derived in the text appeared
to be realistic, the model runs of the previous section provide us with guide-
lines. We thus repeat the simulation runs that we did with the model-codes
FDSANDH (only relativistic effects) and FD2ND (both relativistic and pon-
deromotive effects), scanning through the intensity for fixed beam waist to find
the critical case for self-focusing. The simulation results are plotted in Fig. 5.6.
Comparing these results to those obtained from the model runs in Section 5.3.1
.(see Figs. 5.3 and 5.4), they appear to be a combination of the purely relativistic
model and the model incorporating both the relativistic and the ponderomotive
effects. The qualitative behavior of the simulation results follows that of the
model rﬁn that incorporates both the ponderomotive and relativistic effects, but
the value of the critical power is closer to the purely relativistic model. This is
actually what one should expect. The code FD2ND, which took into account
the ponderomotive effects, was based on the assumption of a stationary state in
which the electrons were already misplaced according to the laser parameters.
In the particle simulation code FDFIB1D, on the other hand, the electrons are
not in any way prepared in advance for the incéming laser. Therefore a small

but finite time is required for them to drift to the positions corrésponding to
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Fig. 5.6 - Onset of Self-Focusing According to FDFIBID - The
points with errorbars represent the values of power obtained by monitoring
the onset of self-focusing using the particle simulation code FDFIB1D (see
text). The crosses stand for theoretical predictions given in Chapter III.

the stationary state (recall the analysis of the ponderomotive time scale carried
out in the beginning of Chapter IV) and to bring about the plasma-lens effect
necessary for self-focusing. Meanwhile, although the threshold for purely rel-
ativistic self-focusing is higher, the process is practically intantaneous (in the

time scale of laser oscillation period) as pointed out in Chapter II.

Herein lies also the explanation for the observation why, despite the
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qualitative similarities, the self-focusing was observed to take place earlier using
the particle simulation code FDFIB1D than with the model-code FD2ND which,
in principle, incorporates all the significant processes: Since the relativistic
effects dominate at very early times and FDFIB1D has practically unperturbed
electron density in the central region at that time, it provides a stronger lens-
effect than the model-run FD2ND in which the electron density is depleted

around the axis from the very beginning.

We now address the question of the later evolution of the beam in the
case when self-focusing has taken place. In Chapter III we speculated that,
after initial focusing, the beam would start to defocus again for one of the
two reasons: (1) the beam contracts to such a small radius that the inherent
diffraction takes over, or (2) the electrons get depleted from the central region
and thus the plasma-lens disappears, leaving the beam propagating in vacuum.
This is clearly manifested in all the simulation runs (and in the model runs
as well), as demonstrated in Fig. 5.7. After an initial increase in the central
amplitude indicating self-focusing, the amplitude will at some point start to
decrease. Furi:her, the closer the initial intensity is to the critical intensity
for the self-focusing, the sooner the defocusing will take place. In Chapter III
we further speculated that this defocusing phase would be followed by aﬁother
self-focusing phase, and that this pattern would then repeat itself corresponding
to an oscillating beam envelope. This, however, seems to take place only for
values of power well above the critical value (P > 1.5 P,), and even then the
second phase of focusing is not very impressive. This is most probably due to
the significant distortion of the Gaussian shape of the beam. In Fig. 5.8 we
have plotted the initial beam profile together with the profile corresponding to
the maximum self-focused amplitude for the same run as in Fig. 5.7. Unlike in

Rayleigh spreading, where the beam always retaines its shape, in self-focusing
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Fig. 5.7 - Later Evolution of Gaussian Beam - Following the evo-
lution of the beam for longer time, the initial self-focusing is found to be
followed by diffraction of the beam. A later self- focusing phase is observed,
but it is not nearly as strong as the initial one.

the inner and outer regions of the beam profile seem to follow different dynamics.
In the central region where the intensity is high, the beam self-focuses. In the
outer skirts, however, the intensity is too low thus allowing the beam to diffract.
Thus the beam gets deformed and does not quite follow the dynamics derived

forcing the beam to always remain Gaussian.

It is also interesting to notice that running the model-codes FDSANDH




Fig. 5.8 - Amplitude Deformation - The beam profile corresponding
to the maximum value of the self-focused amplitude superimposed on top of
the initially Gaussian profile. The shape is seen to have deteriorated and
thus the assumption of prevailihg Gaussian beam shape is violated.

and FD2ND at this high values of power, the FD2ND-run that incorporates both
relativistic and ponderomotive effects produces a similar second hump that was
observed in the particle simulation runs. The FDSANDH-runs, carrying only

the relativistic terms, on the contrary, failed to produce the secondary hump.

As a final topic we want to address the behavior of the electron den-

sity in the presence of self-focusing. The Sagdeev-potential introduced in Sec-

[Sv]
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(a) The electron density profile

after 30 plasma oscillation periods. The initial intensity is Iy = 0.64 and
the beam waist is wg = 4A.. The self-focused beam intensity corresponding
to the electron density shown is I(t = 30w;?) = 0.99. (b) The electron
density profile after 100 plasma oscillation periods. The initial intensity is
Iy = 0.41 and the beam waist is wg = 8\.. The self-focused beam intensity
corresponding to the electron density shown is I(¢ = 100w;*) = 1.99.




124

tion 3.6 (Egs. (3.129) and (3.130)) implies that, once the threshold power for
self-focusing is exceeded, electron evacuation along the axis will always take
place. Experiments with the particle simulation code, however, show some-
thing different. According to the simulations the beam power has to be well
above the threshold power (P > 2.3 - P.,) before significant density modifi-
cations take place. Figure 5.9(a) shows the electron density after 30 plasma
oscillation periods. The intensity of the beam for this run was I = 0.64 and the
waist of the beam was wg = 4)\.. A clear density depression along the axis is
observed, surrounded by density spikes due to the surplus electrons pushed out
of the central region. The depression at this point of the run is about 45% of the
~ equilibrium density. Running the code for longer time and for a beam twice in
width, wy = 8\, we can eventually produce practically 100% depletion on the
axis as shown in Fig. 5.9(b). One should, however, take this result with caution

because by that time the self-focusing has proceeded so far as to produce rel-

el
mwoc

ativistic field amplitudes, | | > 1. The plasma current contribution in the
simulation code was derived assuming nonrelativistic amplitudes and thus the
electron evacuation, as observed running the code up to relativistic amplitudes,
is not necessarily reliable. Hd@éfever, a definite tendency for producing a vacuum
channel is seen while the field amplitude remains within the limits set by our

approximations. In Fig. 5.10 we show the time evolution of the electron density

on the beam axis for the case shown in Fig. 5.9(b).

The discrepancy between the theory and simulation in that the electron
evacuation was not observed as an inevitable consequence of self-focusing, is due
to the incompetence of the model used for the electron density in the theoretical
approach. As recalled from Section 3.6, the model for electron density was not
automatically protected from becoming negative after all the electrons were

depleted. In the theory this was patched up by hand. If we had not done that,
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Fig. 5.10 - Central Electron Density in Time - Time evolution of
the electron density at the beam axis

the Sagdeev potential would approach negative infinity for infinitesimal values
of the beam radius, i.e. the diffraction term would never start to dominate,
and the beam would reach a catastrophic focus. Since it is clear that once the
electrons are depleted and a vacuum is formed, there is no physical process
to sustain the self-focusing, it was necessary to cut out the negative electron
density -effect by writing the potential in two parts (Eqgs. (3.131) and (3.132)).
This procedure introduced a kink at the minimum of the potential. In reality

the potential is naturally smooth and analytic across the minimum, and thus the




. predictions given by the theoretical model in the neighborhood of the minimum

are not entirely reliable.

Mori et al.3® have also carried out a numerical study of nonlinear
self-focusing of laser beams in plasmas. They did not, however, observe any
electron evacuation for power values approximately an order of magnitude above
the threshold value. Comparisons to their work are not, héwever, necessarily
meaningful. The two major differences between the work carried out by Mori
et al.5® and the work presented here are: (1) the transverse beam profiles in
their simulations were not Gaussian but of the form cos?(7y/Lo), and (2) Mori

et al.simulated two collinear beams rather than a single laser beam.
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Chapter VI

Summary and Discussion

Motivated by the need for novel, ultra-high energy particle accelerators,
we have here addressed a fundamental problem: the diffraction of the beam,
which causes the reduction of the beam power and unparallel phase front. We
have investigated the possibility of overcoming this problem by the nonlinear
self-focusing that can take place in plasmas (or certain nonlinear dielectric me-
dia). In this work we have considered only very short laser pulses. The length of
the laser pulse is sufficiently short (L, < 140w, ! for a proton plasma)*® so that
" it leaves the ions stationary, and thus ensures that the parametric instabilities
associated with the ion dynamics should be absent. This is naturally desirable

and perhaps required for any particle accelerator scheme using plasmas.

Investigating the problem first analytically, we derived a model for the
electron density in the presence of an intense, nonuniform electromagnetic field
by assuming immobile ions and a stationary state in which the ponderomotive
force by the laser beam is balanced by the electrostatic force due to the éha.rge
separation. We then looked for a possible profile that would propagate in plasma
without distorting its shape. Such a profile was obtained in a form of a solitary

wave with the amplitude a relation to the width ;' through

sech(x¢)
1 — w2 sech®(k¢)

In the nonrelativistic limit (@ < 1), considering only relativistic electron mass

a(é) =2«

effects, this profile is, within a factor of two, the same as the profile obtained

earlier by Schmidt and Horton%? for purely relativistic self-focusing.
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We investigated the dynamical behavior of the laser-plasma system as-
suming the above-mentioned stationary state. The beam was taken to have
initially a Gaussian intensity profile and, to facilitate the calculations, it was

assumed to remain Gaussian as it propagates through the plasma. Using Hamil-
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tonian dynamics and making the paraxial and slowly varying envelope approx- -

imations, we arrived at a threshold power for self-focusing given by

P., ~ 101 <ﬂ>2 W .
Wp .

Aside from numerical factors, this value compares favorably with earlier results
obtained by Schmidt and Horton,?® Sprangle et al.,5! and Sun et al..** Schmidt

| and Horton, as well as Sprangle et al. considered only relativistic electron mass
effects, the first in the nonrelativistic limit, mLfi—;P < 1. The formulation
adopted by Sun et al. included both relativistic and ponderomotive effects

and was very similar to the one presented here. They, however, obtained the

threshold power using numerical integration.

Further, the ray equafions were cast in a form analogous to the equa-
tion of motion for a classical particle. For beam powers greater than the critical
value, the potential exhibits a minimum and thus the later evolution of the beam
should consist of oscillations of the beam radius, i.e. the beam would alternate
between defocusing and self-focusing phases in the absence of dissipative pro-
cesses. The equilibrium radius coincides with the value corresponding to a total
depletion of the electron along the axis. This is because according to our model
for the electron density the self-focusing is unimpeded until vacuum fbrmation

sets in resulting in the Rayleigh diffraction.

The above investigation leaves a number of questions. For example,




the model for the electron response had to be patched up by hand at the value
corresponding to the vacuum formation. Also the validity of the assumption
that the beam would always retain its Gaussian shape is questioned. Even
more fundamentally, the theoretical analysis started with the assumption of a
stationary state. A computer simulation could reveal if such a state actually
exists. Further, any kinetic effects would not be revealed in the theoretical
framework since it was based on the fluid equation for the electrons. For these
reasons we developed a numerical, phase-averaged particle simulation code suit-
able for studying laser trasport problems in plasma. The code operates on the
same principles as a conventional particle simulation code except that the evo-
" lution equations are averaged over the short laser oscillation period (and thé
wavelength) and the code thus follows only the secular changes in the system.
By far the shortest wavelength and time scale in the problem are those of the
laser, and we are not interested in following therﬁ. This approach could be
compared to the model for electrostatics by Zakharov.* The code was tested
against Rayleigh diffraction in vacuum and the code reproduced the theoretical

prediction well.

In this work, only a one-dimensional form of the code was used. We
have thus been modeling a beam uniform in the direction of propagation, and
the dynamics took place in time. First we tested the asymptotic intensity profile
given by Eq. (3.92). For comparison, the same computer run was repeated for
an equivalent Gaussian ’intensity profile. The asymptotic solitary profile proved
to retain its shape in the course of time, whereas the Gaussian beam profile was

distorted.

In testing the dynamical aspects of the laser-plasma system, we first
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removed the individual electrons from the code and represented the plasma
response by the model used in the theoretical approach. Performing a series‘ of
runs for different beam parameters the threshold power emerged clearly from
the data. Thus it was confirmed that the critical quantity for self-focusing
is the power of the beam. These runs were then repeated with full particle
‘dynamics and the results were qualitatively the same. Quantitatively, however,
there where some differences between the model—ruﬁs and the kinetic runs. The
threshold power for self-focusing was observed somewhat lower in the kinetic
runs than in the model runs and, monitoring the later evolution of the beam,
| the secondary self-focusing phase was more easily produced in the kinetic run.
This secondary focusing phase was, however, a little disappointing in general
since it appeared much weaker than the primary one. This seems to be due
to the strong deformation of the Gaussian shape of the beam, as indicated by

Fig. 5.8.

The phase-averaged particle simulation code déveloped in Chapter IV
to study the problem of self-focusing can be a useful tool for studying other
kind of laser-plasma interaction problems as well. In Appendix C we present
preliminary results from a study of the evolution of a multi-peaked amplitude

profile using the code described in Chapter IV.

The major short-coming of this numerical approach is that it has so far
been only one-dimensional. To obtain a more complete picture of the physics
involved in the laser-plasma system, we would like to be able to launch a laser
pulse of finite length into the plasma. In one-dimensional simulation we are
stuck with an infinite, uniform laser beam, which can not provide us with all

the dynamical aspects of the system. A two-dimensional simulation would also




allow us to verify the existence of a statinary state, as well as the proposed
oscillations of the beam radius. Thus the future work on the problem should
include ﬁpgrading of the code to two spatial dimensions. This is probably
a nontrivial task since it includes implementing a different set of boundary
conditions in the direction of propagation. An idea worth pursuing, while doing
the upgrade, would be to transform the system into a frame moving at the
group velocity of the laser wave. This would naturally include transforming
everything including the time and length in the system, and the diagnostics as
well as boundary conditions would have to be reconstructed. But provided that
a workable solution to these problems can be found, this scheme would have
the advantage of monitoring only the interesting time and spatial scales of the

laser-plasma system.
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Appendices
APPENDIX A

Derivation of the Ponderomotive Force

The equation of motion for electrons under the influence of an electro-

magnetic field is

dp 1

Assuming circular polarization, the electric field of the wave can be written as
E = E,(r)(cos¢X —sin¢y) , (7.2)

where the phase of the wave is given by ¢ = koz —wot and the wave is assumed
to have a nontrivial intensity profile, E4(r) . The magnetic field, as given by

the Faraday’s law is then

B=- < <3E5 cos ¢ — koEasinqS) X

Wo Oz

_ & <0E3 sin ¢ + ko E; cos ¢> v (7.3)
Wy 32
C BE,, . aEs ~

T ( 5y " e °°S¢> ‘-

We assume there is no dc current and so the equilibrium velocity van-

ishes. The equation of motion for the elecrons is

dp 1
E——e (E+ZVXB> R (74)
and so the first order perturbation is given by the electric field only:
dp@)
P o _eE=pW =" (sing%+cosé¥)E, . (7.5)
dt Wwo




The first order velocity is thus given by

© pM
v = fn — ——L—(singk +cos$F) , (7.6)

where vy = ;%%5 is the quivering velocity of the electrons introduced in the end

of the chapter II. The second order momentum is given by

(2)
dp = SvWOxB
dt c
2
= e_E% [(_8_5}_3_ sin ¢ cos ¢ — 9B, cos? )%
mawd [ Oy Oz

9E, ,, OE, . (T.7)

—( 5y sin® ¢ — e sin ¢ cos @)§

_ OE, 5
0z

We are not interested in the rapid oscillations but rather the secular
change in p®. Therefore we want to average this equation over the laser
oscillation period T = 27 /wy . In doing that we have to realize that the field
quantities in the equation of motion are specified at the instantaneous position
of the electron, r(¢) . Since the exact form of r(t) is not known, the equation
cannot be integrated as such. We do know, however, the particle trajectory up

to the first order in 309-:

¢
r(t) = 1o + / vWdt (7.8)
0
where rq is the initial position of the electron. Calling 6r() = v()dt we have
st = n:ﬁ:g (cos¢p X —singy) , (7.9)

and we can express the fields in terms of the known quantities ro and ér(%)

using Taylor expansion around ry :
2

~ (1) Yg
Ey(r) = E4(ro) + or VEs|e, + 0(2-2-)

B(r) ~ B(ro) + O(£)

(7.10)
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It is sufficient to evaluate the magnetic field at the initial position since
the term involving the magnetic field is of the second order in 22 . The phase
factor ¢ will be also given by the initial values, because dr! does not have a
z-component. Using the above expansions in the equation for the second-order

momentum we find

(2)
G —estM . VE,|,, — -v(UxB
dt c
2
= __C_E_% {2( 9B, cos? ¢ — 9Z, sin ¢ cos ¢)x
mywé Oz Oy (7.11)
_83: S Ccos _By 1 y
+ OF, .
0z )

Averaging the expression for the second order momentum over the laser oscil-

lation period we obtain

2
ap® _ _ _ e E, [(0F, OF, OF, 9
<= > myw? \ Bz x+ By y+ 5 %) (7.12)
or, noting that (%2)? = (n";—lif—c)z =I,and y=+1+1,,
<25 = _mVy1+1,=F,. (7.13)

Sometimes the ponderomotive force is given in terms of the ponderomotive

potential, x :
Fp,=-Vx, (7.14)

where y = mc*/1+ I,.



APPENDIX B

Derivation of the Rayleigh Spread in Two Dimensions

We shall here find the behavior of aﬁ initially Gaussian beam as it
propagates in a vécuum. The analysis is done in two spatial dimensions corre-
sponding to the slab geometry applied in the numerical work of Chapters IV
and V. The direction of propagation is labeled by y, and the transverse direction

is the x-direction.

The wave equation for the vector potential in vacuum reads

1 0°

ZgaA-VA=0. (7.15)

Assuming a stationary state and writing the vector potential in the form
A = a(z, y)eiwot—kon) | (7.16)

where a is a complex (in'contrast to our choice in the main text), slowly varying

amplitude given in the form
a=a exp{ to(y) + —— o 2]} (7.17)
’ gy |
and V? = W + —2-, the wave equation becomes
Via+kia=0, | (7.18)

where the vacuum dispersion relation, wg = ckg, was applied. In evaluating the
spatial derivatives, only the first derivatives of ¢ and ¢ are kept because these
functions are assumed to be slowly varying. Substituting the ansatz for A into

the wave equation we obtain

dep .
2k0[—y - sz-—] +i———z=0. (7.19)
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For this to be satisfied for all values of z, the terms independent of z should
add to zero independently, and similarly, the terms multiplying z? should add

to zero. We thus arrive at two separate equations:

2k0;l—¢+z'zc£—0, and ,
dq v 1 (7.20)
2 11=
ay + 0
The latter can be directly integrated to yield
a(y)=aq—y- (7.21)
Anticipating the result, we write ¢ in the form
1 1 . Ao (7.22)

«v) Ry mw(y)?’

where R and w are real functions of y. This looks quite strange unless one

realizes that a form like this makes the vector potential appear as

A= qge" /W gmpemikos? /R , (7.23)
where each exponential has a well defined, physical meaning: the first exponen-
tial, being real, gives the Gaussian shape of the profile, the second exponential
gives the phase shift, and the third exponential gives the curving of the phase
front with R(y) being the radius of curvature. The initial values for the variables
with a physical interpretation are:

R(y =0) = oo for the initially straight phase-front, and

(7.24)
w(y = O). = wp .
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The initial value for ¢(y) is then ¢y = zl)‘u-;g- The real and imaginary part of

expression (21) for ¢ yield the solution for w and R:

w(y)? = wp[l+ (A—yzy] ,

TWy

o \T (7.25)
R =i+ (F2 )1

The nature of these solutions becomes much more evident if we define the so

called Rayleigh range: Yr = mw?/Ao. The expressions then become
y \2
w(w? =ufii+ () 1,

(7.26)
R =i+ (Z2)1.

The solution for the phase shift ¢ is then obtained from the first equa-
tion in (20):
2
= Yoyye 1 Y
o(y) = —tln(l+ Y}%) + — arctan( YR)

2 (7.27)

= —iln\/w/we + E arctan(i) ,
2 Yr

where the expression for w(y) was used.

The behaviour of a two-dimensional Gaussian beam propagating in a

vacuum is thus given by
z? '
A =ao4/ ﬂe“”z/“’zei(ﬁgﬂ““’) . (7.28)
w

The spreading of the beam is seen to take place at the same pace in the three-
and two-dimensional cases, because the expressions for w(y) are identical in
both cases. The reduction in the magnitude of the central amplitude, however,
is slower in the two-dimensional case than in three dimensions: In three dimen-

sions thé magnitude of the central amplitude dropped according to wq/w(y),

whereas in two dimensions the amplitude reduces as /wo/w(y).



APPENDIX C

Profiles Flip-Flopping Between States

We now present some preliminary results from the numerical simula-
tions we did to study the evolution of a multi-peaked amplitude profile. This
study was motivated by the theoretical analysis done recently by Kurki-Suonio,
Morrison and Tajima®” according to which asymptotic profiles with multiple
peaks could exists for bounda;y conditions different from those chosen for the

solitary profile derived in Section 3.4.

The analytic expression for the asymptotic, multi-peaked profiles was
not obtained in the paper by Kurki-Suonio, et al., but an approximate form
can be obtained by integrating Eq. (3.45) with respect to the amplitude a in

the neighborhood of the potential minimum:

A / Y_da__ (7.29)
= —_— 7.29
* 7 Ja VE=V(a)

Here a; and ag correspond to the same total energy of the system®” | £ =
—-%;\/1 +a? — 2Cya? , i=1,2. (For the case of the solitary profile £ = —1/)\2
thus fixing a; at the origin). Equation (29) gives us an approximate wavelength

)s between the peaks in the profile corresponding to the specific amplitudes aq
and ay (see Fig. 7.1).

We ran several compufer simulation runs with various parameter values
for the multi-peaked amplitude profile. Since none of the runs corresponded to
the exact solution for the asymptotic equation, the profiles were not expected
to remain undistorted. Indeed, quite interesting evolution was observed to

take place: the locations of the peaks and troughs of the profile were seen to
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X

Fig. 7.1 - Multi-Humped Profile - A periodically peaked amplitude

profile.

alternate so that for half of the time the peak would be located at the point
where the trough was originally and vice versa. Furthermore, the phase shift
was observed to exhibit similar behavior but with a Z-phase shift. In Fig. 7.2

we have illustrated the behavior of the field quantities for a specific run with

As =512 A¢, a3 = 0.02, a; = 0.05.

{

The time constraints on this project did not allow for detailed theoret-

ical analysis of the problem, but to gain at least some insight on the subject
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Fig. 7.2 - Flip-Flop - The switching of the states observed for the
fleld quantities. Zero corresponds to the original location of a peak, and 7
corresponds to the switched location.

and to make sure that what was seen was not a numerical artifact, we studied

the relevant field equations for this system at very early times when the process

could be taken to be linear. Rewriting Eq. (3.95) in terms of I = a? it becomes

& (O
Phog: (%) -

1
4

2
NN

1_6_I_+
12 \ 3z

{
118%I

> =
21 9z2 (7.30)

1-|-I}+k§ —wi/c? .



Linearizing around an initial state given by I = Iy(z), ¥ =0,
I(z,2) = Ip(z) + Li(z, 2)
¥(z,2) =Pi(z, 2) ,

o 1 [ 1 oL\ 1/1 1\ 8L
52 _2k0{41‘§<ax> ‘5(7;‘”51’0)@ ! (7.32)

where we have assumed I, < 1 and we have neglected all the terms involving

(7.31)

“we get

I, compared to terms containing Iy only on the right hand side. Also, the

dispersion relation as given by Eq. (3.100) was used.

According to Eq. (32) the phase shift should thus be driven by the
gradients of the initial amplitude profile. In the code we have specified the

initial profile as
ao(z) = a — Beos(ksz) (7.33)

where a = %(al +az) and B = %(az — a1). For this profile the equation for 1,

becomes
O _ 1 { 12 k28%[2asin(ksz) — Bsin(2kyz))*+
8z 4]60 210
1 1 (7.34)
(1- §I0 - T—)Zkgﬂ[a cos(ksz) — ﬂcos(kax)]} .
0

Therefore, at the locations where the amplitude peaks (cos(k,x) = -1) the phase
shift should start evolving according to

Oy 1 k26

0z = 2;{?0 a9 (7‘35)

Accordingly at the trough locations (cos(ksx) = +1) the phase shift should be

given by
2
M1 L KB (7.36)

~Y

aZ —2](20 a;
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We ran a few cases varying the separation parameter ks = i—’: for
the amplitude profile. The simulation results together with the theoretical
‘predicitons are summarized in Fig. 7.3. Figure 7.3(a) shows the behavior of
the phase shift at the maximum amplitude location, and Fig. 7.3(b) shows
the corresponding result for the minimum ampitude location. The scaling in
the simulation results is observed to follow that of the theory, and even the

numerical values are surprisingly close to the theoretical estimates.

Phenomenologically, what is taking place here seems to be the following:
The optical beam has initially a flat phase front and a multi-humped amplitude
profile as indicated in Fig. 7.4. The spatial gradients of the amplitude profile
drive a deformation of the phase front in such a way that the phase front
curvature will be reminiscent of the amplitude profile, i.e. a maximum on the
phase front will form where the amplitude peaks etc. (see Fig. 7.4(b)). The
curvature of the phase front will now drive the dynamics of the amplitude profile
(as indicated by the arrows in Fig. 7.4(b)) so that the profile flattens out and
eventually forms new peaks at the locations of the former minima. The new
amplitude peaks act back on the phase, and the cycle continues. The system
thus flip-flops between two states exhibiting thus some kind of a bistability or
breathing.

As mentioned, these results are very preliminary and simplistic. The
flip-flop behavior between two states that the amplitudehexhibits could be of
enormous importance to optical switching; the bistability could lead to an op-
tical analog of an electronic transistor. Therefore this phenomenon deserves a

careful and detailed theoretical analysis.
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Fig. 7.3 - Simulation Results - The observed growtfi rate of the phase
shift together with the theoretical value. (a) at the location of a peak ampli-
tude value, (b) at the location of a trough.
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AX
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amplitude profile amplitude profile
at t=0 at t>0

phase front at t=0 phase front at t»0
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Fig. 7.4 - Interplay of the amplitude and phase - ‘A multi-humped
amplitude profile distorts an originally flat phase front. The curved phase
front acts back on the amplitude causing periodical structure of self-focusing
and defocusing regions.
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