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Abstract

We present methods for particle simulation of plasmas in a nearly
arbitrary coordinate metric and describe a toroidal electrostatic sim-
ulation code that evolved from this effort. A Mercier-type coordinate
system is used, with a nonuniform radial grid for improved cross-field
resolution. A fast iterative method for solving the Poisson equation is
employed, and the interpolation/filtering technique shown to be mo-
mentum and energy conserving in the continuum limit. Lorentz ion
and drift electron species are used. The code has been thoroughly
tested for its reproduction of linear and nonlinear physics, and has
been applied to the toroidal drift wave problem and its impact on
anomalous transport in tokamalks. '




1 Introduction

Computer simulation of plasmas plays an important role in understanding
the underlying linear and nonlinear physics, as well as improving our ability
to predict plasma behavior. Kinetic simulations, for example, have been
valuable in the study of two-stream instabilities, collisionless shocks, and
double-layer formation, to name a few. In the opposite limit, the physics of
‘an actual magnetic confinement device is exceedingly complex, and may not
yield to any single theoretical treatment. Hence we witness a reliance in this
case on scaling laws deduced from empirical data, or transport calculations
based on approximate growth rates for various instabilities. The modeling of
an actual confinement device via simulation therefore represents one of the
greatest goals (and challenges) of simulation, for which it is an independent
avenue of research and not merely an aid to theory or experiment.

Plasma physics in a general geometry increasingly captures our attention.
This occurs primarily due to the importance of the metric on the plasma
behavior, which can be particularly relevant for astrophysical plasmas-in
a general relativistic metric. Additionally, advances in computer technology
have made simulations in complex geometries practical. Fluid simulation has
been used extensively to model plasmas in geometries approximating that of
an actual fusion device [1]. Recent efforts involving magnetohydrodynamic.
(MHD) codes have established that large-scale tokamak phenomena such as
sawteeth can be reproduced by the numerical model [2,3]. These codes are
not adequate, however, for investigating the problem of anomalous transport
(which is known to involve the microscopic particle dynamics as an essen-
tial ingredient). For this we must turn to a kinetic model such as particle
simulation, which utilizes a fully self-consistent description of the plasma.

In contrast to the “state of the art” in fluid simulations of the confined
plasma, where a relatively realistic geometry is employed, particle simulation
is generally performed using a slab coordinate system — corresponding to
a small region about one or several rational surfaces. Such a treatment
ignores (for example) effects due to trapped particles and mode coupling
from the curved magnetic field lines. These and other geometrical effects are
difficult to incorporate rigorously into the theory, yet may play a large role in
the observed anomalous transport in tokamaks. A generalization of particle
simulation methods to more arbitrary metrics is thus warranted. In this
work we present methods for particle simulation in a general metric, with
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application to the study of tokamak-like plasmas in a toroidal coordinate
system and self-consistently determined electrostatic fields.

The choice of a numerical model to represent the physical system must
necessarily depend strongly on the known properties of the system. The
modes most damaging to the magnetic confinement of a plasma are those with
short wavelengths perpendicular to the field, and long wavelengths along the
field. We are thereby led to choose an orthogonal coordinate system in which
the-ambient magnetic field is everywhere orthogonal to the radial coordinate.
Spatial derivatives are treated locally in the radial direction, using finite-
differencing, while spectral methods are used in the poloidal and toroidal
angle variables. This model is generalized further through the adoption of
a nonuniform radial mesh, which allows local and global pheomena to be
resolved simultaneously.

Discretizing space via coordinates which reflect the structure of the con-
fining magnetic field has many advantages over alternate methods (e.g. see
Ref.[4]), such as better cross-field resolution, less numerical diffusion of par-
ticles across flux surfaces, and straightforward specification of boundary con-
ditions. We emphasize that our basic model applies to nearly any confined
plasma in a curved metric. This includes systems as diverse as a plasma in
a mirror confinement device or an ionospheric plasma. It is advantageous,
however, to restrict ourselves to systems in which the magnetic fluctuations
remain small compared to the background field (which is reasonable for re-
actor physics of low-8 plasmas). If the level of magnetic perturbations is
small, the coordinate system remains a good discretization for the length of
the run, and adaptive grid methods are not necessary. The particles, while
following the magnetic field lines to lowest order, undergo drifts of order

p/L (Larmor-radius/scale-length) in a physical system; the relative size of

magnetic perturbations §B/B can reach similar proportions without undue
effect on the quality of the simulation. Although such fluctuations can be
incorporated into the algorithm (via the Darwin formulation, for example),
the remainder of this paper will consider only electrostatic fluctuations.
The use of particles creates some problems that are absent in a fluid
algorithm, such as the integration of the particle orbit equations, charge
assignment, and charge (force) shaping. Each of these is considered in this
work in the context of a general metric. Of particular concern are the effects
of the r = 0 point (where the Jacobian vanishes) and the nonuniform grid.
Common to both fluid and particle codes, however, is the need to efficiently
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solve for the field quantities. It is critically important that a fast inversion
method exist since the field components are needed at each time step and
at many points in space. For elliptic partial differential equations (such as
the Poisson equation) in highly symmetric configurations, inversion is usually
accomplished via a rapid elliptic solver (RES). The best known of these are
based on the fast Fourier transform (FFT) or cyclic reduction. The general
metric case, while not directly solvable by an RES, may often be efficiently
solved by applying an RES iteratively. We find the toroidal Poisson equation
to be amenable to this type of solution, with convergence in less than ten
iterations in most cases. In Appendix A we discuss a method of solution for
Poisson equation in a more general metric, which is of interest for simulations
of moderately high-3 tokamak plasmas or other novel configurations of the
confining magnetic field.

The rest of the paper is organized as follows. The coordinate system and
the discretization of the fields is discussed in Sections 2 and 3, respectively. In
Section 4 the field solver and interpolation/filtering scheme is presented, and
the energy/momentum conserving properties of the system are analyzed. The
particle pushing algorithms are given in Section 5. Tests of the simulation
-code are given in Section 6, and applications of the code to the toroidal
system are shown in Section 7. Summary and additional discussion is given
in Section 8.




2 The coordinate system

The geometry we focus on is illustrated in Figure 1. The (7, x,{) coordinate
system we use is orthogonal and right-handed, with the surfaces of constant
r being nested, concentric circles of revolution (tori). Since we are using
the electrostatic approximation, the magnetic fields can be specified in any
manner desired, allowing a great deal of flexibility. However, the typical
configuration is one in which the magnetic axis lies at = 0, and flux surfaces
lie on surfaces of constant r. The term toroidal in this work applies to this
system only.

We require a simple transition to the limiting cases of cylindrical or slab
(Cartesian) geometry. Therefore the distancelike coordinates (x, () are cho-
sen instead of the more usual (6, ¢) representation; these lead to straightfor-
- ward limiting behavior. (Note : we shall often use § and ¢ interchangably
with x and ¢ in this work—the distinction is important mainly when taking
limits.) Specifically, the coordinates x and { are given by

’)"00

X ==
( = —Ro¢

where Ry is the major radius, ro = (Tmin + Tmax)/2, and typically rmin ~ 0.
The metric components for this system are

h, = 1
hX = T / 7o (1)
h¢e = R/Rq
where R = Rg + r cos §. Thus the infinitesimal volume element is given by
Jav = T2 pavac
To R
= rRdrdfd¢

as expected. For the (), () coordinates, the limit to cyhndncal or cartesian
coordinates is now well-defined :

( = =z for Ry — oo, and

X — ¥ for rg — oo.

5




The next step in obtaining proper limiting behavior is to choose a local
variable u = r — ry to represent radial displacement. If the ro — oo limit is
taken, keeping the radial length L, = rmax — "mm constant, the local variable
u remains finite. Now we introduce the auxiliary (smallness) parameters

e = ro/Ro

€& = (L,,-/z)/’l"o
-which ‘measure the strengths of the cylindrical and toroidal effects, respec-
tively (ec is half the inverse aspect ratio). The relationship between the

angular coordinates (6, ¢) and the present coordinates is expressed in terms
of the curvatures

ke =1/Ry = Kyee
i =1fro = exf(L./2)

where &, is the curvature along ( at the magnetic axis, and &, is the curvature
along x at r = ro. The metric components become
he, = 1
hy = 14 kyu : (2)
he = 1+ €1+ ryu)cos(kyX)

The geometry is then completely specified by the quantities (L, €y, €¢) in
the toroidal system—to take the cylindrical limit one sets ¢, = 0 and specifies
L,, and to take the slab limit one sets ¢, = 0 and specifies L,. It should
be emphasized that by choosing appropriate metric components in Eqgs. (2),
we can realize nearly any well-behaved geometry using the methods given in
this work.

One may represent a field quantity in this coordinate system in terms

of the Fourier transform in both x and ({ since these are (usually) periodic
-variables;for the electric potential this is given by

@ (r, by, k) = 3 B(r, x, ¢) exp (ikx + ikc()

where the wavevector components are given by

27rm

k, = I Ly = 27rg
27n

kC = —, Lg =27 Ry
L¢




If the slab limit is taken, this becomes the familar (z, k,, k,) Fourier repre-
sentation. In the toroidal system this reads

®(r,m,n) = > ®(r,0,¢) exp (imf —ing).

m,n

We have also considered a configuration which employs a radial “slice”
(or annulus), that is, the inner boundary r = rpy is far from zero. The
use of such a model is advantageous due to the fine resolution in r that
one may obtain. However, having a radial boundary where the density is
maximum limits the applicability of such a model. Our tests have shown
that significant modification of the distribution occurs near the boundary in
a toroidal system; this is a consequence of first-order particle drifts into the
boundaries (banana orbits), primarily of the ion species. The outer boundary
can in principle be ignored because the density can be made arbitrarily small
there, but the inward boundary remains a concern. We believe that the
“slice” model may yet prove useful with some modifications to the algorithm
and boundary handling, but this remains untested. We therefore limit our
-discussion to the model in which essentially the entire radial extent is modeled -
(achieving locality through the nonuniform radial grid). ‘




3 Representation of the field quantities

3.1 The nonuniform radial grid
3.1.1 Motivation

In any numerical calculation, the primary motivation for using a nonuniform
mesh is to more closely match the sampling method (i.e. grid) with the
behavior of the solution. This idea was perhaps first used in fluid simulations.
For example, in laminar flow around solid bodies, the character of the flow in
the boundary layer varies much more rapidly than in the interior of the flow
region. Thus, there is the desire to increase resolution in the boundary layer
by concentrating grid points there, and spread out grid points elsewhere,
to minimize computational expense. The term boundary-fitted coordinates is
used in fluid dynamics to describe the generated-grid system for studying flow
around a solid object [5]. In plasma simulation, this boundary is manifested
by the magnetic field. Generated grids which conform to the shape of the
magnetic field are commonly seen in modern MHD simulations.

The use of nenuniform or generated grids in particle simulation has been
rare, however. This may be due to the fundamental differences between par-
ticle and fluid simulation. First, particle simulations have been primarily
aimed at local phenomena, and therefore the exact specification of the mag-
netic fields is less important than in the global, fluid simulations. It is this
local emphasis that permits the adoption of slab geometry for many particle
simulations. Second, existing particle simulations often rely on k-space rep-
resentations [6] for the solution of the fields, making it difficult to incorporate
even a single, stretched variable. And third, the resolution in a particle sim-
ulation is not determined by the grid alone. In a particle simulation we must
keep the number of particles per cell appreciable in order to accurately model
plasma behavior there, which limits the amount of grid stretching that may
be employed.

This is not to say that nonuniform grids are ill-suited to particle sim-
ulations. Even local problems often show multiple scales of length, and a
nonuniform grid could help considerably. For example, the present code has
been employed for study of drift waves in a tokamak-like plasma; the nonuni-
form grid in r gives good resolution near the mode rational surfaces, while
allowing the ion resonance surfaces to remain within the simulation region.




Another example application is in the study of tearing modes—the resolution
immediately surrounding the tearing layer could be much improved by using
a nonuniform mesh.

The implementation of a nonuniform grid in one variable (or grid stretch-
ing) usually requires the adoption of a finite-difference formulation. (See
Ref. [7] for a discussion of nonunform grids in a purely k-space representa-
tion.) In our case, radial finite-differencing is necessary for solution of the
toroidal field equations, and the addition of the nonuniform radial grid is
straightforward. Further, the finite-difference approach seems more logical
when the plasma variation in-the coordinate is highly nonuniform (see Ref. [§]
for more discussion of this point). ,

Finally, the need to maintain acceptable numbers of particles per cell rep-
resents a definite limitation. However, the effect of this restriction is minimal
- when the region of the greatest number of particles coincides with the region
of maximum resolution. For a simulation in slab geometry that includes a
density profile, this location is at the inward boundary. However, we often
want the region of interest to lie in the center of our simulation “window” -
to minimize boundary effects, in which case the proportion of particles in
the central cells becomes extremely small. The situation improves markedly
when one moves to cylindrical geometry (therefore toroidal geometry as well),
as a result of the uniform-grid cell area being proportional to r. In cylindri-
dal geometry, the density profile should be flat at » = 0. If we also assume
that the density vanishes faster than 1/r for large r, and a uniform grid, then
the number of particles per cell will be nearly zero at the origin, rise to a
peak, and then decay. Careful choice of the nonuniform grid allows a nearly
uniform distribution of particles, which is the ideal situation. In this case,
the maximum resolution will be governed by the sharpness of the plasma
profile. An example density profile (gaussian), grid spacing, and number of
particles per cell in a cylindrical coordinate system is given in Figure 2. In
Figure 3 we show an example (r,6) grid configuration employing 64 radial
gridpoints (nonuniformly distributed), and 32 theta gridpoints.

3.1.2 Local theory

In order to rigorously justify the use of a nonuniform grid, we consider the
local properties of such a system. To start, we examine a uniform grid system
of grid spacing A. The centered, second order finite-difference representation




of the first and second derivatives on a uniform grid are given by

ot A?

f;lz"&f_l = faf 3)
a1 — 2 + fi A
fir1 Af2 fior _ {'+§f¢w+-~ (4)

where f is an arbitrary function. The rationale for using these approxi-
mations is often based on their second-order behavior, but this is only an
asymptotic relation between local error and grid spacing, and leaves out the
effects of the higher-order derivatives of f. It is useful to assume a partic-
ular form for f and re-examine the accuracy of these equations. For the
phenomena of interest here, solutions have an oscillatory character, so it is
reasonable to express f in terms of its Fourier harmonics. Then f and f’ are
of the form '

fla) = 3 fue™
f/(IL‘) — kazkezkz

and finite difference approximation to f’ is given by

fi(z) = (fin ff;_l)/2A
= 3 fe®i(sinkA) /A

which equals the exact result in the limit of small kA. The result for the
second derivative is similarly given by

f'(z) = (firn— 2_fi + fira) /A°
= =2 fee™ (sin(kA/2))" /(A[2)?

Clearly, the finite-difference approximation does well for long wavelength
modes, but becomes inaccurate in the neighborhood of kA = 7 /2. For kA =
7 /4, the first derivative approximation is accurate to within about 10 percent,
and the second derivative approximation to within 5 percent. Particle codes
usually employ k-space filters to eliminate the high mode numbers (discussed
in section 4.2); the weakening effect due to such a filter will often far exceed
that of the finite-difference operator. For example, a gaussian filter, for a
particle the size of the grid spacing, halves the signal strength at AA = 7 /4.
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Thus the second-order finite difference expressions will usually be sufficiently
accurate for use in a particle code.

We now consider a one-dimensional, nonuniform (stretched) grid. Al-
though the finite-difference approximation to the first derivative generalizes

easily :
df f1+1 fl (5)
(Z.'L' Tiy1 — —1

expressions for the second derivative approximation and truncation error
involve considerable complexity. It is helpful to adopt the notation

A; = (Ai+1/2 + Ai—1/2) /2
0 = (Ai+1/2 - Ai—1/2) (6)
v = &/(2A)
where A; is the mean cell size and §; is the change in grid spacing at the ith
grid point. The quantity +; is approximately one half the rate of change of

the grid spacing, a useful measure of the nonuniformity of the grid. With
these definitions, the finite difference approximation for the first derivative

is
2 2—1 A . Az
Tt 2 Jod gty iBaft 4+ (14 302) S+ ©

and for the second derivative is

(1 — ’Yi) fi+1 — zfz + (1 + Vi fi—l " 2Az 1 2 A?
A7 —2) ) =i '-‘I'%'Tfi + (1 + 3’)’i>‘ﬁfiw

(8)

which essentially match expressions given elsewhere [9]. These expressions
show clearly the effect of the stretched variable, and are different from their
uniform grid counterparts in an important qualitative way—these approxi-
mations are no longer formally second-order accurate in the grid spacing. The
reason for this loss of formal accuracy is that for a nonuniform grid, these
approximations to the first and second derivatives are no longer perfectly
centered, resulting in the first-order A; term in the truncation error. For ex-
tremely rapidly varying grid size, ; can become of order unity, which causes
the approximation to be first order accurate only (in this case, the finite-
difference approximations have become essentially one-sided). It is clear
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that by changing the grid spacing sufficiently slowly, v; can be neglected and
formal second order accuracy will be retained.

Egs. (7)-(8) have the disadvantage of complexity and difficult extension
to higher order. It is usually much simpler to express derivatives in terms
of a transformed variable. We define the transformed coordinate ¢ = £(z)
where the £(z) is our stretching-function, and grid-points occur in {-space at
intervals of constant A¢ (arbitrarily set to 1). Expressing the derivatives of
fin terms of ¢, we have

of _ 0tof
% = ot | ©)
O°f _ [(86\*8f | 9% 0f

el (8_x> —3?2-+@8_§ (10)

Since the partial derivatives of £(z) are assumed to be known, all that remains
is to replace 8f/0¢ and 82 f/9E? by their corresponding uniform grid finite
difference representations. This method is equivalent to the direct use of
Egs. (7)-(8) despite obviously being second order accurate in A¢ (for a good
discussion of these issues, see Refs. [10,11]).

A more meaningful measure of accuracy is obtained through Fourier-
analysis of the function f, whereupon the finite-difference approximation to
the first derivative becomes

@)~ (Fa — Fied) [(25)
= e il (sin kA /A,

This is virtually equivalent to the uniform grid result, the main difference
being the presence of a phase factor e?#%/2, We obtain an accuracy condition
on the nonuniformity of the grid, relevant to particle simulation, by requiring
the argument of this phase factor to be small at the “cut-off” value kA; ~
7 /2. Given k6;/2 < /2, we then have

7 L1 (11)

for our nonuniform grid condition.

In the present work, the transformation function approach has been used
exclusively. This approach has the advantages of smoothness and simplicity.
For the nonuniform grids employed, +; is typically smaller than 0.1 (but is a
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function of position), giving an accurate finite-difference representation for
most of the wavenumber spectrum. The error estimation argument followed
here is still largely ad hoc, and may not give the best results for highly
nonuniform situations. In such situations the choice of the optimum grid is
mostly an educated guess and highly problem-dependent; it is probably best
to be conservative in the choice of grid parameters, and keep «; small.

3.1.3 Construction of stretching function

We now wish to construct a stretching function according to some prescribed
grid spacing. Denoting the grid spacing by A(z), we have the relation

A(z)

I
4
&

1R

5¢/0% (12)

which then defines the stretching function

(z) = ﬁ (13)

The resulting grid spacing does not precisely match the function A(z) be-
cause of discreteness effects, but is usually close. The first restriction on A(z)
is that it yield a £(z) with continuous first and second partial derivatives (this
will be true if A(z) and A’(z) are continuous and nonzero). These deriva-
tives are required to solve the Poisson equation. In general, this condition is
not difficult to satisfy.

The second restriction we make on the generation of the stretching func-
tion is that £(z) be simple, that is, £(z) should be analytically expressible
with a minimum of special function evaluations. This simplifies the trans-
formation of the particle positions z; to the transformed coordinate in both
the charge accumulation and the field interpolation phases. The result is a
reasonably fast, vectorized loop. For increased generality, one could solve for
£(z) at discrete values only, then interpolate to get ¢ as a function of the
particle coordinates. This type of loop vectorizes on computers that sup-
port gather/scatter-type vectorization (Cray-2, Cray X-MP 48), and may be
faster than the loop employing the exact stretching function.
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Al) {(z)

¢; cosh? (%) ¢} + ¢y tanh (c4z)

c1 (o + cs8?) [ (ca + &) | ¢ + c4F + cztan™™ (cjF)

Table 1: Examples of stretching functions (£ = z — z,)

For the type of grid we are interested in, A(z) has a minimum at some
point £ = z,, and increases outward from that point (possibly reaching
some limit). We give two such functions in Table 1 that satisfy the above
restrictions. Each function has only one special function evaluation in the
expression for £(z). It is this evaluation that is the most time-consuming part
of the entire method, and timing tests show an increase in total cpu-time of
only a few percent for a typical configuration. The second function in Table 1.
is the one employed in this work—it allows choice of a limiting (maximum)
value for the grid spacing, as well as the degree of grid stretching. The main
disadvantage with this stretching function is that an exact expression for z(¢)
is not known. However, z({) is only needed at grid points for diagnostics;
these values are obtained via a simple root-finder routine.

3.1.4 Discussion

"Here we focus on two remaining concerns, of which the first considers the
meaning of particle shapes in a simulation with a nonuniform grid. The
concept of a particle shape in a particle simulation enters primarily through
the grid. When one interpolates to the nearest two to three gridpoints in
each direction, the response of the system indicates an effective particle size
on the order of a cell-width. This response is often modified by a filter
(or finite-size particle shape factor). The use of a nonuniform grid does
not alter this appreciably. If we modify our filter so that it filters only
locally, then the relationship between the effective particle size and the cell
size is maintained. This is accomplished using a technique we refer to as
digital filtering, discussed in section 4.2. As the cell-width changes due to
the nonuniform grid, so does the effective particle width. This is a natural
effect, and is an essential property to have true control over the resolution.
If particles can easily move along a given coordinate, a nonuniform grid in
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that direction is not appropriate. The discretization method must be chosen
in accordance with the boundary conditions and the problem at hand. In
the present work, the use of a nonuniform grid is appropriate in the direction
of the density gradient, and perpendicular to the dominant magnetic field
direction. :

The second concern we shall touch on is the need to retain an adequate
number of particles per cell (in the region of interest) as the cell size is de-
creased. As discussed previously, this problem occurs because we are not free
to arbitrarily specify the location of particles when a given density variation
is imposed. In a cylinder or torus we see a reduction of this effect, and can
even lead to nearly equal numbers of particles per cell (cf. Fig. 2). Therefore
we see a significant gain in resolution in these systems through the adoption
" of a moderately nonuniform radial grid. We next seek modifications of the
-algorithm which will allow grids of stronger nonuniformity and more practical

application to slab geometry.

Since the major restriction ‘on the particle number concerns the repre-
sentation of the background density gradient, one option is to remove the
background distribution via a multiple distribution approach. That is, we
split the distribution f arbitrarily into two parts—one that is stationary (fo),
and the remainder (§f) which evolves and is discretized in phase space via
the weighted “particle” species. We refer to this as the §f or weighted particle
method [12,13].

Each “particle” in the simulation thus comes to represent a bit (6f;) of
the perturbed distribution at that particular point in phase space. This
discretization can be expressed formally by

§f =2 6fi(xi(2), vi(t),8) 6(x — x;(2)) 6(v — Vj(t)v)- (14)

-Operating on this representation of the perturbed distribution function by
djdt, we obtain (after cancellation of terms)

d5f d§ :
= 52 G 8= (0) 8y =) (15)
with the particle trajectories given by (for a Vlasov plasma)

dx;

- = Y (16)
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dv; ¢ v )

and the usual relationship between §E and §f. The quantity &f; thus evolves
according to

déf; _ _ dfo

dt  dt (18)

(%5:v5)
where the total distribution satisfies df/dt = 0. For full dynamics, the evolu-
tion equation for §f; becomes

) (19)

(%5,v5)

'@2— [VVfo-I—i(E-f-}'VXB) 'vao]
dt - m c

and for drift dynamics,

) (20)

(%5.v5)

d—j{i = - [(v”b + Vd> -V o+ :r.nq-E : vao]

where vy is the perpendicular drift.

For modelling quasi-stationary phenomena one chooses fg to be the equi-
librium distribution, with the ratio §f/ f given at startup (and usually small).
The separation of the distribution into background and perturbed part in this
case reduces noise levels dramatically [14], thus improving the ability to ob-
serve subtle effects. We emphasize that no modification of the nonlinear
physics has been made. The main limitations of the method are (a) particles
must be loaded uniformly in phase space for accurate charge density calcu-
lation, and (b) much of the advantage over conventional simulation is lost if
8f/ f ~ 1 is reached. A more complete treatment can be found in Ref. [14].

Finally, we briefly mention another method which may help improve res-
-olution in particle simulation, which we refer to as nonuniform number (or
mass) weighting. The crux of this method is to allow each simulation particle
to represent a varying number of actual particles, adjusted in order to in-
crease the effective resolution. This method can be regarded as a special case
of the above weighted particle method in which we now fix the weight in time
by representing the entire distribution via the particle species. For example,
we might adopt a small grid spacing in a critical region through the use of the
nonuniform grid, while retaining an acceptable number of particles per cell
by reducing the weight given to particles accordingly. The number weighting
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method represents a logical extension to the macroparticle concept, in which
one envisions a simulation particle as representing an aggregate of smaller
particles, all moving together.

Two effects limit the usefulness of this scheme : (a) interchange of differ-
ently weighted particles, and (b) enhanced fluctuations in regions of relatively
large particle weight. Both of these effects limit how strong the variation of
particle weight may be. Naturally, diffusion of differently weighted particles
renders this scheme ineffective, so we restrict the variation of particle weight
to perpendicular to the magnetic field (radial). Test runs have shown rea-
sonable behavior for cross-field variation of the particle weight on the order
of 2—-4.

Combining these techniques in a simulation code may be particularly
effective at reducing noise while improving resolution. At this time both
- methods remain experimental, however, and are not used in the remainder
of this work.

3.2 The mode expansion

While grid methods have been applied with much success to the two-dimen-
sional simulation of plasmas, limitations in computer memory have prevented
a wide-scale extension to three dimensions. This led to the development of the
mode expansion method [4], which Fourier-decomposes the field quantities
in the dominant direction of the magnetic field, usually taken as the (z)
coordinate. Typically, the representation of the fields becomes-

p(z,y,2) = 3 pa(z,y)e*
®(z,y,2) = Z@n(w,y)eikzz
E(z,y,2) = ZEn(w, y)eik’z, (21)

where k, = 27n/L, and the sum goes from n = —N ton = N, N be-
ing the number of modes in the z-direction. If we assume symmetry in the
third dimension, the field components for each mode can be calculated inde-
pendently, and later summed in the interpolation phase. Since the toroidal
system has azimuthal symmetry, the above equations are applicable to the
toroidal algorithm simply by associating (z,y, 2) with (7, x, ().

The main drawback to the mode-expansion method is that the mode-
particle loop for accumulation and interpolation involves considerable compu-
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tational expense, easily dominating the rest of the code. In the interpolation
phase, the mode expansion requires roughly n, trigonometric evaluations per
particle, where n, is the number of modes in the calculation. On the other
hand, the grid method requires only a small number of relatively inexpensive
algebraic evaluations for each particle. Therefore, on large memory machines
(such as the Cray-2) a full three-dimensional grid representation is usually
the more computationally efficient method.

- The high accuracy of the mode expansion nevertheless makes it prefer-
able to a grid for some low dimensionality cases. One example of this is
the “high-n” configuration used in Section 7.2 for study of the toroidal drift
wave problem. In this case, a single (n = 9) or multiple modes were em-
ployed, at considerably less computational cost (and higher accuracy) than
a grid formulation. Furthermore, for very long system lengths along the
‘magnetic field, grid representations are susceptible to what is known as the
“aliasing-instability”[15]. This unphysical effect stems from sampling error
when the thermal velocities (Ap/A) are small, and can be avoided in prac-
tice by adopting a higher-order spline interpolation scheme [16]. When using
a mode expansion in the third dimension, the aliasing instability can be
avoided.

Both the grid and mode representations have proven useful. These are
currently both implemented in the simulation code, and selected via a switch
at the preprocessor level.
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4 Field Solver

4.1 Poisson equation

For the electrostatic model, the only field equation that must be solved is
the Poisson equation

V20 = —4mp _ (22)
E = —-Vao. (23)

Given the metric coefficients for our system (Eqgs. (1)), the Laplacian is given
by
V:i=V24+C (24)

with V2 and C given by

2 10 ro? o?
2 . 2 -2 407 4~
Ve = 6r2+r8r+7°28x2+8C2
cos§ & sinfry 0 R2Z— R? §?

R 0r R royx Rz §¢?

(25)

c = (26)

Here V2 is the cylindrical Laplacian, and C represents the toroidal correc-
tions. The cylindrical Laplacian can be inverted by a standard technique—
finite differencing in r and applying the recurrence solution for a tridiagonal
matrix. However, the toroidal Laplacian as a whole is not directly invertible.
This leads us to introduce an approximate method, based on the observation
that )

V= VI 4 O(c)) 27)

that is, the correction terms are formally of order ¢, compared to the cylin-
drical Laplacian. Since €, tends to be small (S 0.2), we expand the potential

in powers of ¢,
=" ", : (28)
n
and substitute into the Poisson equation, obtaining

Y e = (VA [—dmp — C(47)] - (29)

n n
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Equating terms of the same order in ¢, yields the following chain of equations

(recall C ~ O(e;)) :

P = (Vo) [—4mp]
Pt o= (VAT [—4°/e]

gr o= (V)T [ e
The sum is truncated upon reaching the desired order in €, for convergence.
This method is closely related to the fixed point iteration scheme

8+ = (1 — 0)8” + (V)™ [—4mp — C(37)], (30)

where « is a relaxation parameter, typically on the order of one, and p
represents the iteration count. When no relaxation is used (« = 1), the two
methods are identical. In practice, the code uses Eq. (30) in the field solver.
The convergence criterion for the potential is

@7+ — &)
1]

with € ~ 107°. Since ||®|| is unknown, the larger of ||®7*?|| or the norm of a
previous n-mode is used. (The outer loop over toroidal mode number starts
with lowest mode numbers first, which are also the strongest modes due to
the filtering effect at high n.) This prescription avoids excessive computation
for high mode-number, weak modes.

The inversion of the cylindrical Laplacian is performed in (¢, &y, k) space,
where ¢ is the transformed coordinate for the nonuniform grid. The finite
difference representations of the radial derivatives at the sth gridpoint become

~.<a@) B (awb)
o), = \&roe),

- 85 ®i+1 — Qi—l) .
= <8r> ; ( 2 (31)
for the first derivative and

(32_@ _ ag)zaﬁ@ 9% 00
o), = |\or) 58 T |
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o\ * 8%\ [ Bigs — B
~ (a—f) (®i+1 — 20, + @i_l) + <87~§> < + 5 1) (32)

for the second derivative. These employ the usual two and three-point cen-
tered difference formulas on the transformed grid. The cylindrical Poisson
equation at the sth gridpoint then has the form

@iy + B0 + 1D = s (33)

7

with the coefficients given by

o |fee\? 107 10¢
% = [(a_) T3 T arar|

B = — {2 (gé) o+ :—ék,i + k?} (34) -

o |feg\ 18 18
= or 20r2  2ror|.
and s; represents the source term. The direct recurrence solution for this type

of equation is well known in finite-difference fluid simulation (see Refs. [17,
18]). We look for a recurrence relation of the the form

Q=29+ v, (35)

where z and y are to be determined (the roles of ¢ and ¢ —1 are often reversed,
yielding similar results). Substitution into the field equation (Eq. (33)) gives

; Qi1 + Bi®; + vi(2:®i + vi) = s,

which can be rearranged to yield

Since this is of the same form as Eq. (35), the coeflicient terms are given by

; - 36
i Bi + vz (36)
Si —Yi%i
i = —— 37
Yit1 B: + viz; (37)
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which are calculated in a forward scan. The field component (®;) is sub-
sequently obtained by a backward scan, given by Eq. (35). The only work
remaining is to determine the starting values for each scan; these are deter-
mined by the boundary conditions on the potential. This is complicated by
the location of the boundaries—the only. case usually considered (as in the
above references) is that of Dirichlet boundary conditions with the bound-
aries on the end grid points. For the current system, with the boundaries
between grid points, we represent the parity at the boundaries by

‘DN+1 = U‘I)N
@0 77®1)

where the cells in the system number from 1 to N. The virtual grid-points
at 2 = 0 and 1 = N+ 1 only serve to define the parity at the boundary, which
is even parity for n = +1 (@’ = 0), and odd parity for n = —1 (® = 0). The:
field equation at the ¢ = 1 grid point is then

s1 = (nay + f1) @1 + 119,

which can be rearranged to the form of the recurrence relation (Eq. (35)) :

S1

71
®, + .
? noy + f1

- _?701 + b

The recurrence relation then requires that

_.71

T = —_—
2 noy + By
- 5

vz noy + By

for the starting values of the coefficient arrays in the forward scan. For the
backward scan to solve for the potential, a similar calculation gives

_ SN —INYN
By +naon+v N

Oy
as the starting value.

The last question with the tridiagonal inversion concerns execution speed.
Since this is a direct solution, it is much faster than general matrix inversion

22




techniques. However, this solution is a marching-process in 7, inhibiting
straightforward vectorization. We therefore vectorize in the perpendicular
direction () by looping over the second coordinate in the inner-most loop,
which requires two-dimensional arrays for the coefficients of the recurrence
relation (35). The result is a fast and accurate solution; using it as the core
part of an iteration method is reasonable.

For ¢, S 0.2 (corresponding to an aspect ratio of 2.5), the method usually
converges to at-least five decimal places accuracy in 4-6 iterations for a typical
plasma profile. The Poisson solver is structured so that each toroidal mode is
calculated separately, which is possible due to the azimuthal symmetry. This
allows numerous temporary arrays to be generated to assist in the inversion.
The independent calculation of each toroidal mode also forces the adoption
of a “separated” (k,, k) mode representation—the Fourier transforms in ¥,

~required for the toroidal corrections, must be independent of the transforms
in ¢. In the usual mode representation (i.e. FFT2 structure), the modes cannot:
be transformed independently.

The electric field components are calculated from the potential, using the
toroidal metric :

' oo
E = o
_ 0%
Ex = r Ox
Ry 0%
Be = ~Rac (38)

For the radial field, we again apply the two-point finite difference approxi-
mation for the derivative to get

The x and ¢ derivatives are simply multiplications in (r, ky, k¢) space. The
ro/r multiplication for the E, component is straightforward, but the Ro/R
multiplication for the E; component requires transformation to (r,8) space
because of the § dependence in R (and must be transformed back again, for
filtering).
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4.2 Interpolation and Filtering

In this section we discuss interpolation and filtering methods for an arbitrary
coordinate system that are accurate, easily implemented, and independent
“of the metric wherever possible. The three stages of the charge accumulation
are considered first—interpolation of the density to the grid, transformation
weighting, and filtering.

The initial interpolation is done on a computational grid, that is, with
no reference to the actual metric (aside from constant scale factors). The
resultant pseudo-charge density (o) is identical to that obtained in a slab
coordinate system. This procedure views the coordinate transformation as
a property of the grid, freeing us from the difficulties in considering particle
“shapes” in arbitrary coordinate systems. Additionally, this procedure en-
ables us to employ the same interpolation routines independent of geometry,

~ which simplifies the implementation considerably.

The actual interpolation methods here fall into the category of area-
weighting methods, which we briefly summarize. Letting z; denote the po-
sition of the jth particle, z, an arbitrary grid-point, and § = z; — z,, the
particle weight for that grid point will be given by

£ 15 <A

wey =) LT PIE (40)
0 otherwise,
for linear weighting (aka cloud-in-cell), and
2
:-(%) i<t
2
weg) =4 1(3-4)" 4<ps<2 (41)
0 otherwise,

for quadratic weighting (aka triangular-shaped-cloud) [18]. In the toroidal
nonuniform grid system the radial particle coordinates u; are transformed to
the stretched coordinates &; for the interpolation.

Linear weighting is second-order accurate in the grid spacing and the
interpolated function is continuous as the particle crosses a cell boundary.
Quadratic weighting is also second-order accurate, but both the interpolated
function and its first derivative are continuous as the particle crosses a cell
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boundary. The additional smoothness of quadratic weighting results in less
error due to undersampling—the aliased wavenumber contributions are much
smaller than in linear weighting [8, pages 168-170]. The simulation is thus
better able to tolerate small values of Ap/A without numerical heating, and
needs less k-space filtering. This is important mainly along the direction of
the magnetic field (long dimension). Therefore, we typically use quadratic
weighting in the ¢ coordinate for a 3-d grid configuration; linear weighting is
‘used in the cross-field variables ¢ and x. Both weighting methods cause an
order (kA)? flattening of the spectrum at low wavenumbers.

The next step in obtaining the charge density for the Poisson solver is to
include the effects due to the metric. The actual charge density is determined
from the differential relation

oVt 1

P=v’ =7

where J is given by J = h,hyh¢ and represents the transformation Jacobian -

for the toroidal coordinate system (A, includes the effect of the nonunform
grid). This becomes

a, (42)

o€/ or

P=3h (43)
where o is the flat-metric charge density. This operation must be performed
in (r, x) space due to the #-dependence in h¢. The main problem with this
-approach is when the Jacobian vanishes at some point within the simula-
tion region, as it does in the toroidal system at r = 0. This problem can
be avoided by placing the boundaries between gridpoints; there will be no
grid point at 7 = 0 and thus no singularity. The given method of charge
accumulation, together with the filter techniques discussed below, in prin-
ciple allow the adoption of a wide variety of coordinate metrics. A similar
approach to handling the metric was used by Brackbill and Ruppel [19] for

two-dimensional particle-in-cell fluid simulations with an adaptive grid.
Finally, the filtering (or finite-size-particle shaping) must be considered.
It proves advantageous in this algorithm to filter the pseudo-charge density
o, and not the charge density itself (discussed more fully in the next sec-
tion). A commonly-used filter in particle simulations is the convolution of
the accumulated charge density with a shape-factor, often a Gaussian, which

is performed in k-space :

o(k) — o(k) exp (~[k - a]’/2),
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where k is the wavevector and a is a measure of the particle size. This type
of global filtering operator has the advantages of flexibility and ease of im-
plementation, and can be used to partially compensate for errors introduced
in the Poisson solver or the sampling method [8, Appendix B]. At present, a
simple Gaussian shape-factor in the y and { variables is used.

The use of a global filtering operator for a highly nonuniform or non-
Cartesian coordinate is questionable, however. For the radial variable in a
‘cylindrical 'system, a non-standard (Bessel) representation must be used in
order to have a rigorously convergent eigenfuction expansion. This problem
can be avoided by considering a region far from the origin, as in the work of
Cheng and Okuda [4]. In the case of a nonuniform grid, the non-locality of
the above operator is somewhat inappropriate, although a transform in the
stretched variable ¢ is reasonable if a rigorously convergent transform can be
found. _

For such situations a better alternative exists, known as digital (or real-
space) filtering [8, Appendix C]. The digital filter employed here is written
as ng , denoting the N-fold application of the simple filter

051+ 205 + Oiy1

Sp(oy) = " , (44)

where ¢ stands for the é-coordinate. This is known as a binomial filter and
is equivalent to a gaussian shape factor in the limit of N — oo. To see this,
we write this filter in terms of its k-space representation in a uniform grid
system [8] and then expand, assuming small kA :

SNk = (Cos %) "
()]

When using this filter, the effective particle size will increase as N increases.

We let
G = gA, (45)

whereupon the N — co limit of the filter becomes

kQaZ/Z} N

N

N—oo N—oco

lim $8(k) = lim [1—
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k2a?

Although this only holds exactly in the large NNV, small kA limit, it nev-
ertheless gives an estimate of the effective particle size associated with the
application of the filter. The total filtering operator can thus be written as

o (€, ky, ke) — SN (a) S(k), (46)
where S(k) is given by
(k) = exp [~(k2a2 + K2a2)/2] . (47)

The electric field filtering and interpolation is handled similarly, except
that no transformation weighting is required. The fundamental algorithm
may be summarized as follows :

1. Accumulate & filter pseudo-charge density o.
2. Obtain charge density from p = o/J.
3. Solve Poisson equation and determine E.
4. Filter electric field and interpolate to particle positions.

5. Push particles.

4.3 Momentum and Energy conservation

Here we examine the ideas of the previous section in a more formal manner,
and show that momentum and energy is conserved by the algorithm. We
find that conservation of momentum (i.e. no numerical self-force) dictates a
specific relationship between the distributions used for interpolation/filtering
of the charge density and those used for the electric field (being identical
only in the slab limit). The presence of non-periodic boundaries ensures the
presence of a physical self-force on a particle—via the induced image charge.
This term can be accounted for in the conservation laws [20]. A reasonable
choice of interpolating /filtering distributions for the electric field leads to the
straightforward methods given in the previous section.
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To shed light on the questions of momentum and energy conservation, we
formally express the field solver steps in a general metric. Starting with the
point-particle distribution, one first interpolates to a mesh; this is mathemat-
ically equivalent with convolving the point-particle distribution with a given
interpolating distribution. Similarly, the filtering process is regarded as a
convolution of the resulting function with a given filtering distribution. Each
of these processes has the result of spatially spreading the charge, giving rise
to the well-known finite-size particle effect [6].

Although they are distinct processes, the interpolation and filtering pro-
cesses are closely related, and shall initially be represented in terms of some
general operator £. Using a continuous space variable, these operations on
a function f are written as

Lof(x) = [J)dx f(x) L), (48)
where £(x';x) is the interpolating or filtering distribution, and J(x') dx’ =
J(x')dz},..., dz), is the volume element, for dimensionality n. In this op-

eration we are simply summing the weights given to the point at x from
every point in space (x'); this will naturally depend on the geometry at x'.
Note that in general £(x';x) # L(x;x'), where the coordinate in the second
position denotes the fixed point.

We adopt interpolating distributions W* and W for acting on the charge
density and electric field, respectively, which are applied in the fashion of
Eq. (48). Similarly, the filtering distributions are written $* and §. We will
prove the following :

Given an interpolating or filtering distribution £ convolved with
the electric field according to Eq. (48), and an analogous distri-
bution £* convolved with the charge density, then momentum is
conserved by the algorithm if

LX(x;x') = L(x';%). (49)
We take the charge density distribution p(x’) to given by that of an
individual point source at x; :
g; (%" —x;)

= 4T T —z;
= J(X') 2=ch$( 1 J)' (50)

I

pi(x)
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The calculation of the self-field of an individual particle proceeds as follows :

1. Interpolation. The charge density for a single particle of charge ¢; and
position x; is given by

pix) = [I) ! pi(x) Wi x)
= W (x5 %). (51)

2. Filtering. The charge density is filtered to obtain the source term in
the field equations,

5i(%) = [ () dx' (') (x5 %). (52)
3. Field solution. Here we are solving for E in terms of s; :
V-E =4rs;(x). (53)
4. Filtering. The filtered electric fields are given by

e;(x) = / J(x') dx' E; (%) S(x'; ). (54)

5. Interpolation to particles. The force on the jth particle (due to its own
field) is
Fi(x;) = [ J(x) dxe;(x) g Wixix,). (55)

Combining Eqs. (54,55), the force on the jth particle due to its self-field
(written as F;;) becomes

Fj = / J(x') dx' B;(x) / J(x) dx g; W(x; x;) S(x;x).  (56)
The source term to the Poisson solver is obtained by combining Eqgs. (51,52),

giving

5i() = [ T(x) doe g W* (355 %) 8*(x, %), (57)
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where the integration variable has been changed to x. We now write the
conservation of momentum relation given by Decyk [20] for a particle in its
own field as

dP;. dP.
— — ji,Tjj -dS =0, dtﬂ = Fyj, (58)
where T is the maxwell stess tensor in the electrostatic limit :
1
T = EE - —(E-E
47r [ ( )

and Iis the identity tensor (note dP/dt = 6P /3t+V-M in Decyk’s notation).
Enforcing the electrostatic condition (V X E = 0), the conservation law takes
on the form

F; = /dvv-Tjj
- / dV E; (1/4m)V - E;. (59)

Comparison of Egs. (56), (57), and (59) leads immediately to the requirement
that _

W(x;x;) S(x';x) = WH*(xy;x) S*(x; %) (60)
for momentum to be conserved in a general metric. In practlce, however, it
is advantageous to independently require

L(x;x") = L*(x;%x) (61)

for each interpolating or filtering distribution (i.e. W or §), clearly satisfying
Eq. (60).

Conservation of energy now follows directly. For the given particle, we
have dW}/dt = v; - Fj;, or

T = [ 76y ax ) - By(x),  (62)

where j denotes the current density. This leads immediately to the energy
conservation law given in Ref. [20]. We note that this treatment ignores pos-
sible errors in the field solver and the finite time-step; in an actual simulation
neither energy nor momentum is exactly conserved. However, these are rela-
tively small variations and serve as a check on the integrity of the simulation.
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The arguments given here show that this viewpoint is not modified by the
adoption of a complex metric in our treatment.

It remains to further specify the form of the interpolating and filtering
distributions. We shall require that the operator £ (acting on the electric
field) be neutral, so that the distribution satisfies

/ J(x) dx’ L(x;%) = 1. (63)

For this to hold independent of metric, the distribution must transform like
a density :

£6e3) = g [T Balot =) (64)
N R
= J(x’) L( ), (65)

where L;(z} — z;) is the flat-metric distribution of the ith coordinate, and
L(x' — x) denotes the total flat-metric distribution (i.e. the product of the
-individual coordinate distributions). Note that L;(z} — z;) = Li(z; — =}).
Writing flat-metric distributions W and S analogously, the electric field fil-
tering operation (Eq. (54)) reduces to

e;(x) = /dx’ E;(x') S(x' —x) (66)

and electric field interpolation (Eq. (55)) reduces to

Fj(x;) = [ dxe;(x) g Wix - xy). (67)

A simple, metric-independent result thereby emerges. Any of the standard
flat-metric distributions for interpolation or filtering (such as described in
the previous section) may be used in place of L.

The conservation of momentum requirement (Eq. (61)) leads to charge
density interpolation and filtering distributions of the form :

Lr(xx) = L' —x), (68)

1
J(x)
where the flat-metric distribution L is identical to that used for the electric
field. The only difference here, though an important one, is the presence of
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the 1/J(x) term before the flat-metric distribution instead of 1/J(x’). The
charge density accumulation (Eq. (51)) reduces to

" o;(x)
(%) = 69
pJ (X) J(X) ’ ( )
where o is the flat-metric charge density discussed in the previous section.
The charge density filtering (Eq. (51)) is given by

53(x) = 7(1;)- / dx’ o;(x') S(x — x). (70)

-Thus we see that using the non-neutral distributions W* and &* in the
charge density calculation is equivalent to first accumulating and filtering
the flat-metric density o, then dividing by the transformation weight J(x).
As remarked previously, this treatment avoids problems in the toroidal sys-
tem at » = 0 from the vanishing of the Jacobian, if no gridpoint is there.
Both the interpolator and filter conserve charge if permitted by the bound-
ary conditions (see Appendix B for discussion of charge conservation by the
filter).

By contrast, one might reverse the treatment adopted here, using the
non-neutral distributions for interpolation/filtering of the electric field. The
interpolated electric field in this case resembles the “flux-weighted” average
described in Ref. [8], with the charge accumulation leading to

pix) = TS W =) (71)

The presence of 1/J(x;) in the above expression causes difficulties if the
particle comes too close to r = 0. This choice also causes problems with
charge conservation by both the interpolator and the filter. Nevertheless,
there are some advantages to either approach; the simplicity and flexibility
of Eqgs. (66,67) for the electric fields and Egs. (69,70) for the charge density
proved to be the overriding factor in our choice.

4.4 Boundary handling

In a simulation code, the boundary conditions enter in several places—the
field solver, the filtering of the field quantities, and the interpolation between
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the particles and the grid. For the particle/grid interpolations, the boundary
conditions can be handled in a number of ways: decision-making (IF-THEN
constructs), indirect lookup-table methods, or guard cells. The guard cell
method used in this research employs an extra grid-point immediately out-
side the system that is mapped back on to the interior values in a manner
consistent with the boundary conditions. This has the advantage of speed—
the interpolation routines do not have to deal explicitly with the boundaries,
~nor are there any indirect lookup tables that may slow execution or inhibit
vectorization. Another advantage of the guard cell technique is that unusual
boundary conditions can be easily handled, since the boundary treatment
(filling and emptying guard cells) is completely isolated from the rest of the
calculation. In particular, the transition to the r = 0 boundary conditions
at the inner boundary is eased by a guard cell formulation.

The boundary conditions at 7 = 0 must ensure continuity there, and the
‘conditions for single-valuedness and continuity of first derivative are given -
by Aydemir and Barnes [21]. For a scalar fleld f(r, 8, ¢), we require that

9f 0
81" r=0

flrym,n)|_, = 0 form#0,

form=20

where m and n are the mode numbers for the transformed function f. A
vector field u(r, 8, §) must satisfy the conditions
0 for |m|=1

Uy (ry M, 0) |, g + 1M ug(r,m,n)l, o

ur(r,m,n)l,—
ug(rym,n)|,.o = 0  for |m|#1,

for the (r,d) components; the ug component has the same boundary condi-
tions as a scalar function. The boundary conditions for a scalar field apply
to the charge density, potential, and E; field component; those for a vector
field apply to the E,, E, field components.

The implementation of the continuity boundary conditions is straightfor-
ward when the k-space (in 8) values of the field are readily available, as with
the electric fields. The boundary handling of the pseudo-charge density o
entails mapping the guard cell particle contributions to the interior of the
o array using the continuity boundary conditions. It may in some cases be
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. preferable to perform the boundary handling in real space. This is accom-
plished by redistributing the guard cell values among the first grid points,
so that the scalar field continuity condition is satisfied. A particle inside
the “central cell” can be linearly interpolated between the first radial grid
point and the virtual point at the origin; the contribution at the origin is
then uniformly spread out among all the neighboring theta points. Although
the interpolation has already been done, this numerical procedure is possible
because all the guard cell values have been kept. Thus a particle exactly at
r = 0 will assign charge equally to all of the points on the boundary of the
central cell, a result that is not only aesthetically appealing but compatible
with the continuity boundary condition there.
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5 Particle pusher

5.1 Ions

The usual scheme for the time advancement of the ions in particle simulations
employs the leap-frog method [17]. Applied to the system of differential
equations employed in this model, the leap-frog method is non-dissipative
and second-order accurate in the time-step. Application of this method to a
general non-cartesian coordinate system is difficult, however. We start with
the equations of motion for an arbitrary metric :

“ . . Bhk . (’9hj q .
e+ S hyd; o = LB+ Y hidsBiey;
Pl + 3 hidi (2Qkhj89j qﬂhka%) Bt @eBieije (o (12)

m i

where a dot refers to a temporal differentiation. Equation (72) can be directly
derived from the Lagrange equations, using the transformed Lorentz force
law. A simpler representation is obtained in terms of the angular momenta,
giving g, = Iz/h2 for the coordinates, and

jk Zj Zj Bh, q Zz

LN N A =1)E 2 B b,

e 25y (h;’: mdg) ~m | Ot 2 B (73)
for the angular momenta. If the toroidal metric is used, the orbit equations
become v

. 2 1 cosd ”
U —k —€ = Fy,
(1 4+ kyu)® C(1 + e¢(1 4 kyu) cos §)°
I, ' [Zsin 6 _
= I T4
(14 kyu) T (14 (1 + kyu) cos 0)3 x (74)
I

(1 + € (1 + #yu) cos 6) o3

‘in which the right-hand-terms are determined from Eq. (73). One standard
way of handling the rotation of the velocity vector in slab geometry is to
finite difference the velocities using

vz+1/2 _ vn—l/?

o = = kOt (75)
n+1/2 | n—1/2
o o= % ';‘ Y 1 o(st%), (76)
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which give a centered, second-order accurate finite-difference equation. The
components are then collected into a matrix equation

My*/2 = Ny 2 4 L |, (77)
m

where M, N, and E all depend on quanties at the nth time level. This
equation is inverted analytically to give the velocities at the n + % timestep
in terms of those at the n — % timestep.

A straightforward implementation of this method will not work in a gen-
eral coordinate system due to the nonlinear terms in the equations of motion
(72)-(73). In this case there is a choice of three quantities that may be consid-
ered given at the half-integer timestep and correspondingly finite-differenced.
These are the time derivative of the coordinates ¢, the velocities hzgy, or

‘the angular momenta h%g;. Regardless of which variable is differenced, the
nonlinearities remain, causing the standard leap-frog method to fail.

One alternative is to adopt a predictor-corrector type approach based on
the smallness of the nonlinear terms in equations (72) or (73). The problem
with this method is that the second term in Eq. (74) is not small and is
a poor expansion parameter in the typical toroidal case. The resulting de-
centeredness causes the rapid cyclotron motion to decay [22]. Although the
damping of cyclotron motion is often an intended effect in an implicit code
[23], it is undesirable for it be an unavoidable by-product of the metric if
the full ion dynamics are to be retained. However, if gyroradius effects are
unimportant, we can utilize this scheme by starting with the gyroenergy
being zero (in this case, we might deliberately decenter Eq. (74) ).

The solution to this problem is to push in a coordinate system that is
better-suited to the physics of the gyrating particles. The approach chosen
here is simple—to push completely in Cartesian coordinates. This method,

- though involving time-consuming transformations, has several advantages.
First, it is rigorously centered and second-order, with little or no numerical
damping. A test run comparing to the previous method showed excellent
energy conservation over the course of the run. The second advantage of the
transformation approach is that it can be used for any coordinate system, as
long as the transformations can be done accurately. (More precisely, there
must exist a transform function together with an exact inverse—since the
velocity components never “leave” Cartesian coordinates, the rotation will
be handled correctly, even if the transform itself is not exact). For the toroidal
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system the transformations are straightforward but somewhat expensive; it
is likely, however, that the cost of a sophisticated predictor-corrector routine
as previously given is comparable (although no detailed timing comparisons
were performed).

The only remaining concern is the amount of numerical diffusion associ-
ated with this method of pushing. The amount of deviation from the field
line for a single particle in one timestep is proportional to (v} 6t)? since the
-pushing method is second order accurate. This quantity will be small for
the ion species in most cases. For a Lorentz-force pusher, the need to accu-
rately reproduce the cyclotron motion is the dominant constraint; numerical
diffusion will not be an issue except when large anisotropies in the ion tem-
perature distribution exist (Tjj > T ). Test runs of this pusher with an ion
temperature gradient (no electric fields, otherwise typical simulation param-
eters) have shown negligible numerical diffusion over long time scales. In
addition, single particle checks (see Sec. 6.1) show excellent conservation of -
particle invariants for the zero electric field case.

5.2 Electrons

In a strongly magnetized plasma, a standard technique to follow electron
dynamics involves the adoption of a guiding center formulation of the equa-
tions of motion. An algorithm for this method in particle simulation was
first given by Cheng and Okuda [4], and has been employed in many recent
simulations [24,25].

In toroidal geometry, the guiding-center drift equations include the impor-
tant first order Larmor radius magnetic effects—mirroring (banana orbits),
drifts from the flux surface, and so on. The primary elements missing in this
description are the polarization current and the finite Larmor radius electric
effects; these are usually small for electrons in a strongly magnetized plasma
(pe S Ae). For non-relativistic dynamics (F < B) and low frequencies the
electron drift equations given by Northrop [26] reduce to

b
Vg = ue-l-Q—x{(,u/m)VB—l-vﬁ(b'Vb)} (78)
oy _ _ep F
2 = ——E—=—b-VB, (79)

where ue. =E xb/B,b=B/B, u=tmv}/B, Q. = eB/mc, and m is the
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electron mass. The particles would normally pushed by time differencing

Ccllt = Vgt b. (80)
However, it is seen from Eq. (78) that the perpendicular drift motion is not
compatible with the leapfrog method since the fields and drift velocity are
given at the same time level. This is the rationale behind the predictor-
corrector method [4] for the perpendicular component, which is third order
accurate in 6t (and is slightly dissipative, unlike the leap-frog method). The
parallel velocity component is pushed in the normal way :

vﬁv‘l‘l/z - vlTlL 1/2 + .Fi? 5t . (81)

The prediction step uses the velocities at time step n and the positions at
time step n — 1 to estimate the positions at time step n+1:

() =x w26 (Vi g P o). (8)

The predicted positions are used to calculate values for the fields at the next
time-step, giving the drift velocity for the correction step :

(a7)" = it o]
x" = X"+ 6t (v||“+1/2 +5 [vi+ (vi) ]) (83)

It is important to properly time-center the magnetic field components
in this equation since inhomogeneities may be strong. We currently use
only magnetic fields that can be expressed analytically, so that the VB and
b - Vb terms are known exactly, avoiding the need for magnetic field in-
terpolation. The b - Vb term is evaluated using the identity b - Vb =
[VB —b x (V x B)]/B.. Derivation of the necessary drift terms is then
‘straightforward, given expressions for the gradient and curl in an arbitrary
coordinate system [27].

The only remaining subtlety is in the advancement the particle coordi-
nates from the velocities. For an arbitrary metric, the velocity for tlie jth
component is h;g;, so that Eqgs. (82)-(83) become

( q;"‘“) = ¢t 28t R] (predict)
q;”'l = 46 v”'tl/z /h”"’l/ 2 (correct),
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where h; is in general a function of all three coordinates, (g1, g2, ¢3). The
prediction step utilizes the metric components 47}, obtained from the coordi-
nates at the nth time level. The correction step, however, requires unknown
quantities h?ﬂ/ 2. One way of addressing this problem is to use the predicted

positions in the calculation of &; :
h7+1/2 = hJ (qn+1/2)
o (s ()] 1), o

A more accurate method also exists when the metric is of the form Ay =
constant, hy = ho(q1), hs = ha(q1,¢2), as in the toroidal system. This allows
the push to be ordered so that the coordinates needed for each metric com-
ponent are known (to second order in 6t). The results of the r-push enable
the calculation of h, for the x-push, which enables the calculation of ¢ for
the (-push. However, the accuracy gained by using this ordering does not.
change the overall accuracy of the push significantly, as seen in long test runs.
Therefore, we use the predicted coordinates as in Eq. (84) for the push, to
allow simple application of the pusher algorithm in more general metrics.

A major liability of this predictor-corrector algorithm is the need to re-
peat the entire field calculation for the electrons at the predicted positions.
This is common to both the present implementation and the usual slab imple-
mentation [4], and is costly both in terms of computation and programming
effort. The amount of programming effort can be reduced through the use
of a modular field solver—the field loop can be reduced to a few subrou-
tine calls within the guiding center pusher routine. Another liability is the
increased number of particle quantities necessary. A three-dimensional slab
implementation of the guiding center pusher requires nine particle quantities
in general—the three coordinates and velocities, and a temporary vector that
holds the coordinates of the previous time-step for the predictive step, as well
as the predicted positions for the corrective step. The implementation in the
toroidal system adds two additional particle quantities—the magnetic mo-
ment (p4), which does not evolve but is different for each electron (determined
by the initial loading), and the velocity component parallel to the magnetic
field (v)). The three-component velocity vector holds the projection of the
drift velocity onto the (u,x, () coordinate system.

The guiding center formulation works well when the electrons are “tied”
to the field lines, as in tokamak-type magnetic fields, with only small drifts
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perpendicular to the field lines. In the time scale of interest in the typical
numerical experiment, a typical untrapped electron will execute many orbits
about the torus, remaining reasonably localized about a given flux surface.
In such a system, the numerical diffusion away from the flux surface caused
by the finite time-step is certainly a concern, and is one reason for using
a flux coordinate system—the parallel motion causes no numerical diffusion
in a Hamada-type coordinate system. (Mercier-type coordinate systems are
“also free from numerical diffusion perpendicular to the flux surface, though
numerical diffusion may occur on the flux surface itself.) For example if we
examine the amount of numerical diffusion in a “square torus” configuration
(cylindrical coordinate, tokamak fields) due to the poloidal field, we find that
the deviation per time step from the flux surface will be on the order of

B 2
5~ (bt =2) . 85
oty ) - (85)
Although this is second order in &t, the product v 6t for electrons may be
appreciable for typical simulation parameters, creating a definite concern
-about numerical diffusion in this system. ’

5.3 Particle boundary handling

Finally we consider the effect of a vanishing Jacobian (r = 0 in the toroidal
system) on the particle pushers. No modification of the ion push is required
since the ions are being pushed in a Cartesian coordinate system, but the 1/r
terms in the electron guiding-center pusher require some special handling.
Although the number of electrons near the origin is small, eventually an
electron will pass close enough to r = 0 to cause numerical difficulties. This
problem is resolved by letting electrons undergo a collision when passing too
close to the origin. We can imagine a small, hard cylinder (or torus) centered
at r = 0; the continuity condition demands that an electron passing within
the critical radius will exit with its  coordinate shifted by 180° (i.e. r — —r).
Since the electron orbits in the (r,6) plane are drift-dominated at the origin,
and the dominant magnetic drifts vertical, this treatment is reasonable. The
location of this critical radius can be estimated given the maximum tolerable
theta increment in a given time-step for athermal particle, and assuming the
drift is dominated by the gradient-B term. The critical radius is then given
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approximately by
Tmin 464(&)6/93)’02
A N(AO)max

where A is the average grid spacing, N is the number of radial grid-points,
we and Q. are the electron plasma and cylotron frequencies, and v, is the
electron thermal velocity, normalized to w,A. The maximum tolerable theta
increment is of order unity, where the distortion of the “true” particle motion
due to the finite integration step rivals that from a collision with the artificial
boundary near » = 0. Using typical simulation parameters, we obtain

(86)

rr .
o0~ 10721073,
A

The smallness of this value indicates that a collision is not likely to influ-
ence the calculated fields significantly. Depending on the plasma profile and:
other simulation parameters, an actual run of approximately 50,000 parti--
cles suffers at most only a few collisions per time-step at the origin; often no
collisions occur.
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6 Tests

6.1 Test particle results

In actual plasma devices the magnetic field structure is often complicated
and usually highly nonuniform. The resultant magnetic drifts and trapped
particles can have a large effect on the stability of the plasma. It is therefore
.important to include these effects in a simulation in a natural way. In this
paper the only restriction we place on the form of the prescribed magnetic
fields is that the flux surfaces be nested, concentric tori. This restriction
is imposed so that there exist no zeroth-order (in Larmor radius) particle
fluxes into the boundaries, and to minimize numerical diffusion. More general
magnetic field configurations are possible, while still satisfying this condition,
by using a generated grid for storage of the cross-field variables.

The magnetic fields adopted here are essentially tokamak fields—a vac-
uum field for the toroidal component with the poloidal component specified
in terms of the safety factor. These can be written

B, = B<o%9 (87)
r

B, = mﬂ:, (88)

where the safety factor ¢(r) is usually an increasing function of r. The parallel -
motion of the particles will be predominantly in the toroidal direction, since
r/qRy is usually much smaller than unity. However, the poloidal component
guarantees that a particle on the outside of the torus will eventually move
into a region of stronger magnetic field, causing low parallel-velocity particles
to reverse directions. Coupled with the dominant inhomogeneous magnetic
field drifts, this gives rise to the well-known banana orbit in this system.
Test particle trajectories reproduce this behavior in the toroidal code, both
for the full-dynamics ions and the guiding center electrons (see Figure 4).
For this test, no electric fields are used, and identical parameters are used
for electrons as ions.

The conservation of various particle invariants like energy, magnetic mo-
ment (u), and the toroidal canonical momentum often play central roles in
plasma phenomena. Therefore we closely examine the conservation of these
quantities by our pusher algorithms in the absence of electric fields. The time
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histories of these quantities, for a representative pair of particles, is given in
Figures 5-6. We shall refer to a particle as either a Lorentz or a drift particle,
depending on the pusher method used. The particle quantities shown in the
plots are the parallel velocity v, kinetic energy Ej, canonical toroidal mo-
mentum py, toroidal angular momentum Ly, stream function ¢ = RA4, and
zero-order magnetic moment po = v2 /2B (Lorentz particle only). The two
trajectory plots at top are r versus ) (toroidal cross section), and R versus
¢ (view from above).

- For the most part, the orbits as given by the two algorithms are in excel-
lent agreement. Part of the discrepancy involves small errors in initialization,
since the initial drift particle quantities must represent the “averaged” ini-
tial Lorentz particle quantities, which is handled only approximately. The
zero-order magnetic moment of the Lorentz particle is on the average well
--conserved, but oscillates once per cyclotron rotation, indicating that higher
order terms in the expansion for the magnetic moment are significant for
these parameters. This is supported by better conservation of po at smaller
Larmor radius.

Conservation of the energy and canonical toroidal momentum is excellent
for the Lorentz particle, and reasonable for the drift particle. The latter
shows a distinct variation of the energy as the particle transits the torus
(see Figure 6). This variation is not numerical dissipation, but seems to be
a result of drift into a region of higher magnetic field strength. This can
happen when a non-vacuum field component is present, in which case the
guiding center drift is no longer perfectly perpendicular to VB (due to the
curvature drift term). Improvement in the conservation of both energy and
canonical toroidal momentum by the drift pusher is expected if one moves to
a phase-space preserving set of drift equa.tlons such as given by Littlejohn

[28].

6.2 Fluctuation spectra for a uniform plasma

The dielectric response function for a uniform equilibrium plasma with drift-
kinetic electrons is given by

ek,w)=1+ = ke

QB 1+ T G SGT8), (59)
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where Z is the plasma dispersion function [29]; its arguments in the above
equation are given by

w

“ = LT 90
_ w —nfl;
% = RICTmT o

Here we have made the assignment k, = 1/A,, and introduced the function
T, (0) = L,(b) exp(—b), (92)

where I, is the modified Bessel function.

At this point the usual practice is to look for solutions to Eq. (89) in
a frequency regime where the arguments to the plasma dispersion function
are either very large or very small, using an asymptotic form of Z to get.
a tractible expression. A normal mode solution is found by assuming a
frequency dependence of the form w = wg + 0, With |y0| < |wo|. For the
plasma wave, the relevant regime is [30]

Bjpos < ke < w < (93)

giving for the real part of the frequency
5,2
]{)”'v‘3

EIVEWEyY (94)

wa ~

where T'(b) has been expanded as I'(b) o~ 1 — b for small b, and p? = 7p3,
7 = T,/T;. If the ion Larmor radius term is neglected, Eq. (94) reduces to
wo =~ we(ky|/k) which is the usual result.

.The above.procedure, involving the expansion of both the plasma disper-
sion function and the exponentially-scaled modified Bessel function, is not
well suited for close comparison between theory and simulation. Therefore,
we solve Eq. (89) directly, using a complex root finder (IMSL library routine
ZANLYT). The full plasma dispersion function is calculated using a continued
fraction method. Although it is usual to keep only the n = 0 cyclotron har-
monic of the ion response term, we find that it is necessary to keep at least
the n = 1 or n = 2 terms for close comparison with the simulation results
(for the given parameters).

44




The tests given here of the simulation plasma in the plasma wave regime
consider only a single harmonic in ¢ (mode 6) but all of the perpendicular
dynamics; this configuration is similar to that studied in association with the
toroidal drift mode (discussed in section 7.2). The simulation parameters are
given by : N, = 50625 (number of particles), Ly = L, = 64 A, L, = 3L,
N, = N, = 64 (slab geometry and uniform grid, with a mode representation
in z), At = 02w, vy, = 0.51 Aw;?t, 7 = 1, m./m; = 0.01, Q./w. = 10,
and particle “size” of a, ~ a, = A (using two passes of the binomial digital
filter in ). The energy was conserved within 0.03% for 2000 time steps.
In the post-processor, the potential is Fourier transformed to obtain the &
dependence, and the spectral density obtained via the maximum entropy
method. Peaks in the spectral density are located numerically, giving the
frequency spectrum as a function of wavevector.

~ We plot frequency versus the perpendicular wavevector compared to the
theoretical result in Figure 7. In this figure, the solid line represents the the-
oretical plasma response with the filtering effects included (finite size particle
effects). The filtering effects are included in the theory in a very simple way—
we replace w? by w2S5? in Eq. (89), where S(k - a) is a gaussian shape factor
and a is the effective particle size. Agreement between the simulation and
theory is good; the remaining systematic error is likely due to grid effects,
which have not been corrected for in the rootfinder (i.e. modification of the
spectrum from the interpolation and Poisson solver). The flattening seen in
the theoretical solution at higher values of k, p; is caused by connection to
the n = 2 ion Bernstein branch.

For fixed k, and kjj, the frequency response is seen to be fairly insensi-
tive to the direction of propagation [22] for the wavenumber range shown in
Figure 7. This is significant in light of the treatment of (z,y) in the field
solver—finite-difference and digital filter in z, compared to a more usual k-
space treatment in y. Further, adoption of a nonuniform grid in z does not
change the plasma response significantly (as expected); the observed mode
frequency is close to that of the uniform grid case for the given wavenum-
ber range [22]. This confirms the ability of the nonuniform grid to correctly
represent long wavelength modes.

An additional mode often examined in magnetized simulation plasmas
is the electron or ion Bernstein mode, which is characterized by frequencies
near multiples of the cyclotron frequency for each species. In this algorithm,
only the ion modes are observed, since the electron cyclotron motion has
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been gyro-avergaged via the guiding center equations. The direct solution of
the plasma response function (Eq. (89)) for the Bernstein harmonics is an
ill-conditioned problem, however. In this case we must rearrange the terms
in the response function, based on our knowledge that the roots are near
the cyclotron harmonics. In particular, we assume w ~ nf);, whereby the
ordering of the terms casts the dispersion relation in the form

n{); _
B v s R %)
where B(k,w) will be small and is given by
Blk) = 456, 26 )T (b) g (96)
7w - kz n tn n\"t R(k’w)'
and
k2 k2. w
R(k,w) =1+ 21+ CZ()] + 5 |1 = D0 ——56,2(G)T5(8) |, (97)
k k el ® — 98

with (; and (;, as previously defined.

The complex rootfinder will converge with the dispersion equation in the
form given by Egs. (95)—(97), but we can simplify further for the purely
perpendicular-propagating mode. In this case k| is identically zero, so the
large argument expansion of the plasma dispersion function must be used.
Expressing the frequency as

w=n8; (1 + A, k,w)), (98)
we have B(k,)
An(k,w) = 1—-——5@_&0) (99)
with g given by
Bk, w) £ Tn(b) (100)

- k2 + f{:f (1 — Zj;én w/(w _jﬂi)rj(bi)) ,

which is then used in the rootfinder calculation.
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We may obtain an approximate expression for w by keeping only the
largest term in the sum, given by j7 = 0. If we also assume that 8 is much
less than unity, we obtain

An(k) ~ B (101)

PR (- To(b) (102)

Note that this differs from the expression for A,(k) given in Ref. [30]. For
the purely perpendicular mode there is no contribution from the electron
response, since electrons are tied to the field lines and cannot interact with
the wave. Only for a finite angle of propagation will electron screening and
Landau damping effects enter. In this case (finite %) one must solve us-
ing the full dispersion function to get an accurate dispersion relation, using
Egs. (95)-(97).

For the ion Bernstein mode test we consider the two-dimensional slab
geometry limit of the code. The simulation parameters are given by : N, =
50625 (number of particles), L, = L, = 64 A, N, = N, = 64 (slab geom-
etry, uniform grid), At = 2.0w;%, vy, = 1.0AWSL, 7 = 1, me/m; = 0.04,
Qe /we = 5, and particle “size” of a; ~ ay, = A as before. The energy was
conserved within 0.5% for 2000 time steps. In Figure 8 we show the frequency
response versus perpendicular wavenumber. Here the solid line represents the
theoretical response with the gaussian filter correction, while the dashed line
is the theoretical response alone. For the parameters chosen in this run the
plasma response is concentrated in the lowest Bernstein harmonics.
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7 Application

7.1 Establishment of the toroidal equilibrium

The study of collective plasma effects must be preceded by consideration of
the equilibrium if the time scales of those effects are much shorter than the
operation period of the device or plasma lifetime, which is almost always
the case. Since particle simulation utilizes multiple charged species, cou-
pled only through the self-consistent electric (or magnetic) fields, enhanced
fluctuation levels by charge separation is a concern. It is well known [31]
that inappropriate loading of electron and ion profiles in slab geometry can
cause fluctuation levels well in excess of equilibrium levels. This energy is
concentrated in the k, = 0 mode (for an & variation of the density profile),
and is caused by the large-scale separation of charge perpendicular to the
magnetic field. This type of enhanced fluctuation level can easily obscure
subtle collective effects of interest in an otherwise stable or marginally un-
stable plasma. Furthermore, charge separation effects can persist for long
times in simulations of the type considered here—the collisionality is low,
preventing rapid collisional relaxation, and the magnetic fields are static, so
that field line tearing cannot occur.

- The driving mechanism for charge separation effects in toroidal geometry
is the gradient-B and curvature-B drifts. Electrons and ions experience mag-
netic drifts of opposite direction, leading to the well-known vertical charge
separation in a toroidal device without rotational transform [32]. The inclu-
sion of rotational transform, however, ensures that a particle that drifts away
from a flux surface will eventually return to it, as it moves along the poloidal
component of the magnetic field. This results in confined trajectories for
individual particles, as well as a cancellation of the charge separation effects.

In a particle simulation of the toroidal system, however, the transit time
for the typical ion is much longer than other characteristic times of the system
(an ion gyration period, for example). The initial particle load, which uses
a straightforward extension of the slab procedure, leaves the particles in a
highly correlated state, and the effects of the rotational transform are not
immediately felt. This leads to large-scale charge separation (primarily due
to the ion drifts) and electric field fluctuations far in excess of equilibrium
values.

The charge separation seen in the toroidal particle simulation is a result
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of the loading of non-stationary particle distributions. In theory a station-
ary distribution can be obtained by utilizing a function of the constants of

motion :

f=f(xepp) (103)
where x is the coordinate, € is the energy, u is the magnetic moment, and
ps = mRvy + qi(r) (104)

is the toroidal canonical momentum (¢ = RAy). The theoretical procedure
for writing the distribution as a function of r is to expand f(py) with the

assumption that
mRvy K P(r) (105)

The problem with this approach is that relation (105) is not valid across the
entire plasma profile for typical simulation parameters. What is required is
a distribution that generates some desired density profile and is stationary
to all orders in the ion Larmor radius. Such a constraint may be difficult
(if not impossible) to satisfy, so we therefore consider alternate methods for
loading the particle distributions.

One alternative is to directly load a distribution in terms of the constants
of motion as in (103), using some general function of pg. This procedure will
not allow the exact generation of a desired density profile, but a reasonably
close match could be obtained through variation of the function f(ps). In
applying this to the phase space of the particles, however, an additional
problem arises. The function we are trying to load takes on the form of

f(X7 p¢) = f(ra 0) IR U_L) (106)

subject to the constraint that the energy distribution f(e) be specified (usu-
-ally a constant temperature Maxwellian, but in general the temperature may
be a function of 7). The distribution function must approximately give the
desired density profile, that is,

Nepec(T) R n(r) = </ dv f(x,v)> (107)

6,

In addition the resulting pitch angle dependence (x/€) and density variation
in § must be reasonable. Note that the ¢ dependence (toroidal coordinate)
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is ignorable; the gyrophase angle dependence is usually small and has been
neglected in the distribution function.

The generation of random variables corresponding to the distribution
given by Eq. (106) subject to the given constraints is a complex problem and
is likely to be computationally expensive. A straightforward method would
utilize a discretization of the variables (r,8,v),v.) and would require large
amounts of temporary storage for an accurate representation of the distri-
bution. A use of the rejection method [33] to generate the random variables
would lessen the memory requirements, but either method is expected to be
very costly in cpu time for the large number of particles typically employed.

- Schemes based on the direct loading of Eq. (106) are still being studied, but
a completely different approach has proven feasable.

The use of a distribution function that is not a function of the constants
of the motion is responsible for the failure of the “standard” slab load in
the toroidal system. This distribution is not stationary -and will rapidly
evolve. In the absence of electric fields the mechanism by which it evolves is
known as phase-mixing (since the particles are non-interacting in this case,
so that there is no physical dissipation). Eventually a stationary distribution
is reached, which may be used as a starting point for our toroidal particle
simulation. Thus we generate a stationary distribution by initializing the
particle positions in the standard way, then advancing them in time according
to the given magnetic field configuration without the self-consistent electric
fields (we shall refer to this as an equalization run). Phase-mixing eventually
results in quasi-stationary distributions. This argument assumes that no
zero-order electric potential is necessary for equilibrium.

For this “equilibrium via phase-mixing” to succeed computationally, we
require first an efficient method for pushing the particles (primarily ions) on
time scales very long compared with the cyclotron gyration. This requirement
is satisfied by utilizing the guiding center equations of motion (ordinarily used
for the electrons). These equations are accurate even for large Larmor radii in
the absence of electric fields, since the magnetic field usually varies slowly on .
this scale. The second requirement is to develop a criterion by which we can
gauge the closeness to stationarity and thereby terminate the initialization
procedure. A simple symmetry argument suffices here. The initial load,
as well as the time-averaged particle orbits, are vertically symmetric (i.e.
symmetric about the § = 0 and 6 = 7 half-planes). Therefore, since the time-
averaged distribution is vertically symmetric as well, the ensemble-averaged
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distribution must also share this symmetry if the system is in statistical
equilibrium (ergodic theorem). This requirement of vertical symmetry proves
to be a good criterion by which to terminate the equalization run.

We illustrate the initialization procedure by following the temperature
evolution for the ion species, as they are pushed in the absence of electric
fields. The case studied uses a fairly large Larmor radius (p/a = 0.025,
where ¢ is the minor radius), which emphasizes the non-equilibrium effects
since these effects scale as some function of kp and p/r, where & is the inverse
density scale length. We show in Figure 9(a)—(c) plots of Tjj(r,8) — (T);) over
a cross section of the plasma at three points in time.

Initially (Figure 9(a)) the temperature shows no global vertical asymme-
try aside from velocity space fluctuations. The initial load was such that
the total energy and magnetic moment had no global theta dependence. At

“time t = 5000; " (Figure 9(b)) the temperature displays a strong vertical
asymmetry, caused by a global upwards shift of the ion distribution due to:
the gradient-B drifts. The electric fields that would result from the charge
separation are much larger than the thermal equilibrium field level. This sit-
uation at best causes an artificial modification of the plasma response, or at
worst drives the plasma to the boundary, as in a system without rotational
transform.

Finally at the much later time ¢ = 4000 ;! (Figure 9(c)) vertical sym-
metry of the temperature distribution has become well established. Any
remaining asymmetry results from either velocity space fluctuations or from
the very slowly-moving particles, which take much longer to phase-mix than
the bulk of the distribution. Likewise, other moments of the distribution
(T, vy|, o) are seen to regain vertical symmetry as well.

Another interesting facet of the initialization is the appearance of a large
scale structure in poloidal angle of the parallel velocity, as well as a finite
value for (v|) (initially zero). We give v as a function of space at times
t =0 and ¢t = 4000 Q; ! in Figure 9(d),(e). The observed behavior is again a
diamagnetic effect, and is characteristic of a return flow [34]. In fluid theory,
the return flow is obtained by enforcing incompressibility to first order in
the confinement ordering parameter, p/L. If no macroscopic temperature
gradients are present the parallel fluid velocity is given by [34] :

nW = - (108)

c dlnn_}_e@
eBool | dr T dr
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where p is the pressure. For a gaussian density profile (n(r) ~ exp(—«gr?/2)),
and no electric fields this becomes

? ~ k2pq(r) (Ro + rcos¥). (109)
¢

where v; is the thermal velocity, ¢ is the safety factor, and p is the Larmor
radius. Comparing to Figure 9 (), we see that the §-dependent part is well
described by Eq. (109). The 6#-independent part differs significantly, how-
ever, which may be due to the initial load and its effect on the temperature
variation. In particular, enforcing no global variation of po and energy ini-
tially results in differing T and 7], distributions; these become much closer
in appearance during the phase mixing procedure, while the po distribution
develops a strong 6 dependence. These observations suggest a number of
“ways in which the initial load may be improved, but such improvements may
not obviate the need for an equalization run, since small errors in the load
can lead to relatively large charge separation effects.

The initialization procedure can be summarized as follows. The ion
species is pushed via the drift pusher until the vertical symmetry criterion
is approximately satisfied. On the order of 2000 time-steps (6t ~ 2Q; 1)
are typically required. The computational expense for this calculation is
reasonable since the electric fields are not being evaluated. At the conclu-
sion of the equalization run, particle quantities are output to disk and then
re-read for the actual simulation run, making the necessary transformation
from guiding-center coordinates to the full dynamics coordinates. The elec-
tron positions (guiding centers) are loaded coincident with the ion positions,
which ensures approximate quasineutrality at time ¢ = 0 (and is equivalent
to the method of Naitou et al. [31] in the limit of large number of particles).
The electron velocity distribution is loaded in the usual way, which ignores
any non-equilibrium effects that may be caused by the geometry. Since the
electron drifts are much smaller than the ion drifts, this is usually justifiable.

7.2 Drift waves in toroidal geometry

The density gradient driven drift mode has long attracted the attention of
plasma confinement researchers and is suspected to be partly responsible
for anomalous transport in tokamaks. Also known as the universal mode,
it is unstable for an infinitesimally small density gradient in the absence of
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magnetic shear. In the sheared slab model, however, it is stabilized due to
the outward convection of energy and ion shear damping [35]. Nevertheless,
inclusion of toroidal effects fundamentally alters the character of the mode,
leading to the unstable toroidicity-induced (TI) mode [36].

In a toroidal configuration, the magnetic fields have a strong variation
with the poloidal coordinate #, and the Laplacian operator itself has 6-
dependent terms. This results in coupling between the drift wave eigenmodes
at neighboring mode rational surfaces, which can inhibit the convection of
energy. Since it is this convection that is primarily responsible for stabiliza-
tion of the mode in the slab model, the stability properties of the drift wave
are substantially modified.

Simulations of the toroidal plasma with the present code have provided
additional information about the character of this mode (both linear and
nonlinear) and have demonstrated the efficacy of the code. We summarize
some of our findings here; for additional detail see Refs. [22,37].

Parameters in the central region of the simulation plasma are chosen
comparable to those used in the theoretical calculation of Ref. [38], for which
€, ~ 0.1 (= L,/Ry) and §(=rq¢'/q) ~ 1. The simulation employs &k, p; ~ 0.2,
for which the growth rate of the TI-mode is expected to be a maximum [38].
Runs were performed employing a single toroidal mode number (n = 9) or
a subset of toroidal mode numbers (n = 7 through n = 11), as well as a
cylindrical control run (n = 9). Gaussian density profiles were used, and
the safety factor rose from ¢ ~ 0.6 at r = 0 to ¢ ~ 4.0 at 7 = a. The
poloidal mode spectrum was truncated to ensure that the wave functions
associated with the drift mode were sufficiently isolated from the boundaries.
For example, the m = 5 through m = 15 poloidal modes were retained in
the single toroidal harmonic run (n = 9).

We observe that the universal modes become unstable in the toroidal
plasma, while the cylindrical plasma shows no such instability, suggesting
the toroidicity-induced nature of the mode. In the run with multiple toroidal
harmonics many growing modes are seen, with growth rates and saturation
levels elevated nearly a factor of two over the single-n case.

We examine the mode structure of the potential on long time scales via
spectral analysis for the toroidal single-n run. A plot of frequency versus
radius for the m = 8 and m = 9 modes (Fig. 10) shows two dominiant modes
with frequencies below the diamagnetic frequency (other mode numbers show
similar behavior). This result is a consequence of the strong coupling of the
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poloidal modes in toroidal geometry, which allows multiple drift harmonics to
appear. Comparing the frequency dependence on the radius for neighboring
mode numbers, we see a dramatic preference for certain frequency bands
(which may vary with position), especially at low frequency. The power (not
shown) is concentrated in the two lowest frequency bands, although a third
frequency band appears at larger r. The frequency of the lowest harmonic is
given roughly by w/w* ~ 0.5, and the second harmonic by w/w* ~ 0.9. The
~~theoretical value given in Ref. [38] is w/w* ~ 0.4, which compares favorably
to the observed low frequency band. The cylindrical run shows no band
structure in its frequency response, as expected.

The radial structure via an interferogram diagnostic shows peaking of the
potential near the mode rational surface for the observed frequencies. The
waveforms are typically highly oscillatory in r and overlap an appreciable
number of adjacent mode rational surfaces. This behavior is a consequence
of the weakly damped or unstable, radially extended character of the toroidal
mode, in contrast to the rapid radial decay of the slab geometry drift mode
eigenfunction. We observe the width of the interfered potential in the toroidal
case to be approximately twice that of the cylindrical run, demonstrating the
radially-extended nature of the TI-mode. Note that the finite radial width of
the TI-mode eigenfunction is caused by the variation of equilibrium quantities
with 7 (such as the diamagnetic frequency), and from our truncation of the
poloidal mode space.
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8 Summary and Conclusions

The main goal of the present paper involved the extension of particle sim-
ulation methods to nearly arbitrary curvilinear coordinates, and to model
of a confined plasma in that system. Kinetic and nonlinear effects play an
important role in plasma behavior; thus the capability for studying realistic
geometries via particle simulation is greatly desired. The toroidal coordinate
-system considered here has many features of more complex metrics, including
the vanishing of the transformation Jacobian at r = 0 and the nonseparable
field equations. The algorithm developed in the course of this research thus is
virtually metric-independent, and extensions of this work to other coordinate -
systems are envisioned.
The use of a radial nonuniform grid is a natural construct in a cylindri-
. cal or toroidal system, giving increased radial resolution while maintaining
nearly uniform particle/cell ratios. Implementation of the nonuniform grid is
reasonably straightforward, requiring only a finite-difference (real space) han-
dling of the radial coordinate and the adoption of a real-space or digital filter
for smoothing of the interpolated quantities. The association of the curvature
of space with the grid (instead of with the particles) in the charge density
calculation avoids difficulties with the vanishing of the coordinate metric, as
well as being conceptually simple. The resulting accumulation/filter/field-
solver /filter /interpolation process is shown to be momentum and energy con-
serving in the continuum limit, as with the usual slab methods.

The particle equations of motion in the toroidal metric contain nonlinear-
ities that makes integration considerably more difficult than in slab geome-
try. Therefore the ions are advanced using a transformation pusher, which
models the cyclotron gyration well. The electron dynamics is modeled via
a guiding center formulation, which is well-suited to this system. The par-
allel motion is separated from the perpendicular drift motion in the usual
predictor-corrector scheme, employing only two additional particle quanti-
ties than the slab model—the magnetic moment (x) and velocity along the
field line (v)). These pushing algorithms have been extensively tested in a
variety of configurations, including tokamak magnetic fields; the particle or-
bits are consistently obtained regardless of the pushing method with good
conservation of particle invariants (energy, magnetic moment, and toroidal
canonical momentum).

The ability of the simulation code to reproduce collective plasma effects
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has been demonstrated in the code’s slab limit, for the plasma wave and ion
Bernstein wave. In each case the simulation results closely followed the theo-
retical response with the exception of a small systematic deviation increasing
with mode number (this resulted from grid effects, which was not accounted
for in the analysis). A good test is possible only when the theory is well un-
derstood, so that the source of discrepancies can be identified. Thus, reliance
on tests in the slab limit for testing of the code is reasonable. (Note that the
-accurate reproduction of the theoretical perpendicular plasma wave response
in the slab limit required that the n = 1 and n = 2 ion cyclotron contribu-
tions be kept. This is surprising in light of the “usual” approximations; and
points out the importance of verifying the approximations made in the theory
when a close comparison and stringent test are sought.) The correctness of
the toroidal field-solver itself has been verified via internal consistency checks
and through observation of test particle motion.

An additional question which appears with the simulation model concerns -

“the initialization of stationary particle distributions. This is necessary in a
particle simulation so that subtle stability effects can be observed. In the
toroidal system the broken symmetry in the poloidal variable causes large-
scale charge separation when the distributions are loaded in the usual way.
This problem has been solved through a “phase-mixing” procedure, for which
the ion distribution is allowed to evolve to a steady state (without electric
fields), prior to starting the simulation. A quiet simulation thereby results
with fluctuation levels on the order of thermal equilibrium levels.

The success of the particle simulation model in modeling the toroidal drift
wave is highly significant, for this mode appears only when toroidal effects
are considered. This work demonstrates that particle simulation in complex
geometries can be an important tool in the understanding of the underly-
ing physics. However, despite the difficulty of the associated theory and the

. complexity of the observed phenomena, this investigation is only the starting
point. The extension to longer time scales via gyrokinetic and/or implicit
formulation of the field equations is under consideration, as well as inclusion
of self-consistent magnetic field effects. Finally, the methods developed in
the course of this work may be well-suited for the geometries encountered in
astrophysical problems as well. This might include simulation of the magne-
tosphere, or the region near a black hole (for which a Schwartzschild metric
would be necessary). The general relativistic metric involves the four dimen-
sional nonflat metric, and treatment of this problem has been initiated.
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A Solution of the Poisson equation in a more
general metric.

In a general two-dimensional orthogonal metric with coordinates (¢,7), the
Poisson equation is given by

1 0 h77 0 9 hg@ ~
hehy [55 (7755—€—> Kz (h—ﬁﬁ)] o(¢,n) =s(&m),  (110)

where h¢(€,7) and hy(€,7) are the metric coefficients for £ and 7, respectively.
We consider the case of a coordinate system for which the magnetic flux
surfaces lie on surfaces of constant radial coordinate (the “magnetic field” in

. this discussion will mean the background magnetic field only; i.e. that part
not generated self-consistently in the simulation). Further, the magnetic
field lines must have no sinks or sources in the region of interest (separatrices
are not allowed). These assumptions are reasonable for many numerical
calculations.

These coordinates are similar to the boundary-fitted coordinates used in
fluid simulations, except that the “boundary” (i.e. magnetic flux surfaces)
is present everywhere in space. Aside from an arbitrary scale factor f;(g;)
in each coordinate, these are essentially Mercier coordinates [39]. The con-
struction of the coordinate system might proceed from the solution of the
Grad-Shafranov equilibrium equation, yielding the spatial dependence of the
poloidal flux. This would serve to define our radial variable, though a stretch-
ing function could be used to obtain the desired radial grid spacing. An
orthogonalization procedure (e.g. see Ref. [17]) gives the spatial dependence
of the poloidal coordinate. For an axisymmetric magnetic field structure,
toroidal angle ¢ may be used as the toroidal coordinate.

Iterative methods of solving Eq. (110) via a rapid elliptic solver have been
discussed in the literature (see Ref. [40]); these have typically considered a
much more general case. With the assumptions given above, however, the
problem becomes much simpler. It was shown by Potter and Tuttle [17] that
for the stated conditions the metric components must satisfy

he(&,m)/ hn(€,m) = f1(€)/ f2(n),
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whereupon Eq. (110) becomes

(1 0(1 0), 101 Vg, e,
J1(8) 0¢ \ f1(£) 0¢ fa(n) On \ fa(n) On ’ f(&)f2(n) (, )

: 111
This equation is now directly solvable via cyclic reduction. This remarkable
fact stems from no approximation, but from the “nice” properties of the
- confining magnetic field. Addition of a third coordinate via rotation about
an axis of symmetry introduces terms proportional to the inverse aspect ratio,

which may be solved iteratively, as in the text.
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B Charge conservation by the filter

Here we consider whether the general metric filter operation conserves charge;
ie. if f(Sop)dV = [pdV = Q where S is the filter operator and @ is the
total charge. Although it is usually taken for granted that the filter operator
conserves charge, in a non-Cartesian system this may not be generally true.

We examine the effect of a simple digital filter on the total charge. For
~simplicity, ‘we ‘choose a single application of the binomial digital filter for
our flat-metric filter operator, and consider only a single dimension. From
Eq. 70, we have

1 o1+ 20+ 0
Sop) =

_ 2y oy
e
using the three point approximation to the second derivative. If we neglect
the O(A*) contribution and assume the continuum limit, the conservation of

charge equation becomes

82
[Sona©)ae = [oi d5+4 3
A2 9o %
= Ot %,

This additional term on the right hand side is a boundary term and vanishes
if even parity or continuity boundary conditions are applied to o from within
the filter (the latter can be shown if the integration over @ is performed).

A remaining concern is whether continuity boundary conditions at the
origin are in fact appropriate when interpolating or filtering o, given that
p = o/J, with J vanishing at r = 0. In interpolation, it is necessary that
continuity be assumed so that a particle does not “disappear” from the sim-
ulation if it passes through the origin. A similar argument can be given for
the filter. The apparent conflict can be resolved by noting that interior to the
first grid point, the variation of the Jacobian is unimportant to the charge
accumulation process—the region bounding the r = 0 point can be viewed
as simply one large cell.
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Of greater consequence is the effect at neighboring grid points, for which
density fluctuations cause a large response via the 1/J term. This is a concern
due to the relative scarcity of particles in the central region; nonphysical
fluctuations near » = 0 can be minimized (but not completely alleviated)
through grid stretching there (cf. Fig. 2). The filter operator usually plays
a key role in reducing nonphysical fluctuations, but the filter operator given
above (with continuity boundary conditions on ¢) is lacking in this regard
at = 0. Ideally, one wishes to filter p, not . Taking o(r = 0) = 0 reduces
fluctuations, but only at the cost of nonconservation of charge. An intriguing
possibility is to enlarge the effective particle size in § near the origin via the
k-space smoothing operator, but this will not affect m = 0 fluctuations.
Nonetheless, to date we have found the present treatment adequate. Larger
than normal fluctuation levels at r = 0 can usually be tolerated, as it is often
a point of relatively little interest.
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Figure Captions

. Toroidal coordinate system (r, x, {).

. (a) Example nonuniform grid (r) (b) Plasma profile, and number of
particles per cell for cylindrical or toroidal geometry corresponding to
grid in (a). Region of interest is in the center.

. Example schematic of (r,8) grid (here 64 x 32).

. Trajectories of a mirroring particles in a tokamak field, for (a) Lorentz
particle, and (b) drift particle. At left is the projection onto the (r,8)
‘plane; at right is the view from above.

. Lorentz particle in tokamak field. (a) trajectory in the vertical and
horizontal planes. (b) time dependence of dynamical quantities. The
approximate upper and lower bounds for each plot (internal units) are
vy : (0.14,0.20), By : (5.9045,5.9055), po : (0.00107,0.00109), py :
(—69.620,—69.05), Ly : (—0.25, —0.10), 9 : (—60.0, —45.0).

. Drift particle in tokamak field. (a) trajectory in the vertical and hor-
izontal planies. (b) time dependence of dynamical quantities. (same
parameters as in Figure 5). The approximate upper and lower bounds
for each plot (internal units) are vy : (0.14,0.20), Ey : (5.904,5.908),
pg ¢ (—69.590, —69.565), Ly : (—0.22,—0.13), 9 : (—57.0, —48.0).

. Frequency versus perpendicular wavenumber, magnetized plasma wave
(thermal run). Simulation values represented by marks, theory by solid
curve.

. Frequency versus perpendicular wavenumber, Bernstein wave (thermal
run). Simulation values represented by marks, theory by solid curve.
Dashed curve is theoretical frequency without inclusion of finite size
particle effect.

. Particle distribution moments as a function of (r,8). (a), (b), (c) Tj —
(Tyy) at times ¢ = 0,500,4000 07, respectively. (d), (e) v at times
t = 0,4000 Q;*, respectively.
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10. Frequency versus radius for the m = 8 and m = 9 modes. The arrows
show the locations of the mode rational surfaces. The banded frequency
structure is a manifestation of the toroidal geometry.
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