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Abstract

Two types of nonlinear equations describing the time development of modes near
marginally stable states in an inhomogeneous medium are obtained through a general
formulation that employs a perturbation expansion around the marginally stable state
under the assumption of a single helicity. One type of nonlinear equation has a Hamil-
tonian form that may be interpreted as the equation of motion for a particle in the
potential field of a central force; the other type leads to the Landau equation, which
is well known in fluid dynamics. The former equation is obtained when the linear
operator is degenerate at the marginally stable state, which situation corresponds to
the case when the linear dispersion relation has a double root for the frequency at
the marginally stable state, whereas the latter is obtained when the linear operator is
nondegenerate, i.e., the linear dispersion relation has a single root. In the framework
of magnetohydrodynamics, the former corresponds to the nonresonant ideal modes,
and the latter to the resistive modes. The nonlinear behavior of the nonresonant kink
modes in a reversed field pinch and of the quasi-interchange modes in a tokamak are
examined with the application of the general formulation. It is shown that new sta-
ble helical equilibria bifurcate near the initial axisymmetric equilibrium, so that the
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plasma nonlinearly oscillates around the new bifurcated equilibrium, which leads to
nonlinear saturation of the nonresonant kink modes in a reversed field pinch and of the
quasi-interchange mode in a tokamak. Compressibility reduces the nonlinear stabilizing
effects and is important even when the modes are near marginally stable states.




1. Introduction

Understanding the nonlinear phenomena of unstable modes in inhomogeneous media such as
fluids’ and plasmas? is both a very interesting and important problem. Some investigations
examine the turbulent states, whereas other studies consider the phenomena with coherent
structures. In either case, these are very difficult problems when treated analytically, so that
computer simulations are used as a powerful tool. Due to the complexity of the phenom-
ena, however, it is important to treat these problems analytically even if assumptions are
used that simplify the situation. These analytical treatments are a basis for understanding
nonlinear phenomena. Here, we will focus our attention on nonlinear phenomena with co-
herent structures near marginally stable state. As an example, the nonlinear behavior of
plasma waves near a marginally stable state is examined in a homogeneous one-dimensional
medium.® The external kink mode? and the quasi.-interchange mode® are investigated near
marginaliy stable states with the use of a different scheme from Ref. 3.

In this paper, we generally treat the nonlinear behavior of the modes near marginally
stable states in an inhomogeneous three-dimensional medium under the assumption of a
single helicity. This means that the nonlinearity comes from the interactions of the mode
under consideration with its harmonics, so that the three-dimensional problem reduces to
a two-dimensional one. Then we consider the nonlinear behavior of weakly unstable ideal
MHD modes, viz., the nonresonant kink mode in a reversed field pinch (RFP) and the
quasi-interchange mode in a tokamak, applying the general treatment to them.

Using the assumption of single helicity and a perturbation expansion around the margin-
ally stable state, together with the multiple-time-scale method, we can construct a general
formulation to derive the nonlinear equation of the mode under consideration, which ié

applicable to modes near marginally stable states whether they are linearly unstable or




not. From this formulation, we can obtain two types of nonlinear equations with respect
to the complex amplitude of the mode near a marginally stable state, corresponding to
the properties of the linear operator at the marginally stable state. One type of nonlinear
equation has a Hamiltonian form that may be interpreted as the equation of motion for a
particle in the potential field of a central force; the other type leads to the Landau equation,
which is well known in fluid dynamics.! The former equation is obtained when the linear
operator is degenerate at the marginally stable state, which corresponds to the case when
the linear dispersion relation has a double root for the frequency at the marginally stable
state, whereas the latter is obtained when the linear operator is nondegenerate, i.e., the
linear dispersion relation has a single root for the frequency. The solutions of these two
equations represent a wide class of nonlinear phenomena, some of which are bounded and
others are unbounded. In particular, when the mode is linearly unstable but nonlinearly
stable, new stable equilibria bifurcate near the initial equilibrium, which leads to nonlinear
saturation of the mode. In the degenerate case, the mode exhibits either nonlinear oscillations
around the new bifurcated equilibrium or more coﬁplicated behavior, depending on the -
initial conditions. In the nondegenerate case, the absolute value of the amplitude of the mode
approaches a new bifurcated equilibrium asymptotically, whatever the initial conditions.

In the framework of magnetohydrodynamics (MHD), the degenerate case corresponds to
‘nonresonant ideal modes or nonresonant modes whose linear dispersion relation does not in-
clude dissipative effects, while the nondegenerate ;:ase corresponds to resistive modes. Here,
‘we apply the general formulation to nonresonant kink modes in a high temperature RFP
plasma and to quasi-interchange modes in a high temperature tokamak plasma (degenerate
case). The application to resistive modes will be described in a companion paper.® Nonreso-
nant kink modes in an RFP are considered to be responsible for the self-reversal and also the
sustainment of the reversed state.”® Part of the present work on nonresonant kink modes in

an RFP is an extension of previous work,!? in which we had derived a nonlinear equation




11,12 without

using the additional assumption of incompressibility.!° Quasi-interchange modes
mode rational surfaces have been proposed to explain the fast crash of sawteeth oscillations
without precursor oscillations in recent large tokamaks.!3~?¢ These two modes correspond
to the degenerate case, for which case we obtain the nonlinear equation with a Hamiltonian
form. By examining wide classes of cylindrical equilibria that are unstable against each
mode, we found that nonlinearity has a stabilizing effect. Hence, new stable helical equilib-
ria bifurcate near the initial axisymmetric equilibrium. For initial conditions that are the
same as those used in the linear and nonlinear calculations, a nonlinear oscillation occurs
around the new bifurcated equilibrium, which leads to nonlinear saturation of the modes.
For the quasi-interchange mode, these results are similar to those in Ref. 5. It is shown that
compressibility is important even for modes near marginally stable states, because it reduces
the nonlinear stabilizing effects.

In Sec. 2, the general formulation to obtain the nonlinear equations is given. T'wo types
of nonlinear equations are obtained, according to the properties of thé linear operator at the
marginally stable state. The nonlinear properties of the nonresonant kink modé in an RFP
and of the quasi-interchange mode in a tokamak are investigated in Sec. 3 by means of the

general formulation, in which the appearance of the bifurcated stable equilibria is indicated.

Section 4 contains conclusions and discussion.

2. General Formulation of the Perturbation Theory

We consider a nonlinear system defined in three-dimensional space (X;, Xz, X3) where the
system is inhomogeneous in the direction of the coordinate X; and is periodic in the directions
of the coordinates X and. X3. The equilibrium is a function of X; only, and the perturbations
have the phase dependence e!(M2X2+MsXa—wt) where M, and Ms are the mode numbers and w
is the frequency. Although there are a number of normal modes in the system, we consider

a particular normal mode having the mode numbers M,, and M;,. Under the assumption




of single helicity, all the nonlinearly excited perturbations are harmonics of the mode under
consideration. Then, the problem in three-dimensional space (X3, X2, X3) reduces to one
in two-dimensional space (r,() where r = X; and ¢ = M, X, + M3,X5. Here, we consider
traveling waves. The standing waves can be treated in a similar way.

We focus attention on one dependent variable u, because other dependent variables are
linearly dependent upon u in the samé order in a perturbation theory. We introduce the

following expansion form of u with respect to the ordering parameter A,

u o= > Nu,, (2.1)
n=1
and assume that the first-order perturbation has the following form:

wy = Auy(r)efé=) 4+ cc., (2.2)

where A is a complex coefficient and u;(r) is a real function of r. Substituting Eq. (2.1) into

the original equations of the nonlinear system, we obtain the following general equations:

(108 .8 ‘ .
L(3gprigen) u= M &)
M =Y \"M,, (2.4)

n=2

Where L is a linearized differential operator with respect to » and M is a term containing
the nonlinear terms. In the operator L, the expressions for the partial differentiations

10 .0

ioC ‘ot
are used instead of the Fourier mode number and the frequency, respectively. The quantity
p in the operator L is a parameter characterizing whether or not the system is unstable with
respect to the mode under consideration, which parameter may be associated with either the
equilibrium or the system parameters. Note that Eqgs. (2.3)—(2.4) are a closed system under

adequate boundary conditions.




Firstly, we consider the linear solution of Eq. (2.3), substituting Eq. (2.2) into Eq. (2.3);
i.e., we consider the solution of the following homogeneous boundary value problem (eigen-

value problem):

19 .0
AL (Za—g,z—%,p,r> up = 0

or

A L1, w0, p;m)ug(r) = 0. (2.5)

When the parameter p is specified, the eigenvalue w and the eigenfunction u4(r) are obtained
from the boundary conditions. Then, the equation (2.5) is interpreted as the linear dispersion

relation. At the marginally stable state indicated by p = p,, the linear solution is given by
Uy = Aulc(r)ei(c—wcﬂ + c.C., ‘ (26)

where u;.(r) and w, are the eigenfunction and the real frequency at the marginally stable
state, respectively. Hereafter, it is assumed that the linear solution uy.(r) is unique. Ac—.
cording to the properties of the linear operator, the marginally stable state is classified into
two typical cases. One is the degenerate case in which the linear dispersion relation has a
double root for the frequency at the marginally stable state; the other is the nondegenerate
case in Which the linear dispersion relation has a single root. In this theory, the degenerate

case corresponds to

0

—_— ; = 2.

8wL(1awc»PC77') 0 (2.7)
and the nondegenerate case to

0

%—L (1,wey pe;r) # 0. (2.8)

The prop/ertieé expressed by Egs. (2.7)-(2.8) prescribe the nonlinear behavior of the mode

near a marginally stable state as shown below.
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In order to examine the nonlinear behavior of the mode near a marginally stable state, we
consider the situation that slightly deviates from the marginally stable state either toward
the unstable direction or toward the stable direction, which is realized by specifying the

parameter p as follows:

p=p. £\ (2.9)

This equation determines the sign and the value of the ordering parameter A when the
parameters p and p. are given. According to the deviation of p from p, the linear solution
at p slightly changes from the linear solution of Eq. (2.6) at a marginally stable state when
the ordering parameter A is small. When the parameter p deviates from p, toward the
unstable direction, a linear solution with a slow linear growth must be obtained. Therefore,
we assume that the linear solution at p has the same form as Eq. (2.6) except for the slow
time variation of the coefficient A. Taking the slow time variation of A into account, we

introduce the following multiple-time-scale method:

7'1 = )\t, Ty = AQt,..., (210)

.0 .0 . 0 2, 0 '
A=A(r,7m...), (2.12)
eil((=wet) _, oi((—wemo) (2.13)

As is clear from Egs. (2.12)-(2.13), the coeflicient A has been considered to be a function of
the slow time scales 71,72, ..., and the oscillation at the frequency w. has been interpreted

as the phenomenon with the fastest time scale.

(i .,0
i@(’zat’p’r Ui

Expanding the operator



around the marginally stable state together with the multiple-time-scale method given by

Egs. (2.10)-(2.13), we obtain the following expanded form:

190 .0 ;
A A (¢ —weTp0)
L (Z 6(,2&,?,7’) )\A(ThTZ’a"')ulc(r)e

(1o .8 .8  .,0 2, i(¢~wero)
_L(iﬁf’z-a—:rg+l)\3_ﬁ+2)\ 57_—2+ ,Pe A ,7‘) AA (71, 72,... ) use(r)e

. N0 ., 0
= ¢i{¢-wemo) [, (Lwc_{_z)\a_ﬁ_*_z)j_é_’r_z+...,pc:t/\2;7~> )‘A(Tl,Tz,...)ulc(T‘)

. 0 0A
— 1((~weTo) . 2, .
e {)\L (1,we, pe;7) ure(r)A + A z—aw L (1,we,pe;7) uge(r) P

0 A 1 9? %A
3, = . o L= . -
+ A ['L 8LL)L (1)w07pci 7') ulC(r) 67'2 2 aw2L (1,wc,pca 7') ulc(r) 67_12

+ (%L (1, wey pe;7) ulc("")A] + 0 ()\4) } - (2.14)

Substituting Eq. (2.14) into Eq. (2.3) and using Eqgs. (2.1)-(2.4), we obtain an equation for

each order of A. According to Eqgs. (2.7)-(2.8), we consider two cases separately.

(i) Degenerate case

In this case, Eq. (2.7) holds. From the equation at order A, we obtain a linear solution at

the marginally stable state, i.e., p., w, and us.(r). The equation at order \? is
10
L (?‘a—gawcvpc; 7") Uy = M27 . (215)

where the inhomogeneous term M, includes no terms éroportional to el¢—wem)  but only
terms proportional to e"¢~%7) and quasilinear terms. This inhomogeneous boundary value
problem can be solved generally. Determination of the quasilinear solution, however, is
complicated, as shown in Sec. 3. Although u, may have a solution proportional to uj,
such a solution could be transferred to the fundamental solution u; by redefinition of the

coefficient A. Thus, we may choose us not to have a component proportional to uy, without

loss of generality.




‘From the equation at order A3, for the solution us; proportional to e?¢=“¢™) we have the
following equation:

1 6* %A
L(l,wc,Pc;T)Usl = EWL(lawc)pc;r)ulc(r)a_le

— (£1) %L (1,we, pe; ) u1o(r) A + My (r) |A]* A

= ISl(Aa 7"), (2'16)

where Ms;(r) |A|? A comes from Ms. Now we introduce an adequate inner product, taking
account of the boundary conditions:

(w,v), (2.17)

which typically takes the form of an integral with respect to r. Moreover, we introduce
the adjoint operator to L, i.e., LT, and the solution of the adjoint operator L*, i.e., uy,(r).
Because we have assumed the uniqueness of uy.(r), a necessary and sufficient condition for

a solution of Eq. (2.16) to exist—the solvability condition—is

(uf(r) I (A,7)) = 0. (2.18)

Consequently, we have the following nonlinear equation in the degenerate case:

0?A 2
CozZ £ C1A+C3|A["A = 0, (2.19)
0r{
where
C, = + 16 L .
0 = ulc(r)7iw (l,wcapcy'r)ulc("') 5 (220)
- -~ 9
C, = - ulc(r),a—pL(l,wc,pc;r)ulc(r) ) (2.21)
and
Cs = (uf(r), Ma(r)). (2.22)
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Rewriting Eq. (2.19) in terms of the original quantities, viz., the time t = 7/) and the
amplitude A4 = AA, we obtain

32./1.

atz (p - pc) CI'A + 03 IAI2 -A = 0, (2.23)

Cosrs

where £)? is replaced by p — p, using Eq. (2.9).

Although the coefficients Cy, Cy, and Cs may in general be complex, for wide classes of
physical phenomena we are interested in the case when these coefficients are real. Hence,
we examine the nonlinear behavior given by the solution of Eq. (2.23) for such a situation.

Substituting A = |A| e (p is real) into Eq. (2.23), we have

Cy [‘ZL;" (‘9“”) |A|} 0 —p) Gy 1A+ 0 14P =0, (224

|AP? 66—;0 = const,. (2.25)

Then, Eq. (2.23) may be interpreted as the equation of motion of a particle in the potential

field of a central force, where the potential field is given by

B, (14)) = BB 4p 4 &g (2.26)

The linearized equation Aof Eq. (2.23) under the condition |A] < 1 gives two independent
linear solutions. The initial conditions of Eq. (2.23), i.e., A(t = 0) and 2.A(¢ = 0) with
sufficiently small magnitudes, are related to the choice of the magnitudes and the phases of
the two independent linear solutions. Consequently, depending on the signs of the coefficients
of Cy, C1, and C; and on the initial conditions of Eq. (2.23), the mode under consideration
exhibits a wide range of nonlinear phenomena. Some are bounded, and others are unbounded.
We consider the typical case in which the mode under consideration is linearly unstable, i.e.,
Co(p—p.)C1 < 0 and both A and 0A/8t in the initial conditions are real values with
sufficiently small magnitudes. Such initial conditions correspond to the initial state having

an unstable mode and a stable mode with a phase difference of = between each other. The
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amplitude A is always real, so that the motion of A is limited in the one-dimensional potential
field given by Eq. (2.26) with real 4. When nonlinearity stabilizes the mode, i.e., CoCs > 0,
the potential field given by Eq. (2.26) has wells, and so 4 is bounded. The stationary state

of the potential field given by

— 2 (P - pc) C’1
A, = iw—“—cﬁ_ (2.27)

corresponds to the bifurcated new stable equilibria. The quantity A, is propqrtiona,l to the
linear growth rate and inversely proportional to nonlinearity. Accordingly, when the system
becomes unstable, new stable equilibria indicated by Eq. (2.27) bifurcate, so that the system
nonlinearly oscillates around the bifurcated equilibrium. In contrast, when the nonlinearity
destabilizes the mode, i.e., CoC3 < 0, the potential has a simple hill and so A is unbounded.

In such a case, the amplitude A becomes large and higher order calculations are needed.

(ii) Nondegenerate case

In this case, Eq. (2.8) holds. From the equation at order )\, as well as the discussion in the
degenerate case, we obtain a linear solution corresponding to a marginally stable state. From

the equation at order A2, we have the following equation for the solution ug; proportional

to eilé—wem).
L (1, Wey Pey T) U21 = _Z'a%L (1a wcapc.; T) ulc(r)g';;:~ (228)
Using a solvability condition similar to that in Eq. (2.18), we have
0A
—_—= 2.2
2o, (2.29)

and we put uy; = 0 as in the argument in the degenerate case. Other components of the
solution us arising from M, are solvable. The equation for the solution ug; proportional to
e!é=wem) at order A2 is given by

‘ v, 8A
L(1,we,pe;r)us; = —za—wL(l,wc,pc,r)ulc(r)gg
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- (ﬂ)%L(l,wc,pcmuu(r)mMm(r) APA,  (230)

where Mz (r) |A|* A comes from M. Using the solvability condition, we have the following

nonlinear equation in the nondegenerate case:

do—é-)—éidlA+d3 |A]? A =0, (2.31)
67’2
where
NN
dO = -t U’lc(r)v a_wL (17wc7pc; T) ulc(r) 3 (232)
d = + 9
1 = ulc(r)’ 'a_pL (lvwcapc; 7‘) U1c(7‘) 3 (233)
and
ds = (uf(r), Ma(r)). | (2.34)

Rewriting Eq. (2.31) in terms of the original quantities, viz., the time ¢ = 7,/A? and the

amplitude 4 = AA, we have

5
do—(,§+ (p = p.) dy A+ ds | AP A =0, (2.35)

where +)? is replaced by p — p.. Putting A = |A| e (i is real), we obtain the following

equations
9 e 2 4
5;|A[ = 20 |A|" =1 |A] (2.36)
op = w—shlAP, (2.37)
where we use the following expressions
o+ iw, = —(ﬁld-’;-)c)—dl (2.38)
I V-}- iy = 23—2 (2.39)




with o, w,, ., and [; being real. EQua,tion (2.36) is well known as the Landau equation in
fluid dynamics.? It has the following analytical solution:
_ Al

A2+ (1 — 5’5.48) e=20t’

where Ay is the initial value of |A|.

(2.40)

AP

As understood from Eq. (2.40), the Landau equation has either a bounded solution or an
unbounded one, depending on the signs of ¢ and I.. We consider the typical case, i.e., the
linearly unstable case, where o > 0. If nonlinearity stabilizes the mode under consideration,

i.e., I, > 0, then |A| asymptotically approaches the following value:

A= = - mame (2), 2.41)
whatever the initial value of |A|. Then, just as in the degenerate case, there is a bifurcation
of the equilibrium in such a situation. When the system becomes unstable, a new stable
equilibrium corresponding to | A| = | 4], bifurcates because of the nonlinear stabilization. In
contrast, if the nonlinearity destabilizes the mode, i.e., [, < 0, then the solution is unbounded,
so that none of the higher order terms may be truncated and there is a fast transition to
turbulence.

In the framework of an MHD plasma, the degenerate case corresponds to the nonreso-
nant ideal niodes or the nonresonant modes whose linear dispersion relations do not include
dissipative terms, and the nondegenerate case to resistive modes. For resonant ideal MHD
modes having mode rational surfaces, the eigenfunctions become singular as the modes ap-
proach marginally stable states, and hence higher-order radial derivatives become important.
Consequently, resistive modes corresponding to resonant ideal modes are unstable beyond

the marginally stable states of the ideal modes; then we treat the resistive modes for the

MHD modes with mode rational surfaces.
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3. Analysis of the Nonlinear Behavior of
Non-Resonant Kink Modes in a High
Temperature RFP and of Quasi-Interchange
Modes in a High Temperature Tokamak

We examine the nonlinear behavior of nonresonant kink modes in a high temperature RFP
and of quasi-interchange modes in a high temperature tokamak by applying the general
formulation in Sec. 2. The nonresonant kink modes are important in association with self-
reversal and the sustainment of the reversed state in an RFP.”® The quasi-interchange modes
are considered to be responsible for the fast crash of sawteeth oscillations in tokamaks.}*~1°
These two modes are ideal MHD modes without mode rational surfaces, so that they cor-
respond to the degenerate case of Sec. 2. The nonlinear equation describing the nonlinear
behavior of these two modes is derived in Sec. 3.1. The coefficients of the nonlinear equa-

tion for each mode are calculated, and the nonlinear properties for each mode are shown in

Sec. 3.2.

3.1. Derivation of the nonlinear equation

We begin with the usual MHD equations:

op S
'a_t"— _v'(pv)a
v = S
= —pt-Vo+J x B—-VP,
oP . R A
il _—v-VP—FPV-v+—S—J,
9B L = 1=
'gt— = VX(UXB)—VX(gJ),
J = VxBE. (3.1)

The set of equations (3.1) is normalized by the initial equilibrium toroidal magnetic field

at the magnetic axis By, the initial equilibrium mass density at the magnetic axis po, the
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Alfvén velocity vs = By/,/lopo, the minor radius a, and the Alfvén transit time 74 = a/va.
Also, S is the Lundquist number defined by S = 7p/74 where 7p = poa?/n. The boundary
conditions are 4- B =0and A -0 = 0, where 7 is the unit vector normal to the wall.

We approximate a toroidal plasma by a periodic cylindrical plasma with periodicity of
27 R and minor radius a. In what follows, we call R the major radius. Under the condition
that only the mode with the poloidal mode number m and the toroidal mode number n is
excited initially, only harmonics of the mode under consideration are excited, so that the
assumption of single helicity holds. In such a situation there is helical symmetry, so that all

physical quantities are dependent only upon £, r, and (, where ( is a new angle defined by

( = mb—kz, (3.2)
with %k the toroidal wavenumber
n
E = —. : )
: (33)

The unit vectors 7 = Vr/|Vr|, (= v/ [V(], and § = 7 x { constitute a right-hand
coordinate system. Consequently, the magnetic field B and the current density J can be

expressedi as follows:

= 1 . .

B = EVQ/J X 7 + By (3.4)
= 1 A .

J = V(B x4+, (3.5)

where v is the helical flux function and

h = y/m? 4 (rk)?, (3.6)
. 2mk
Jn = —hA ’l,[) + -];TBTH (37)

v = v (o)

10 (rog) 162
ror (7;5;:)””;354—2 ~ (3:8)
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The velocity has the usual form

Substituting Eqgs. (3.4)—(3.9) into Eq. (3.1), we have the following basic equations:

op
ot

oP
E3
¢
ot
8 (B, 2mky
E(T-’ z )

with the boundary conditions

7 = vf 4 v+ vy

—5-Vp—pV -7,
72 Up A
—pV 5T PTV(hvn) + U X nwy
+i]hﬂv¢ . %”v (B,) — VP,

—p% -V (hvy) + B -V (hB,),
—#.VP -TPV -7+ E;—lﬁ,

—5- Vi — %Jm

- E-v(f’ﬂ> —a.v<ﬂ) BELE AP FIEYNYY- D

h h S

0
B—Cd)(t,a’C)

v(t,a,{) = 0.

[
o

(3.9)

(3.10)

(3.11)
(3.12)
(3.13)
(3.14)

(3.15)

(3.16)

(3.17)

We apply the general formulation in Sec. 2 to Eqgs. (3.10)—(3.17). We expand the depen-

dent variables as follows:

bo(r) + M1 + N2by + Adtpg + - -

= Bno(’f‘) + /\Bnl + )\2B,,72 4+ )\SBng + -

Joo(r) + Ay + X2J e + X3 T s + -+

Ary 4+ A2vp 4+ Aoz + - -

17




V¢ = /\'U(l + )\2’042 -+ )\31)(3 + e

Uy = /\'0771 -+ )\2’0.,72 + /\3’(),73 + .

p = po(r)+Ap1+Apy+ Nps+ -

P fnd Po(r)+)\P1+A2P2+>\3P3+"‘

and we assume the following form for 9,
A i
Py = 5%(06’“"‘“” + c.c.
The multiple-time-scale method is introduced:

=M, T=X4...,

0 0 0 d

—_— =t A NPt ..

ot~ Om on 0Ty
A= A(7'137-27'“)>

ei((—wt) — ei((—w'ro)-

As the parameter p we choose the square of the toroidal wavenumber %,

p = K,

and introduce k. as designating the marginally stable state, so that

B o= kB2

(3.18)

(3.19)

(3.20)

This choice means that the major radius R changes as a continuous variable, without chang-

ing other variables. Since we consider ideal nonresonant modes in a high temperature plasma,

we introduce the following ordering for the resistivity:

= X

Sa

(3.23)

Substituting (3.18)-(3.20) and (3.22)—(3.23) into (3.10)—(3.15) and taking the boundary con-

ditions (3.16)-(3.17) into account, we obtain equations for each order of A.
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order JX:

This order corresponds to the marginally stable state. Our purpose is to determine k., we,
and the eigenfunctions. The equation with respect to 1;(r) obtained in this order is the

same as the usual linearized equation except for the special condition Im(w) = 0:

L (1,w, k?; r) Pi(r) =0,

[#1(0)] <oo, + ¢1(a) =0,  Im(w)=0. (3.24)
Although the explicit form of L is not shown; it is well known that for ideal modes, the
frequency w appears in L in squared form, w?. Then, at the marginally stable state k., we
have
we =0, (3.25)
and w, is the double root, so that we have

0%[/ (Lwc, kZ,T') =0. (326)

Therefore, this situation corresponds to the degenerate case and in what follows we will use
w, = 0 explicitly.
From the induction law (3.14)—(3.15) and the equation of energy (3.13), we have

7=0. (3.27)

Although p; is indefinite up to this order, Eq. (3.27) is consistent with the equation of

continuity. Here we define the linearized operator L; as follows.

_ % 1 JnO ! 2kBao (hB,?o)l '
Lig(r) = Alpg(r)+ [% ("h—) +W (r), (3.28)
Wh/ere
d d 12
Mpotr) = o (Fape) - oo (3:29)




and ’ indicates the derivative with respect to r. We obtain the following from the equations

of motion (3.11)-(3.12):

Liga(r) = 0,
[$:1(0)] < o0, #i(a) = 0, (3.30)
and
By = -anl(r)efC tec, (3.31)
P = gPl(r)ei(+c.c., (3.32)
where
Bnu(r) = (h,f;g)ld)l(r), ‘ (3.33)
Py(r) = ﬂgzpl(r). " (3.34)

Solving the eigenvalue problem (3.30), we have the eigenvalue k. and the eigenfunction %, (r)
at the marginally stable state. Therefore, in Egs. (3.33)-(3.34) and in what follows, & should
be read k. whenever we do not specify otherwise. We see from a straightforward calculation

that the operator given by Eq. (3.28) is identical to the operator L (1,w,, k2;7):
Li = L(Lw,kr), (3.35)

since w, = 0. The quantity J,; is expressed by

A .
I EJnl(r)e‘ﬁ-{-c.c., , (3.36)

where

2mk
—— B (r). (3.37)

Talr) = —hAL(r)+ 2

20




order )\?:

The velocity in order A\? is obtained from the induction law (3.14)—(3.15) and the equation

of energy (3.13) to be as follows:

Vro = 5'8711),-2(7”)6 +C.C., (338)
. 0A .
Ve = —%(—9;—1)(2(7")6’(4-&&, (3.39)
1
; A :
Upg = —':1’2-—6—7_-1"1)772(T)624+C.C., (340)
where
1
ura(r) = —=ta(r), (3.41)
0
1d
vea(r) = —'];'CF[”M(T)], (3.42)
2rkB
Upa(r) = —W(;O%(T)' (3.43)

Because 31(a) = 0, the boundary condition (3.17) is satisfied in Eq. (3.41). The above

results indicate that the flow in this order is incompressible:

1
’172 = quﬁg X ﬁ + ’1)77277, » (344:)
where
. 0A
¢2 = —%8—7_1(}52(7‘) + c.C., (345)
$a(r) = ——thy(r). (3.46)
0

The equation of continuity (3.10) gives the mass density at order A:
A .
o Epl(r)e“ + c.c., (3.47)
where
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_ Py |

Just as at order A, p; is indefinite at order A% From the equations of motion (3.11)-(3.12),

we see that 1, By, and P, are expressed as follows:

1 .
Py = too(A,r)+ —2-A2z/)22(r)e’24 + c.c., (3.49)
1 .
an = Bngo(A, 'f') + §Aan22(r)e’2C + C.C., (350)
P, = Py(A,r)+ %A2P22(r)eizc +c.c., (3.51)

where components proportional to e are excluded in accordance with the general theory
of Sec. 2, and the quasilinear components ¥50(A,7), Byao(A,r), and Pyo(A,r) are all real

functions and indefinite up to this order except for the following condition:

8P20 _ ‘]1720 ' J20 a¢20 Bn20 ! B’qO 8
el O i B i
1 J, , B /
b i (220 - 220 i,y ). (3.5

Using the definition (3.7) and Eqgs. (3.49)-(3.50), we know

1 .
']712 = Jngo(A, T') + §A2J7,22(T’)612( + C.C., (353)
where
. 2mk

ano(A, 7') = _hA0¢20(A7 T') + —szo(A, 7’), (354)

h2

2mk
ang(T) = —hAt41/)22(T) + 73,722(7’). (355)

The quantity t,5(r) is determined by the following boundary value problem:
Lotpaa(r) = Mas(r),

|%22(0)] < o0, Pa2(a) =0, - (3.56)
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where

Mialr) = 3 {(;BZ) 5 [di () ((};522),)2 WJ } Wr() '
3.57)

This inhomogeneous boundary value problem is uniquely solvable, with Bpoz(r) and Ppa(r)

being obtained in terms of tz,(r):

Bpaa(r) = Uz]f/;? Paa(r) + Zf;zg/:‘(’)) [(hiZO) } (3.58)
Palr) = Topulr) - 2o+ 1 {2 - L) @39)

The results obtained up to this point exactly coincide with those of the iﬁcompressible case.!?

order \3:

From the induction law (3.14), we have

10A . 10A? :
Vr3 = 'Ur30(A’T) + 55‘7__2'07-31(7”)614 + -2-'671’07‘32(7')612( + c.c., (360)
where v,30(A, ) is a real function satisfying
9 A ' ,
5 Yao(A, 1) + == [¢2(r)h1(r)] ¢ + Yovra0(A,7) = 0 (3.61)
5 4r .
and
Vr31(T) = vpa(r) (3.62)
_ 1 i(r) [d2(r)]’ v
’U,-32(T') = ¢6 {¢22(T) —_ 4r ¢1(T) . (363)
The equation of energy and these results give
1 0A . 10A? ;
vz = —-2—-6;;1)431(7‘)6 ¢ — 5—8—;1—0432(7')6 X 4 e, (3.64)

where
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vear(r) = vea(r), (3.65)

wlr) = = [rora(r)]
| r / PE(r) [ ¢o(r) ’
_m {Po’vrg,z(’f‘) -+ Pzz(T‘) it ir [m] } : (366)

Also, the periodicity of v, with respect to { leads to

| a% Pyo(A,r) + %,'—( (T)Pl(r)):l + I‘Polaé [rvrso(A, )] + Pyveao(A,7) = 0.  (3.67)

Using the induction law (3.15) and the preceding results, we obtain

1 0A e 3 0A?

Upg = —5372’07;31(7‘)6’ 3 om —vp3a(r)e® +c.c. (3.68)
where
Unai(r) = vne(r), (3.69)
vgae(r) = —2r£6{ii [Tinovrsz(r)] + 2Bn02)(32(7‘) + —B"2;(r)
2mbpaa(r)  30) [om(r) ], £0) [Bulr) |
h4 4r [hgbl(r)} 4r [h¢2(T)] } - (370)

From the periodicity of v, with respect to (, the following equation is obtained
0 [ Byo(A,r)  2mkio(4,r) N |A]* d [41(r)oa(r) + d2(r)Bu(r)
or h h4 4r dr h

10 ’I"B,-,o
+r87‘( h

T 04, r)) (3.71)

Substituting Eq. (3.54) into Eq. (3.52) and combining Egs. (3.52), (3.61), (3.67), and (3.71),

we have the following equation with respect to v.30(A4,r):

L) = 24l v,
y(4,0)=0,  y(4,a)=0, (3.72)
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where

V(A1) = rusl(A,r), (3.73)
Ly = o33 [0 o2 s T(B)T, (3.74)
Q(r) = +<}?h— B2, (3.75)

M) = g{2 ;(,:2d£1>—57’7§-‘;@—rl+%i(2’”"B"°Q1+h3 B0

-2 (ko hes) + B2 -0, o

& = —p@EWEY, (3.77)

Sy fLEES L o) 5.18)

@ =~ BB, , (379

Qi = o {In(W) — Bu(r) BB ()]} (3.:50)
Putting

vrao(A,r) = aalfllzvrso(r), (3.81)

we can solve Eq. (3.72) uniquely, so that from Eqgs. (3.61), (3.67), and (3.71) 159, B0, and

Py are solved as follows for a sufficiently small initial value A

Pa0(4, 7’) = ‘|A|2 ¢‘20('/")> (3.82)
B’?20(A7 r) = ,A,2 BTI20(T)7 (3'83)
Py(A,7) = |A]> Po(r), (3.84)

where
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Yaolr) = =2 [Bar ()] — Bovnao(r), (3.85)

Baolr) = 2L [pryin(r)f - 5 | L) 2 )Pl
hd [rBo amkap
— [’"T"v,g,o(r)] _ ﬂh;b—vm(r), (3.86)
Pulr) = == 8a()A)] —TPor o [rovso(r)] ~ Pvrao(r). (3.87)
It follows that Jyg0 is given by
ano(A,T) = ]A|2 ano(r)a (3-88)
where
Jp2o(r) = _hAo?ﬁzo(T)'l'—];;—ano(T')- (3.89)

The equation of continuity gives the following result, which is consistent with the preceding

results:
pr = |A|2p20(r_)-|—%Angg(r)eﬂc-{—c.c., (3.90)

where
pulr) = = [$aP)r(r] — por o [onsolr)] = Aol (3.91)
putr) = B[O L )] 2 ), (3.92)

Up to this point, we have obtained all the quantities of order A%.

Finally we consider the equations of motion (3.11) and (3.12). Since %3 and B,3 have
components proportional to e, we investigate only these components, i.e., ¥3(A4,r) and
B3 (A, 7).

From the equation of motion (3.12), we have

o hByo) 10%A 1 [ hB.o)
TOthZBl—( rno) Ya = 5-8—T12-pohv,,2(r)——2-A6 -TohB,,l(r)————( r"O) P1(r)
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% |A|2A{'¢)£(;(T) thl('f') . (thiO(T)) ¢1(’f')

zbi,fr) th22(7') (hBT}l( )) ¢22( )

[%z( Yol g (0 - M@( )} }, (3.93)

where 6 is an operator that projects out the order-A? quantities from the operand, so
q p

-+

2

that in the operand k should not be interpreted as k.. The equation of motion (3.11) gives

Po A x (no) Pa1 | 2kByo 18%A [1.d {pordéa(r)\  po
A"1¢31+ h r TR iz B = 2072 \rdr \ R dr r? 2(r)

~ %Aa{d’?{’Atlzﬁl (r) + (J,—j") ¢17§7~) + 2]::;“’ thl(T)}
12 Ypo(r) Jna(r) | [ Jnzo(r) #a(r)
- e (st w00,

_?iﬁ)_.],,z;(r) N (Jnlh(r)) %/’21( )+ %hB 1(r)hBp2a(r)

_ % [_%2(") Ju(r) (J"”(”)), hlr) | Q—Vthgz(r)th(r)} } (3.94)

h—4hB7720(7")hB771 (T‘)

T h h r R4

Substituting Bys; in Eq. (3.93) into Eq. (3.94), we have
L1¢31(A7 7") = M31(A,7")
= MO TA MO A+ ME () |AP A 3.95
- 3()02+ ()+ 31(7')|| 9 ()

[a1(A,0)] < oo, ¥s1(A,a) =0,

where
) d d
Még)(r) = 2¢11 { D (POT Pa(r ) _ %qﬁ%(r) ——pgvfﬂ(r)} , (3.96)
L
Ms(i)(r) = -“';‘5 {L1ta(r)} = —';‘ (iﬁf) % . Pi(r), ' (3.97)
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r [1d 1d (J 2k?
M) = gl el L () 4y ) - T BB

.2
4 id¢;£ ) n22 T‘ _ %.di' (Jnlh(r )"/’22 _ %%Bnl(r)Bnm(?”)
d 22 7" d ']"72 T k2
i 1 () 2]
Un2(r) [ L dipoo(r) 1 d (hByao(r))
hba(r ){ g M) = o= ()
+ lddg( )thzz( ) — rﬁ%f(r—))%z(ﬂ
dioa(r d (hByas(r |
-3 [0, ) - 1B, ) L, (3.98)
By straightforward calculation, we find
(0) 1 62
Mz’'(r) = ZE‘“L(L%,P&T)%(T), ‘ (3.99)
M) = - (£3) 5k (Lnpar) (), (3.100)

where w, = 0, p = k2, and p, = k?, so that we can reproduce the results of the general
formulation in Sec. 2, taking account of the difference of the factor of 1/2 between Eq. (2.6)
and Eq. (3.19).

Defining the inner product as
(u,v) = / ruv dr, , (3.101)
0

we see that

("/’1(7'),L1¢31(A,7”)) = <L1¢1(T)a¢31(A,7‘)), (3-102)

i.e., L, is self-adjoint. Therefore the solvability condition of Eq. (3.95) is

(1(r), Mz (A,r)) = 0. (3.103)

28



Consequently, we have the following nonlinear equation

0*A

572 =+ CiA+Cs|AP A=0, (3.104)

Cos—s
where the coeflicients Cy, Cy, and C3 are all real and are given by

Co = {(ta(r), ME(r))

= /0 dr oo {032(7,) + v (r) + v (r)} > 0, (3.105)

G = (b M)
r 1 6L1 '
= - / B |, 1) (3.106)

Cs = <¢1(7')7M31 (7"»
= 2 /0 " dr i (r) M (r) (3.107)

Note that we multiply Eq. (3.103) by the factor of 2 before calculation. Using the original
quantities, viz., the time ¢ = 71/ and the amplitude A = A A, we obtain k

O"W + (kK = k2) CLA+ Cs |AF A=, (3.108)

where Eq. (3.22) was used. This is the nonlinear equation that prescribes the nonlinear
behavior of nonresonant kink modes in an RFP and of quasi-interchange modes in a tokamak,
near marginally stable st.ates. Although the coefficients Cy and Cy do not change whether or
not the plasma is compressible, compressibility is important because it affects the coefficient
C3 in the nonlinear term through the quasilinear components 150 and Bpgo. The resistivity
does not affect Eq. (3.108) in the ordering we used.

We consider the special case in which the initial conditions of Eq. (3.108), i.e., A(t = 0)
and 2 A(t = 0), are real. Then the amplitude A is always real, so that we have the following

expanded forms of the variables up to order A\%:

¥ = tho(r) + A(r) cos ¢ + A [thao(r) + thaa(r) cos 2(] +
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B, = Byjr)+ ABy(r)cos({ + Aé [By2o(r) + Bpaa(r)cos 2] + - - -,
p = po(r) + Api(r) cos¢ + A* [pao(r) + paa(r) cos 2] + - - -,

P = Py(r) + APy(r)cos { + A [Pyo(r) + Poy(r) cos2¢] + - -+,

v, = %vrg(r) cos(+---,
v, = %vcg(r) sin{+---,
0A -
v, = E’U,ﬂ(?‘) sin¢+--- . (3.109)

The phase relationship of the basic Fourier modes is the same as for the usual linear and
nonlinear calculations. The linearized version of Eq. (3.108) with |A| <« 1 gives two inde-
pendent solutions. In the linearly unstable case, these two solutions are a growing mode and
a damping mode. When |A(t = 0)| < 1 and |%A(t = 0){ < 1, the above initial conditions
correspond to the situation in which the initial amplitudes of both the growing mode and
the damping mode are reaI;

When A is real, rewriting Eq. (3.108) we have the following conservative form:

Co [0A\® (R2—k)C, , Cs
5 (E) ————2———.4 + T'A =E, (3.110)
where E is constant. We easily see that Co/2(0.4/30t)? exactly expresses the order-A* kinetic

energy per unit volume, so that Eq. (3.110) corresponds to conservation of energy to order

A* and
2 _ 12 :
E, = Wﬁ + %—A“ (3.111)

corresponds to the potential energy to oraer A4, The total energy per unit volume, the total
toroidal flux, and the total mass per unit volume are conserved as lower order conservation
laws, up to order A% The total toroidal current, however, is not conserved.

When the mode under consideration is both linearly and nonlinearly unstable, i.e.,

(k* —k?) C; < 0 and C3 < 0 (note that Co > 0), the potential given by Eq. (3.111) has a sim-
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ple hill, so that the amplitude A can become large and higher nonlinear terms are needed. In
contrast, when the mode is linearly unstable but nonlinearly stable, i.e., (k* — k2) C1 < 0 and
Cz > 0, the potential has wells, so that the nonlinear behavior is bounded. The stationary

states of the potential given by

2 __ Ja2
A = i\/—(koﬁ (3.112)
3

indicate bifurcated new stable equilibria, which correspond to helical equilibria in the vicinity
of the initial axisymmetric equilibrium. There are three types of nonlinear behavior dépgnd—
ing upon whether £ > 0, E = 0, or E < 0, which all have analytic expressions. When E < 0
and A(t = 0) > 0, the plasma oscillates nonlinearly around the bifurcated new equilibrium
indicated by A, > 0 given in Eq. (3.112).

3.2. Nonlinear properties of nonresonant kink modes in a high

temperature RFP plasma and of quasi-interchange modes
in a high temperature tokamak plasma

3.2.1. The nonresonant kink mode in a high temperature RFP plasma

In RFP plasmas, the current density is very high and the pitch parameter y(r) monotonically
decreases in the radial direction. In such situations, nonresonant kink modes, which are the
current-driven m = 1 modes without mode rational surfaces, become unstable. These modes
are thought to be important for self-reversal and for sustainment of the reversed state.”®

We consider the following force-free equilibrium used previously in Refs. 9 and 10:
u(r) = 0.3 (1 — 1.8748r% + 0.8323r*) . (3.113)

For this equilibrium, the toroidal wavenumber k. corresponding to the marginally stable
state of the nonresonant kink mode with m = 1 and the coefficients of the nonlinear equa-

tion (3.108) .are shown in Table 1. From this table we see that nonlinearity stabilizes the
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perturbation and that compressibility reduces the stabilizing effects. For the weakly unsta-
ble modes with k R ke, i.e., (k* — k2) C; < 0, the potential given by Eq. (3.111) has wells,
so that new stable helical equilibria bifurcate near the initial axisymmetric equilibrium.
These new bifurcated equilibria correspond to the stationary states of the potential given by
Eq. (3.112), around which the plasma oscillates nonlinearly under the same initial condition
as used in the usual linear and nonlinear calculations. The potential profile corresponding to

.= 1.4 is given in Fig. 1. In this case, the ordering parameter A = \/m has the value
A = 0.3571 and for an aspect ratio of A; = 5, the toroidal mode number is n = 7. From
Fig. 1 we see that compressibility allows a larger amplitude than does incompressibility and
that compressibility is important even near the marginally stable state.

In the incompressible case, the comparison between the results of the perturbation theory
and those of the numerical simulation is made in detail in Ref. 10, in which the existence of the
nonlinear oscillations is explored. The nonlinear oscillations in the numerical simulations are
modified, which is thought to be due to a change of the potential field near the region | 4] < 1.
This change of the potential ﬁeld is caused by the variation of the initial equilibrium due
to the nonlinear mode-mode coupling not included in the pertﬁrbation theory, the external
boundary condition, i.e., the conservation of the total toroidal current and the dissipation
due to resistivity. 4

It should be noted that although the perturbation theory is valid near the marginally
stable state, the qualitative characteristics still persist even for modes far away marginally
stable states, as is shown in Ref. 9 (incompressible case) and Refs. 7 and 8 (compressible
case). As the modes deviate from marginally stable states, the changes of the potential field
due to the variation of the initial equilibrium, etc., are larger, so that the nonlinear behavior

appears as saturation with a slight nonlinear oscillation.
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3.2.2. The quasi-interchange mode in a high temperature tokamak plasma

Sawteeth oscillations in recent large tokamaks show complicated characteristics that cannot
be completely explained by the Kadomtsev reconnection model.?® One such feature is the
fast crash without precursor oscillations.!3~1¢ The quasi-interchange mode has been proposed
to explain this fast crash.!*? This mode without a mode rational surface is esseﬁtiaﬂy a
pressure-driven mode with poloidal mode number m = 1 and toroidal mode number n = 1
in cylindrical geometry.

In order to examine the nonlinear behavior of this mode, we consider the following two

types of equilibria:

P(r) = R(1-r) (3.114)
2207 1/ 20
@ ) = w1+ (5)]
P(r) = R(1-r?)’, (3.115)

where g, = 3.0597, Ay = 0.2703, r,, = 0.4, Ao = 5, 7o = 0.55, and Py = 0.03. The u-profile
of type (I) is hollow and that of type (II) has low shear. For these equilibria, the toroidal
wavenumbers for the marginally stable states and the coefficients of the nonlinear equation
(3.108) are shown in Table 2.

Table 2 shows that, just as for the nonresonant kink mode in an RFP, nonlinearity
stabilizes the perturbation and compressibility reduces the stabilizing effect. For weakly
unstable modes with k < k., i.e., (k* —k?) C1 < 0, the potential given by Eq. (3.111) has
wells, so that new stable bifurcated helical equilibria indicated by Eq. (3.112) appear near
the initial axisymmetric equilibrium, around which the quasi-interchange mode exhibits a

nonlinear oscillation. Figure 2 indicates the potential profile for aspect ratio A, = 2.95 with
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an equilibrium of type (I). The corresponding values of k and A are 0.3390 and 0.06439,
respectively. The minimum value of the safety factor is 1.037.

Although the effects of toroidicity are not included in this theory, toroidal curvature
seems to prohibit flux tubes from interchanging and poloidal coupling due to toroidicity
may decrease the energy of the m = 1 component in the nonlinear phase. Therefore, the
qualitative characteristics may not change. Just as for the case of the nonresonant kink
mode in an RFP, the saturation of the quasi-interchange mode due to bifurcation of the
new equilibria appears with a slight nonlinear oscillation. These characteristics seem to be

consistent with the results of Refs. 17 and 18.

4. Conclusions and Discussion

A general formalism to derive the nonlinear equation describing the nonlinear time develop-
“ment of modes near a marginally stable state in a three-dimensional inhomogeneous medium
has been developed in this paper, with the use of a perturbation expansion around the
marginally stable state, together with the multiple-time-scale method, under the assumption
of single helicity. Two types of nonlinear equations with respect to the complex amplitude
of the mode under consideration are obtained through this general formalism. One equation
has a Hamiltonian form and can be viewed as the equation of motion for a particle in a
potential field of a central force; the other equation is similar to the Landau equation that
is well known in fluid dynamics. The former is obtained when the linear operator of the
mode under consideration is degenerate at the marginally stable state, which situatibn cor-
responds to the fact that the linear dispersion relation has a double root for the frequency at
the marginally stable state. The latter equation is obtained when it is nondegenerate; i.e.,
the linear dispersion relation has a single root.

The solutions of these two nonlinear equations describe a wide class of nonlinear phe-

nomena, according to the situation under consideration. Some are bounded, and others are

{
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unbounded. In both the degenerate and the nondegenerate cases, when nonlinearity stabi-
lizes the linearly unstable mode under consideration, new stable equilibria bifurcate near the
initial equilibrium, corresponding to the steady states of the solutions. For the degenerate
case, the mode exhibits either nonlinear oscillation about the new bifurcated equilibrium
or more complicated behavior, dependiﬁg on the initial conditions. In contrast, for the
nondegenerate case, the absolute magnitude of the amplitude of the mode asymptotically
approaches the new bifurcated equilibrium, whatever the initial conditions.

In the framework of MHD, the degenerate case corresponds to either nonresonant ideal
modes or nonresonant modes without dissipative terms in the linear dispersion rela.‘pion.
The nondegenerate case, on the other hand, corresponds to resistive modes. The nonlinear
behavior of nonresonant kink modes in a high temperature RFP and of quasi-interchange
modes in a high temperature tokamak were then examined by the application of the general
formalism. These two modes correspond to the degenerate case.

Nonresonant kink modes in an RFP are thought to be responsible for self-reversal and
for sustainment of the reversed state. Quasi-interchange modes in a tokamak are thought to
be responsible for the fast crash of sawteeth oscillations in recent large tokamaks. For the
equilibria we examined, the effects of nonlinearity stabilize the perturbations for both modes.
As a result, new stable helical equilibria bifurcate near the initial axisymmetric equilibrium,

which leads to nonlinear oscillations of the plasma around the new bifurcated equilibrium

under the same initial conditions as in the usual linear and nonlinear calculations.

Since the nonlinear stabilization occurs even for an incompressible plasma, it is thought
to be due to magnetic tension. In the nonlinear calculation it should be noted that compress-
ibility is important even for modes near a marginally stable state. It weakens the nonlinear
stabilizing effect. Compressibility allows a mean radial flow, which changes the quasilinear
components of the magnetic field, the pressure, and the density. Changes of the quasiliﬁear

components by an average radial flow decrease the nonlinear stabilizing effect.
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However, the change of the initial equilibrium due to nonlinear mode-mode coupling not
included in the perturbation theory, due to external boundary conditions, i.e., the conser-
vation of the total toroidal current, and due to dissipative effects change the potential field,
especially in the region where the amplitude is very small, and prohibit the plasma from
returning to the initial state.!® Then, the nonlinear oscillation is limited to be near the
new bifurcated helical equilibrium, and the perturbation leads to saturation with a helical
deformation.

What is presented here concerning the nonlinear behavior of modes near a marginally sta-
ble state is considered to be qualitatively applicable even to modes far away from marginally
stable states, as shown in Refs. 9 (for an incompressible RFP), 7 and 8 (for a compress-
ible RFP), 18 (for an incompressible tokamak), and 17 (for a compressible tokamak). As
the modes deviate from the marginally stable states, the change of the potential field from
the variation of the initial equilibrium due to the nonlinear mode-mode coupling and from
higher order terms, etc., increases. Hence, the nonlinear oscillations are thought to become
so modified that the nonlinear behavior leads to saturation with a slight nonlinear oscillation.

The effects of toroidicity, i.e., toroidal curvature a-nd poloidal mode coupling, are im-
portant for quasi-interchange modes in tokamaks.!® Both effects, however, are thought to
stabilize n = 1 perturbations in the nonlinear phase. Hence, the qualitative results do
not change. More extensive studies of quasi-interchange modes that include the effects of
toroidicity are now underway.

The nondegenerate case, i.e., the resistive modes, will be reported in a future paper.
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Figure Captions

1. Potential E, vs. amplitude A for a nonresonant kink mode in an RFP:

solid curve (compressible case), broken curve (incompressible case).

2. Potential E, vs. amplitude A for a quasi-interchange mode in a tokamak:

solid curve (compressible case), broken curve (incompressible case).
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Table 1

ke

Co

41

C3

1.354

0.7151

—0.02513

0.1573 (compressible)

0.3044 (incompressible)
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Table 2

ke

Co

&1

C3

0.3450

0.4824

1.000 x 10~2

8.947 x 10~* (compressible)

2.511 x 1072 (incompressible)

(1)

0.3447

0.1750

2.815 x 1073

1.329 x 10~* (compressible)

4.729 x 10~* (incompressible)
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