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Abstract

It is shown that a recently constructed exact solution of the Vlasov equation de-
scribing a plasma with density and temperature gradients can be expressed in terms of
the constants of motion.The distribution function is then used to illustrate the differ-
ences between a Vlasov and a one fluid description. In fluid theory, only the pressufe
profile is determined (unless one postulates an equation of state), while the Vlasov
description leads to a separate determination of denmsity (g), and temperature (12)

profiles; the equation of state, g = 1,b3*2/ B comes out naturally in the latter case.



I. INTRODUCTION

A realistic description of the current laboratory plasmas requires the consideration of den-
sity and temperature gradients. To deal with this problem, an exact phase-space distribu-
tion function (as an infinite series) satisfying the equilibriﬁm Vlasov equation was recently
constructed’. The expansion coefficients in the infinite series are determined as powers of the
parameter A = ugq/Voq, Where ug, and vg, are respectively the drift and thermal speeds of
ath species. For small A, the series can be readily truncated, and one obtains (in this kinetic
.description) two separate differential equations relating the density (g) and temperature (?)
profiles to the electromagnetic fields. The procedure results in a natural equation of state
g = g(¥?), and one is able to circumvent the problem associated with the fluid theories where
an equation of state is to be externally imposed, otherwise one is left only with an equation
determining the pressure profile alone. It is the primary purpose of this note to illustrate
.this important advantage of the Vlasov over the fluid description, i.e., the automatic and
natural determination of individual density and femperature profiles in the Vlasov theory.

However, we begin with a digression in which we prove that the constructed infinite series
distribution function can be expressed in terms of the constants of motion. N otice that the
equivalence was shown only to O(uos/voq) in Ref. 1. Although retaining terms to O (ugq/vos)
is quite adequate for most of the magnetically confined fusion devices, the general proof, in
addition to its aesthetic aspects, places the solution on a sound footing for other possible
application.

The rest of this note contains a comparison between the Vlasov, and the steady-state
one-fluid model, which replaces the Vlasov equation by the hydrodynamical force balance

equation, cVp = J x B. In an axisymmetric geometry, the fluid-Maxwell system reduces to

the well-known Grad-Shafranov differential equation®?® for the equilibrium magnetic surface



function ®. The standard method to solve this equation is to specify two parameters: the
pressure and toroidal magnetic field in terms of ®. Once a solution for ® is found, other
quantities are eventually determined. In this paper, we start from this method to find
the fluid solutions. We consider the same geometry and examples as in Ref. 1: a circular
cylindrical model varying only in the radial direction, and the simple pinch and tokamak
equilibria.

We find that for the examples considered here, only one parameter is needed to obtain the
solutions to the fluid-Maxwell system, which is consistent with the Vlasov-Maxwell model.
We also show that the derived equilibrium profiles in both systems are exactly the same
except that only the pressure profiles are obtained in the one-fluid model. This is well-
known in the fluid theory in which an assumption of an equation of state is required for
-closure. This additionalequation of state is explicitly derived in the Vlasov-Maxwell system,
and is g = 3~%/8,

In Sec. II, we prove that the infinite series distribution function suggested in Ref. 1 is a
function of the constants of the motion. Of particular note is that this function reduces to an
ordinary displaced Maxwellian shape, if a constant parameter 8, which measures the effect of
the temperature gradient, is set equal to zero. In Sec. III, we start from the Grad-Shafranov
equation, in a one-dimensional cylindrical form, to obtain the fluid solutions for a simple
Z-pinch, and for a tokamak plasma. In Sec. IV, we state our conclusions by comparing the

solutions in the fluid and kinetic theories.

II. SOLUTIONS IN TERMS OF INVARIANTS

We begin by considering the simple Z-pinch in which the plasma is embedded in a strong
external field Byz and has a current only in the z-direction, producing the self-consistent

field B = Byf. The infinite series distribution function describing the plasma with density



and temperature gradients, given in Ref. 1, is rewritten here
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where the density n, = noaga, the thermal velocity v, = (2T%/ma)? = voaths, With g,

and %, being the profile factors (at r = 0, g, = o = 1), and ug, is a measure of the drift
velocity in the z-direction.

We first show the validity of the distribution function by proving that it is a function
of the constants of the motion. Substituting Eq. (1) into the steady-state Vlasov equation,
describing the equilibrium Z-pinch, yields the following general relationships for C by

equating power of v, and v,
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where hq = (¢ation)/(cTos), T = 2Uge/Vos, and Dy, = m!/[(m — s)!s!] for m > 0 and s > 0.
In Eq. (4), the coefficients have been generally expressed in terms of Cg) = 1-(chosen to be

1) and CP) = B,. The summation from m = 0 to m = oo in Eq. (1) is, thus, given by
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where zq = [v/(voata)]?. Substituting Eq. (5) into Eq. (1), we can easily obtain
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where 3, measures the effect of the.temperature gradient. Letting B, equal to zero reduces
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Eq. (6) to the ordinary displaced Maxwellian distribution function. To derive Eq. (6), we
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have used Egs. (2) and (3) to obtain g, /92 = exp(hoA,) and ¥2 = exp(BrhaA.), where A,
satisfies By = (V x B)g = —dA,/dr, thus, p,o = mav, + (ga/c)A.(r). Obviously, it is a

function of the constants of the motion, the total energy (H,) and the canonical momentum

(Pza)'

III. SOLUTIONS TO FLUID-MAXWELL
SYSTEM

A. A simple Z-pinch

The Grad-Shafranov equation, corresponding to fluid-Maxwell system in cylindrical geometry

(variation only in the radial direction), takes the form

1d d% dp _dI
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where p is the pressure and I = B, is the toroidal magnetic field. We note that the term
on the left-hand side of Eq. (7) represents the part coming from J,Z x B, while the term
IdI/d® on the right-hand side represents J;0 x B,z. Other quantities determined by @ are
the magnetic field B, = 0, By = d®/dr, and B, = I(®), and the current components J, = 0,

and
J, = 4%'71?%’"39‘ (9)
Let us choose
p(®) = ngTo(1 + 7) exp(hy D), (10)

where 7 = To;/To. and hy is a constant, to be identified later. Substituting Eq. (10) into

Eq. (7) yields
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where Seg = [27n0T0e(1 + 7)AZ]7*/2. Note that in the pinch equilibrium, Jy; = 0 implying

<1 + 47(;;) -2} . - (12)

To obtain equilibrium profiles explicitly, we need to calculate the current and pressure from

IdI/d® = 0. The solution of Eq. (11) is

h1® =In

the distribution function, Eq. (1). The results, retained to O(uox/v0s), are

J, = enog®(58/2 — 1)(1 + m)uce, (13)

and
p = noToe(l 4+ 7)gp?, (14)

where e > 0. In deriving Eqgs. (13) and (14), we have assumed that g; = je = ¢ (quasineu-
trality) and ¢; = . = ¢ (for long-lived equilibria), implying Ty;/Toe = —uoi/uoe and
Bi = B. = —f. The solutions to the Grad-Shafranov equation for the Z-pinch [with &4
identified to be —h.(568/2 — 1) from Eq. (13)] are thus given by
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where Seg = (¢/wpe) (voe/Uoe)(58/2 — 1)1 (14 7)74/2,
The solutions are exact, except a constant (3) to be determined by either the boundary

conditions, or possibly the experiment. For details, the readers may see Ref. 1.



B. A simple tokamak

A simple tokamak plasma is handled in the same manner. For simplicity, we shall assume
that the electron current is in the z-direction, while the ion current is essentially in the 6
direction. But, the self-consistent magnetic field produced by the Jy current is to be ignored
due to its smallness when compared with the strong external magnetic field Byz. Thus, Jy
through Jp0 x BoZ manifests itself essentially in the force balance term (describing the ion
motion), while only J, is important for calculating the self-consistent field By (representing
the electron motion). It is a good approximation to separate the electron and ion parts from

the Grad-Shafranov equation, Eq. (7),

%%r%—? - ——47r%%5, (18)
and

4%% + I% =0, , (19)
which is roughly equivalent to
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The solutions to Eq. (18), which is mathematically like the pinch system, are determined to

be
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where &, is equal to g without the factor 7, since we assume that there is no ion current in
the z-direction. As to the ion part, we employ the distribution function, Eq. (1), by taking
ug; = V; and changing v, to v,, but assume that g; = g. = g and ¥; = ¢, = ¥ to calaulate

the current and pressure to O(V;/vy;),

Jo = —eno(58/2 = )V; g, (24)

and

i = noloigy?. (25)

The combination of Egs. (20), (24), and (25) yields
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Equation (26) represents an expression for the poloidal drift speed as a result of the presence
of By and dp;/dr, a force balance term for the ion motion, as we mentioned previously.
Egs. (21)-(23) and Eq. (26) form the complete solutions to the simple tokamak plasmas,

which are very similar to the pinch profiles, except for the ion.part.

IV. CONCLUSION

In our conclusion, we compare the solutions, Egs. (15)-(17) for a simple Z-pinch and Eqs. (21)-
(23) for a simple tokamak, with the derived equilibrium profiles in Ref. 1. We find that they

are exactly the same, depending only on one parameter, with the exception that

2\ ~2(86-2)/(56-2)
g = (1 f Zg—) , @
and .
2 —4p/(56-2)
¥ = (1 ; K) , (28)



were attained individuzﬂly in the Vlasov-Maxwell system instead of the coupled solution g2
in the fluid-Maxwell system, where 6, is equal to g (pinch-like profiles) or to & (tokamak-
like profiles). An equation of state required to provide the complete fluid solutions is clearly
shown in Eq. (46) of Ref. 1, i.e., g = %> 2/#. Since separate knowledge of the density and
temperature profiles is essential in understanding a vast class of phenomena in magnetically

confined plasmas, the Vlasov approach is highly recommended.
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