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ENHANCED RADIATION DRIVEN BY A dc ELECTRIC FIELD
T. TAJIMA', A.O. BENZ?, M. THAKER?, anNp J.N. LEBOEUF*

ABSTRACT

Direct radiation by runaway electrons under a constant (dc) electric field is investigated.
In a one-and-two-halves dimensional relativistic electromagnetic code, an electron beam
propagates along the external magnetic field parallel to the dc electric field and quickly
decays into a runaway tail sustained by the dc electric field. Electrostatic and transverse
waves are observed at various (fixed for each particular run) angles of wave propagation.
Both plasma waves and electromagnetic radiation are strongly enhanced by the runaway
tail. In the linear and early nonlinear beam stages the electromagnetic wave energy is
slightly enhanced as the associated electrostatic component of the waves together with the
dc electric field traps and detraps electrons. In the late nonlinear (runaway) stage and with
sufficiently large observing angle, bursts of electromagnetic wave energy occur, accompanied
by fast perpendicular spreading of the distribution function, and coincide with clamping
of runaway electron momenta. The most intense electromagnetic energy arising from the
Landau resonance is in an ordinary mode with frequency around the plasma frequency
(the beam-plasma mode) with a narrow frequency width. The amount of energy in the
electromagnetic components can exceed half the total wave energy. The mode could be
radiative if it propagates toward a more tenuous plasma. The present mechanism of driven
radiation can be extremely bright, while it is bursty as clumps of electrons come in and
out of resonance with unstable radiative modes. These processes may be of astrophysical
interest in cases of strong currents. As a possible application, we consider millisecond radio
spikes associated with solar flares. In this situation the possibility of the present mechanism
yielding the radiation temperature in excess of 105 K is not out of the question.
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[. INTRODUCTION

Intense superthermal radiation from plasmas is often observed in astrophysical settings,
particularly from violent phenomena such as the magnetospheric substorms, solar flares,
pulsars, and accretion disks. The Bremsstrahlung is a single particle phenomenon, as is the
synchrotron radiation, they both have a characteristic power dependence as a function of
frequency. When we encounter superthermal radiation from plasmas, however, we look for
collective processes of radiation as a possible mechanism. They are generally more narrow-
banded. We may discern three types of collective processes of radiation. The first is that
based on the particle-wave interaction, while the second is that due to the wave-wave in-
teraction (see, for example, Sagdeev and Galeev, 1969). The third is the process of mode
conversion from nonradiative to radiative modes. (i) The first process can be linear in-
teraction such as the beam-plasma instabilities (Mikha.ilovékii, 1974), although invariably
these instabilities turn into nonlinear stages. (ii) The second process is nonlinear in 11at11re,
simplest of which is the so-called three-wave interaction. A beat wave interaction, i.e., an
electromagnetic wave may be “scattered” (“induced scattering”) by an electrostatic wave
and turn into a third wave, another electromagnetic wave (see, for example, Tajima, 1985).
Sometimes coupling of more than three.Wa,ves is important. A process called parametric
instability for three-wave coupling as well as four wave coupling has been investigated in '
detail (Nishikawa,. 1968). The second process tends to give a broad and fuzzy énergy and
wavenumber spectra. (iii) The third process can be linear or nonlinear. The mode con-
version of an electromagnetic wave into an electrostatic wave has been studied extensively
in laboratory laser-plasma experiments (for example, Kruer, 1988), the inverse process of
which can be of course very much possible (Melrose, 1980). A linear mode conversion of
an acoustic wave into an Alfvén wave has been investigated recently (Steinolfson, et al.,

1989). This process may be important for the situation where intense electrostatic plasma
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waves are excited, which can be mode converted in an underdense plasma into propagating
' electromagnetic waves.

It is the first process of the particle-wave interaction that we wish to investigate in detail
in the present article. A beam of particles emersed in a magnetized plasma can become
unstable against electromagnetic plasma instabilities, some of which can radiate. These are
well-known processes (Mikhailovskii, 1974). The beam particles collectively interact and emit
electromagnetic modes as well as electrostatic modes. As a result, the beam particles are
slowed down by the particle-wave interaction, such as the trapping of particles (Sagdeev and
Gé,leev, 1969; Bell, 1965). When this happens, the ability of the beam to radiate decreases
and eventually vanishes due to the saturation of the instability. In the present paper we
explore a novel process of driven emission of radiation through the particle-wave interaction
through which the brightness and the amount of energy of radiation can far exéeedv that of
the conventional beam-plasma instabilities. We also try to characterize this process of driven
radiation. The driver can be either an electric field or gravitational acceleration.

Electric fields parallel to the magnetic field are e};pected in many astrophysical situations,
such as reconnection, particle beams, rotating ma,gnetospheres, pulsars, accretion disks, and
many more. These electric fields sustain particle acceleration, and accelerated particles in
turn emit radiation. Investigation of these physical processes is of particular concern in.the
present paper. In this problem the electric fields may be regarded nearly constant in time
and space compared with scales of radiation of interest. We thus take the electric fields as
dc fields in the present paper. Components of the electric fields present in a plasma cause
a variety of different phenomena, depending on their being parallel or perpendicular to the
ambient magnetic field. The electric field component perpendicular to the magnetic field
causes the E x B drift motion of the plasma and the physics of this has been studied by
many authors, including Schmidt (1960) and Koga et al (1989). In the present article we

focus on the case where the dc electric field is parallel to the ambient field if any.




Among a variety of possible phenomena, runaway particle acceleration as well as intensi-
fied coupling between plasma waves (electrostatic and/or electromagnetic) and particles are
of interest in particular. These processes have already been noted in laboratory plasmas some
time ago. The dc electric field preferentially increases higher energy electrons, the higher the
energy is, the smaller the collision frequency becomes. This is the basis for the formation
of runaway electrons. Runaway electrons and their accompanied emission were observed in
toroidal devices (Oomens, et al., 1976) and anomalous drags or resistivities were reported
in experiments (Hirose and Skarsgaard,1976) and simulations (e.g., Boris, et al., 1970). A
substantial increase in the radiation yield has been observed for a traveling wave tube when
a dc voltage is applied (Tammaru, 1981). Leboeuf and Tajima (1979a) have simulated the
beam plasma interaction in presence of a dc electric field with only electrostatic interactions
allowed. Their studies show that the runaway electrons act as convertors of dc electric energy -
into electrostatic ac wave 'energy. In turn, the enhanced plasma waves strongly retard the
increase in runaway momentum by the dc field.

We report here on fully relativistic simulations for the magnetized cold beam-plasma
interaction in presence of a dc electric field. In order to single out the relevant physics, we
constrain the propagation of radiation to only one direction with respect to the dc electric
fleld (or beam) direction. In general, of course, the radiation is emitted in various directions
with respect to the dc electric field direction. When the wavevector of radiation is constrained
only to the beam propagation direction and the guide field, the beam-plasma interaction is
found to be purely electrostatic (as long as the ions are immobile) and the results of Leboeuf
and Tajima (1979a) are recovered. At propagation angles 6 different from zero, however, some
coupling between beam and electromagnetic waves exists. It leads to radiation enhancement
as well as an increase of electrostatic plasma wave energy, the former more pronounced
over the latter as 0 is increased. A runaway induced propagating mode appears in the

transverse branch of the plasma dispersion relation with a phase and group velocity about




equal to the speed of light. The excitation of this mode is accompanied by increased drag
on the runaway electrons and their clamping in momentum, a phenomenon .observed also
experimentally (Menyuk, et al., 1977). |

The new radiation mechanism may explain narrow-band bursty emissions connected to
processes involving strong electric fields. As a possible application we consider a particular
type of radio emission, called millisecond spikes, of recent interest in solar microwaves and
decimeter wavelengths. Thousands of millisecond spikes can sometimes be observed during
the phase of primary energy release of solar flares (review by Benz, 1986). They originate
from extremely intense sources with brightness temperatures in excess of 10*K. The in-
vestigation of spikes has spurred great interest in efficient radiation mechanisms. Coherent
cyclotron emission (maser) has been proposed by Holman, et al. (1980) and explored by
many other authors. Previously, Wu and Lee (1979; 1985) proposed the maser process: for
the auroral kilometric radiation (Gurnett, 1981) and then later also for the flare emission.
They studied theoretically the mechanism of emission via the coherent cyclotron maser ef-
fect in the presence of the loss cone due to the converging (geo-)magnetic fields, as particles
precipitated. Wagner, et al. (1983; 1984) studied this by electromagnetic computer simula-
tion. Their observed spectra of waves corresponded closely with those of the AKR. On the
other hand, this mechanism is an instability and thus their result did not show impulsive
radiation characteristic. The radiation power grows exponentially as the instability sets in
and saturates due to the quasilinear flattening of the velocity space distribution of electrons.
The observed spike duration of only a few milliseconds in flare emission, however, is difficult
to reconcile with the build-up time of a suitable velocity distribution. The exploration of
alternative direct radiation processes is, at least, very desirable.

The organization of this paper is as follows. The simulation model is briefly described in
Sec. IT and its results presented in Sec. III. The wave spectra of the simulation are discussed

and interpreted in Sec. IV. We devote Sec. V to applications in astrophysics, in particular




to a possible model for solar millisecond spikes observed at radio frequenéies.
II. THE MODEL

The simulation model is a one and two-halves-dimensional (one space and three velocity
and field dimensions) electromagnetic finite-size particle code (sée for example, Tajima,
1989). The only direction of spatial variation is the z-direction which is also the direction of
propagation of the waves. The magnetized be'am-plasma‘systems consists of a Maxwellian
bulk of electrons, complemented by bulk Maxwellian ions When they are mobile, and a.cold
relativistic electron beam. The system length is 256 \p., where Ap, is the Debye length of
the electrons at wyt = 0. The typical number of beam electrons and bulk electrons is 256
and 2304, respectively, so that the beam to background density ratio is ny/n, = 1/9. The
speed of light is set at ¢ = 9v;, where v, is the initial thermal velocity of the electrons
and the initial beam electrons momentum is p, = 7.63muy, Wheré m is the electron mass.
This yields a relativistic factor for the beam electrons v = 1.31 at wpet = 0. When there
is a dc field, it is applied to particles with momentum larger than the cut-off momentum
pi = 6.0muvg. This is to model the energy dependént runaway phenomenon. The strength
of the dc field is set equal to By <= eEa./ mwzeA) = 0.2, where wy, is the plasma frequency,
e the charge of one electron, and A the unit grid spacing that is taken equal to the initial
electronic Debye length. This dc field is below the collective threshold dc field E, at which
a pure runaway beam is obtained, E, = 1.25 for ny/ny, = 0.11 (Leboeuf and Tajima, 1979b),
but above the Dreicer field (1957). When the ions are set to be mobile, the ion-to-electron
mass ratio is M;/m. = 10 and the ion-to-electron temperature ratio is T} /T, =1. Othervvise,
M;/m, = co.

The constant magnetic field, along which the beam propagates and the dc field is applied,
is for most cases of strength such that the electron cyclotron frequency we, = wpe. This static

magnetic field is tilted in the z-y-plane at various angles § with respect to the z-axis. This




allows for quasi two-dimensional effects because we can effectively have two projections of the
wavevector, one along the field and one perpendicular to it as illustrated in Fig. 1. However,
mode-mode coupling effects between different angles are neglected in this model. Recall,
however, that all field vectors as well as momenta (and velocities) of particle can point any

direction in space spun by z,y, z-axes because of 1 — %D dimensionality of the code.

III. WAVE ENERGY ENHANCEMENT BY THE PRESENCE OF A dc ELECTRIC
FIELD

The temporal evolution of plasma waves and radiation energy under the influence of a dc
electric field is considered with various tilt angles of the magnetic field, dc electric field and
beam propagation directions (all coinciding) with respect to the wavevector lying along the
z-axis. The results without the dc field will be diséussed first before going on to the more
complex cases with the dc field. The words longitudinal and transverse refer to thé directions
with respect to the chosen wavenumber, while the words parallel and perpendicular are used
to indicate the directions with respect to the ambient magnetic field direction. The word

electrostatic field is also used for the longitudinal field.
a) Beam-plasma interaction without dc field

Figure 2 summarizes the beam-plasma interaction Wifhout dc electric field imposed in a
plasma. Figure 2(a) is a plot of the maximum amplitude growth rate as a function of the tilt
angle 0. Here the wavenumber is defined as k = 2mm/L, with L, the total system length
and m an integer. The theoretical growth rates obtained from a numerical solution of the
electrostatic dispersion relation with beam of Godirey, et al. (1975) [their Eq. (14)] are also
displayed for reference. The electrostatic field energy is E2/4m, which can be expressed in
a sum of many k-modes as done in Fig. 2(d). The electrostatic growth rate approximately

decreases with angle 6 as
15(8) ~ 75(0) cos 0, (1)
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where 7,(0) is the growth rate for 6 = 0°.

. We have plotted in Fig. 2(b) the maximally growing mode number in the electrostatic field
(circles) and the magnetic field (triangles) as a function of tilt angle 4. In the electrostatic
approximation, for simplicity, the dispersion relation of the plasma without beam can be

written (Mikhailovskii, 1974) as

R CRTAES (2 + )" — i cos? ] i 2)
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The upper root with the plus sign is referred to as w; and the lower one as w, hereafter.
Their electromagnetic counterpart can also be identified as an upper hybrid—type branch
for the former and a whistler-type branch for the latter. For § S 45°, the coupling is
between the beam mode with frequency w =~ kv, cos@ and the upper hybrid branch with
asymptotic frequency w ~ w;. For 6 > 45°, t.he.: coupling occurs between the beam mode
again with frequency w ~ kv, cosf and the whistler branch with asymptotic frequency

w & wy. According to linear theory the wavevector of the excited mode is approximately

given by
ko ~ - cos g, 0 < 45°, - (3)
Vp
koo ~ %cos 0, 0 >45°. (4)
Vb

These linear theory estimates agree with the simulation results.

The simulations show fhat saturation of the beam-plasma instability happens by merging
of the beam with the background plasma or enhanced Landau damping (Dawson and Shanny,
1968; Kainer et al., 1972). The plot of saturation times versus angle 6 in Fig. 2(c) shows
only a slight increase of the saturation time ¢, up to § = 45°. Figure 2(d) is a plot of the
saturation energies of the various field components normalized to the initial plasma kinetic

energy with beam nxT,, as a function of tilt angle §. For § = 0°, only the electrostatic




energy grows while the electromagnetic energies remain at the thermal level (1073n&T},). As

the tilt angle is increased, the transverse magnetic energy overtakes the electrostatic energy.
b. Beam-plasma interaction with dc field

In the presence of the dc electric field (here Fy. is fixed at O.mezeA /e) a major difference
is that after saturation of the initial beam-plasma instability (we will refer to this stage as the
beam-plasma phase), the wave energy experiences a secular growth, attaining levels much
higher than those achieved during the beam-plasma phase. The process of wave energy
enhancement for & > 0° is displayed in Fig. 3(a) the time evolution of all three components
of the field energy as a function of time for the tilt angle § = 15° with Egq. = 0.2, and
in Fig. 3(b) the same evolution but without dc field. The typical electrostatic field Ees at
saturation with E4, = 0 may be estimated by %}jﬂb ~ O(1), where vy is ‘the beam velocity.

For relativistic beams, a more accurate expression reads (Thode and Sudan, 1973)

2

3o = mmeoso(l +s0) 7, (5)

where o = 70(ns/2n,)® and 7o = (14 p3/m2c?)/2. Equation (5).agrees well with Fig. 3(b).
As can be seen from Fig. 3(a), the level of the electrostatic waves are enhanced approximately
by a factor of three in terms of amplitude and the electromagnetic waves roughly by a factor
of four over that of Fg. = 0. We label this later energy increase as the runaway phase. The
amplitude of the electromagnetic waves is about half the electrostatic waves just after the
beam phase and about equal in the late phase of Fig. 2(a) for the Fg. = 0.2 case. This means
that the level of E is about one order of magnitude higher than Ey, and E., is about half
of E even in the early runaway phase. We will concentrate on the tilt angles § = 15°, 45°,
and 75° results identical to our electrostatic simulations (Leboeuf and Tajima, 1979a) are
recovered here with § = 0°, unaffected by the presence of the guide magnetic field, since
electromagnetic and electrostatic branches are decoupled and the beam only interacts with

the electrostatic waves.




Take our example of § = 15° for discussion. The beam-plasma phase (wpet < 50) has
similar signatures with and without dc field. The beam energy is transferred preferentially
to the electrostatic and magnetic fields. The modes with the highest energy in the beam-
plasma phase for Fg. = 0.2 are mode 5 for the longitudinal field and mode 6 for the transverse
fields. The excited modes correspond to a coupling of the beam mode accelerated by the
dc field, with its momentum evaluated at saturation as p, = p, + qFqacts so that its velocity
at saturation vs =~ 7.51vs, with frequency w ~ kv, cos @ ~ w,. and the upper hybrid-type
branch at the same frequency. After saturation of the beam-plasma instability for Egq, = 0,
the energies rapidly subsided to a level somewhat over the thermal level as seen in Fig. 3(b).
Conversion of beam energy to electromagnetic wave energy has stopped. This sharp decrease
of the energies also takes place for s, = 0.2. But all components of the field energy quickly
start increasing again and by w,.t = 150 have reached levels in excess of the beam-plasma
phase ones where they remain for the rest of the run (up to wpt = 400) similar to the

| électrostatic runé (Leboeuf and Tajima, 1979a). Note that around wy.t = 400 the energy
content in the electromagnetic fields match or exceed that in the electrostatic fields. This
is a salient feature of the present driven radiation process. It seems that the high level ES
field saturates the process, while the EM waves do not directly contribute to the flattening
of the electron distribution function.

The physical picture of the interaction is the following. The dc field accelerates particles
with 4mome11tum greater than pi, i.e., it creates runaway electrons. The fast electrons may
be trapped by the waves giving up their kinetic energy to the wave potential energy. The
trapped electrons under the dc electric field, however, receive acceleration. If the dc field
acceleration surpasses the negative acceleration encountered by the electrons when they
climb up the potential hill, the electrons will be detrapped. If the dc field acceleration is
negligible compared with the acceleration (or deceleration) due to the wave, the electrons

and the waves merely exchange energy. When the dc field acceleration is roughly matched
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by the deceleration, due to the wave, of the electrons climbing up the potential barrier, the
work done by the dc field is maximum, the condition for which is qualitatively given by
Eq. (5): Ees = Fg4.. The work done by Fy, is not necessarily funneled into an energy gain for
the electrons but can be converted directly into wave energy (if the electrons do not climb
up the potential hill) because of the phase-lock. The schematic phase space trajectories of
Fig. 4 illustrate the above physical picture. The trapped electrons act as convertors of dc
field energy into wave energy. This accounts for the rapid increase of electrostatic energy,
illustrated in Fig. 3(a), after saturation of the initial beam-plasma instability by merging.

We summarize in Fig. 5 the behavior of the wave energy as a function of the tilt angle 6.
We plot in Fig. 5(a) the maximum energies achieved by the longitudinal or electrostatic
component of the electric field in the beam-plasma phase for Eg. = 0 (circles), in the beam-
plasma phase for By, = 0.2 (dots), and in the runaway phase for g, = 0.2 (triangles). This
procedure is repeated for the magnetic field and the transverse electric field. The maximum
energies achieved in the interaction as a function of angle § are plotted in Fig. 5(d): the
electrostatic field is represented by circles and the magnetic field by triangles.

From Fig. 5(a), the trend of the electrostatic energy to decrease as a function of angle is
repeated in all three phases. It decreases approxirﬁately as cos? f. The trend of the magnetic
energy is to increase as a function of § in both the beam-plasma phase with dc field and
runaway phase. [cf. Fig. 5(b)] The. ratio of magnetic energies in thé beam-plasma phase
with and without dc field is ~ 1.5 for § = 15° and § = 30° and more like a factor of 4 for
¢ = 45°. The runaway phase energy is higher by a factor of 3 than the beam-plasma phase
with Bq, = 0.2. For § = 45°, the magnetic energy in the runaway phase with Ez. = 0.2 is
then enhanced twelve times over the same energy in the beam-plasma phase with Egc = 0.
This is further evidence of the strong interaction of the dc field driven runaways with the

magnetic modes. Figure 5(c) also indicates a trend of the transverse electric energies in

_the beam-plasma phase and runaway phase for Eq. = 0 to increase as a function of angle.
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The enhancement factor of the transverse electric energies between beam-plasma phase with
and without dc field and of the runaway phase over the beam-plasma phase with dc field
are equivalent to those achieved in the magnetic energies, but with lower energies achieved
overall as compared to the magnetic energies. From Fig. 5(d) where the maximum wave
energy is plotted as a function of tilt angle 6, the electrostatic energy usually dominates over

the magnetic energy.
IV. WAVE SPECTRA

In the previous section we discussed the properties of beam-plasma interaction under the
influence of Eq4 in a spatially unresolved (global) analysis. In the present section we study
the spatially resolved picture of the present interaction, i.e., we Fourier analyze the wave
spectrum. A number of modes gain energy from runaway electrons. The wave spectrum is
enriched by the presence of the guide magneﬁic field and its associated cyclotron branches.
The dc fleld, which causes an increase of the momenta of the runaway electrons, leads
to different, usually faster modes, being excited as time goes on. Constant trapping and
detrapping of theArunawa,y electrons under the combined influence of the waves and the dc
field also leads to highly non-Maxwellian distribution functions with long runaway tails. The
simulation dispersion relation may be obtained by the standard method (see, for example,

Tajima, 1989).
a) Wave spectra for Eg. = 0

The dispersion relation of both electrostatic and electromagnetic components are ob-
tained in our simulations from temporal correlations of the corresponding fields. We compare
these results to linear theory predictions.

The simulation dispersion relations is first compared with a numerical solution of the full
electromagnetic dispersion relation without beam (Godfrey et al., 1975) yielding the normal

modes of the system, upon which we superimpose the beam mode at w = kv cos § and the
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beam cyclotron resonances at w; = kvy cos 0 & wee/y (if the need arises). We refer to this
dispersion relation as the normal modes dispersion relation. This is a good method when
the beam density is small. This first type of comparison is carried out for both electrostatic
and electromagnetic modes.. As a second approximation, we also compare the electrostatic
simulation points with a numerical solution of the electrostatic dispersion relation with beam
given by Godfrey et al. (1975) [their Eq. (14)]. We refer to this dispersion relation as the beam
dispersion relation. This is justifiable because in many cases the electrostatic interaction is
strong. An even simpler picture is provided by considering electrostatic normal modes and
beam and beam-cyclotron resonances and picking out the cross-sections. This is illustrated
in the figure in the book by Mikhailovskii (1974). Beam-cyclotron resonances are obtained
from the cross-sections with the innermost oblique beam mode at (wq, kyp) and (wi, kip).
Cross-sections (ws, k3) and (wi, k1o) are the beam mode resonances.

In terms of the polarizations of the normal modes in the full electromagnetic dispersion -
relation, the right-circularly polarized (R) and left-circularly polarized (L) modes are primar-
ily defined from the parallel propagation characteristics of the waves, while the ordinary (O)
and extraordinary (X) modes are primarily defined from their perpendicular propagation
characteristics. However, for a case with a general tilt angle § (0 < 6 < 90°), as is of interest
here, modes may be defined in both Ways. The cut-off frequencies, for the R waves and the

L waves, are
[+ ) ] (6)

where wj is the R wave cut-off and w® is the L wave cut-off. The typical simplified dispersion

relations for these modes are
2/ .2
(wpe/ wce)

21,2 2 o\ _pelce;
ck”/w =1 (]_'iwce/w)'

(7)

On the other hand, the frequencies of the O wave and the X wave may be characterized by
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the w; and w, frequencies of Eq. (2), respectively. In the limit of § — 7/2, wy tends to the
1/2

upper hybrid frequency wy, = (wge + wfe) / and w, tends to the lower hybrid frequency if

ion effects are included (right now no ion terms are included and wy, — 0 as § — 7/2). The

typical dispersion relations for the perpendicular O and X waves are, respectively,

k2 w2,
e X )
k% 1 % (w2 — w§e> ‘ (9)
w? w? | (W2—wi) |

For an arbitrary tilt angle 6, modes with a smaller wavenumber are more easily classified
as an I or L wave. As we come back to explain Fig. 6 later, in Fig. 6(c) for instance, at
k — 0, the highest frequency is the R wave cut-off frequency w$, the second one is wy. and
the third one is we. In the lower half of the w-plane the order is reversed. At k& — oo, the
upper two branches (X and O modes in that order) tend to w = ke, the next one to wy,
and the last one to ws. Simila;rly in the lower half of the w-plane the order is reversed. For
intermediate values of k, modes contain both features (R or L and X or O). A whistler-like
mode may be seen in the lower branches of Fig. 6(c) between 1 < M < 6. As 0 increases the
characteristics of the waves can be less identifiable as an R or L wave and more as an O or
X wave.

We will see that there is good a;greement between theory and the simulations. Cases for
tilt angles § = 15° and § = 45° will be discussed in detail in this section. For E4 = 0,
because of decoupling of the electrostatic and electromagnetic branches, the case for § = 0°

yields the usual electrostatic beam-plasma dispersion relation; the electromagnetic branch

is only composed of the normal modes for a thermal plasma. We will therefore discuss the

case 6 = 0° only for By =02.
The electrostatic and electromagnetic dispersion relations for E;., = 0 and 8 = 15°

are plotted in Figs. 6(a), 6(b), and 6(c). In Fig. 6(a), the electrostatic peak frequencies are
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compared to the theoretical normal mode dispersion relation; it is compared to the theoretical
beam dispersion relation in Fig. 6(b). Note that the frequency spectrum is computed using
the entire length of the time series of simulation. The electromagnetic dispersion relation
of the simulation is compared to the theoretical normal modes in Fig. 6(c). This order
of presentation will be followed thereafter. With regard to the theoretical normal mode
dispersion relation and the theoretical electrostatic beam-plasma dispersion relation, we note
that the cyclotron branches at w = w; and w = ws, independent of the wavevector in the
beam-plasma dispersion relation, are the asymptotes which the upper-hybrid and whistler
branches (with frequencies dependent on the wavevector) tend to. At the short wavelengths
or large mode and wave numbers and for small angles, these branches are degenerate in the
beam-plasma dispersion relation.

Figures 6(a) and 6(b) show a clearly defined beam branch with w = kv, cos 6 up to M = 8.
This mode number corresponds to the cut-off in the growth rate from the theoretical beam
dispersion relation. Branches at w ~ tw,, = 4w, which fall on the upper-hybrid branches of
the electromagnetic normal modes are also present. Mode 7 has the highest spectral intensity
and a frequency w = (0.933 £ 0.15)w,e and coincides with the coupling of the beam branch
at w = kv, cos§ and the upper-hybrid branch in the normal modes or degenerate cyclotron
branches in the beam dispersion relation with fre‘quency W ~ Wpe = Wee. This most intense
mode is on the branch of O-mode. Extraordinary branches are less intense. The maximally
growing mode or the mode that achieves the highest energy in the beam-plasma phase in the
electrostatic field E, i.e., from Sec. III, mode 8, has a frequency w = (1.04 & 0.15)w,, and is
also the result of the same coupling. Note the remarkable sharpness of this mode. Its spectral
width could not be well determined, since the plasma parameters (in particular the electron
mass) change during the measurement and the applied data analysis broadens the peak.
The simulations suggest a width far below 10% of the frequency. The magnetic modes are

predominantly excited in the electromagnetic component of the spectrum of Fig. 6(c). The
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spectral intensities achieved there are two orders of magnitude lower than their electrostatic
counterparts. The beam branch is barely distinguishable in Fig. 6(c), a further indication of
the weak coupling between beam and magnetic modes, already evidenced in Fig. 3(a), for a
small tilt angle. Only mode 7 which has the highest spectral intensity might correspond to
a beam mode. Mode 6 has, however, as high a spectral intensity in B, and its frequency is
determined to be w = (0.63 £ 0.2)wpe. This mode is observed only when the beam is slowed
down. It-is also the fastest growing mode. It intersects with the whistler branch. [The
downshifting of the frequency towards the normal mode frequency is because the energy of
this mode is sustained at a high level for only about 2pr‘el as compared to the correlation
time of 100w,.'.] Mode 8 which also achieved a high energy in the magnetic modes has a
measured frequency of w = (0.875 & 0.25)w,.. The normal modes of the system are overall
prominent in the electromagnetic branch of the spectrum and the whistler, upper-hybrid and
light branches are well defined.

Without dc fleld, the beam therefore can directly couple to the upper hybrid-type branch
with w ~ wp, and also to the whistler branch for large enough tilt angles. The effects of the
coupling between the beam cyclotron modes and the normal modes of the system were too
weak to be detected.

Figures 7(a), (b), and (c) correspond to the case with tilt angle 8 = 45°. The distinction
between primarily electrostatic or electromagnetic modes is not easy since some whistler and
light frequencies are imaged in the longitudinal field (E,) simulation dispersion relations of
Figs. 7(a) and (b). The beam branch is well defined there for 2 < M < 5 and again for
9 < M < 14. These two regions correspond for the first to the coupling of the beam branch
with frequency w ~ kv, cosd and the whistler branch or low frequency cyclotron branch
which asymptotes to w ~ wy. The second represents the coupling of the beam mode with
the high frequency cyclotron branch or upper-hybrid branch with w ~ w; ~ Wpe = Wee. Mode

4 has the highest spectral intensity of the modes in the first coupling region and its frequency
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is w = (0.3 £0.10)wpe. Mode 11, which achieved the highest energy and is the most intense
of the modes with 9 < M < 14 has a frequency w ~ (1.0 £ 0.15)wy. It has the highest
spectral intensity of the electrostatic modes. These two coupling regions also appear in the
electromagnetic component of the wave spectrum of Fig. 7(c). The magnetic modes (B,)
have the highest spectral intensity. Mode 4 has the highest spectral intensity and the same
frequency as measured in the electrostatic component, as does mode 11. Mode 9, which
achieved the highest energy in the magnetic modes, has a frequency w =~ (0.84 =% 0.10)wpe

and corresponds to a coupling of the beam with the upper-hybrid branch with w ~ w,.
b) Dispersion relations for Ex=02

We now discuss cases with the dc field. We discuss here dispersion relations obtained
from simulations with § = 0°, § = 15°, and § = 45°. We will compare the electrostatic
and electromagnetic frequencies to the normai modes dispersion relation with the faster
and denser beam mode with frequency w = kv; cosf and the beam ¢yclotron modes with
frequency w = kvy cos 04w, /7s superimposed on it, where v; and 7} are determined from the
time averaged runaway momentum ps. The electrostatic simulation dispersion data will also
be compared with a numerical solution of the electrostatic dispersion relation of Godfrey
et al. (1975) with a faster (vs) and denser ({n)) beam. We will refer to this theoretical
dispersion relation as the faster beam dispersion relation.

For § = 0°, the beam only interacts with the electrostatic modes with or without dc
field. Therefore, we only compare here the electrostatic simulation dispersion relation with
the faster beam dispersion relation. The simulation frequencies (dots) agree well with the
faster beam dispersion relation (solid lines) as shown in Flg 8. The modes with the highest
spectral intensity lie on the faster beam branch with frequency w ~ kc. Note the coupling
of the faster beam branch or runaway branch at w ~ kc with the harmonics of the plasma

branch at w ~ 2w, and the start of one near w ~ 3wpe. These harmonic branches are
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not detectable without dc field. This dispersion relation except for the EM wave branch
agrees with the one previously obtained in our purely electrostatic simulations (Leboeuf and
Tajima, 1979a). Mode 6 isthe most strongly excited in the runaway phase. This mode has
the highest spectral intensity overall.

Figure 9 displays the simulation dispersion relations with dc field for the tilt angle § = 45°.
The electrostatic simulation data plotted against the normal modes dispersion relation of
Fig. 9(a) exhibits w; and wy branches and only partly the light branches. The modes with the
highest spectral intensity lie on the faster beam branch or runaway branch with frequency
w ~ kvgcos§ and vy =~ 8.21vs. The interesting feature in Figs. 9(a) and 9(b) is the presence
(though weak) of the two cyclotron resonances at w = kvycosf % we./vs. With dc fleld,
the distribution function has a long flat runaway tail which can support the high phase
velocity mode w = kvycosf + we/v;. Similarly, the flatness or gentle sloping down of
the tail may be the reason preventing the damping of the lower phase velocity mode with
w = kvscosd — wee/vs. Usually the latter mode is heavily damped since it falls close to
the bulk of the plasma. Of all the modes on the runaway branch, mode 6 has the highest
spectral intensity in'thev electrostatic component of the spectrum. Its frequency is measured
to bew = (0.84:|:0.1jwpe and corresponds to the coupling of the runaway branch with the wy
branch from Fig. 9(a). The mode with the highest energy in the runaway phase is mode 3,
with a measured frequency of w = (0.46£0.1)w,,. It falls on the runaway branch but appears
to be a coupling of the runaway mode (w = kvy cos §) and the w, mode [Fig. 9(b)].

We have plotted in Fig. 9(c) the electromagnetic simulation frequency against the theo-
retical normal mode dispersion relation. Only the runaway branch (w ~ kv; cos §) and the
whistler, upper-hybrid and light branches appear there. The beam cyclotron resonances do
not appear in the electromagnetic component of the spectrum. The runaway branch has the
highest spectral intensity, as in the electrostatic component of the spectrum. The spectral

intensities in both electrostatic and electromagnetic components of the spectrum are of the
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same order of magnitude, in agreement with Fig. 3(a) and Fig. 5(d) where electrostatic and
magnetic energies are seen to achieve the same level in the runaway phase. Modes 3 and 6
have the highest spectral intensities of all the runaway modes. The frequency of mode 6 is
measured at the same value as in the electrostatic dispersion relation of w = (0.84 & 0.1)wye.
It is a result of the coupling between the upper-hybrid (or wy) branch with W ~ wpe and the
runaway branch. The frequency of mode 3 is the same as its electrostatic counterpart at
w = (0.46 £ 0.1)wpe. Mode 4 which achieves the highest energy among the magnetic modes
in the runaway phase has w = (0.6 £ 0.1)w1;e. This mode also appears in the electrostatic
component of the spectrum where it achieved the second highest energy in the .runaway
phase. Both modes 3 and 4 have low enough frequencies (w < wpe) and broad enough spec-
tral peaks to be located on the whistler (or wy) branch. The excited waves affect the runaway
electrons in turn. In Figs. 10(a) and (b) we see that the radiation is emitted in a very spiky,
intermittent fashion in time. This bursty radiation emittance is due to the incessant coming
and going of resonance of runaway electrons with radiative modes. The secular increase of
runaway electron momenta is reduced from the value of free fall because of the wave-particle
interaction. In the previous work (Leboeuf and Tajima, 1979&) when only the electrostatic
interaction was retained, the rate of momentum increase in time was ~ 2 /3 of the free fall
(not shown in Fig. 10). When the electromagnetic interaction is included, we find that the
increase of momenta is further reduced to ~ 1/3 of the free fall value [Fig. 10(0)] This is
because the beam experiences more drag by emitting EM waves. We find that the larger the
tilt angle is, the more slowdown of the runaway momenta results. This means that if we had
tried two-dimensional simulation allowing various modes with various tilt angles simultane-
ously, most electron slowing down would happen by waves propagating in directions oblique
to the magnetic field.

We see occasionally a complete stopping of the increase of the runaway momenta, which is

called the clamping of the runaway momenta. When clamping occurs, it is accompanied by a
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large and fast spreading in perpendicular momentum of the distribution function. Contours
of the distribution function in (ps, py) space are displayed in Fig. 11(a) (before clamping) and
11(b) (after cla,mping).. Perpendicular spreading is a consequence of energy conservation in
the wave frame, i.e., if p|| decreases, p, has to increase to conserve energy. This is somewhat
difficult to quantify because of the dc electric field. In this case we observe the strong
excitation of magnetic modes (corresponding to a magnetic energy increase by a factor 10
over the level without ions) at the fundamental wavelength L, (mode 1) and the L,/2
one (mode 2) with frequencies on the Alfvén-ion cyclotron branch which accounts for the
clamping and reduction of p.

The excitation of Alfvén ion-cyclotron waves in our electromagnetic simulations is the
following. The drifting electrons see the electromagnetic ion-cyclotron wave at their own
cyclotron frequency, interact with the wave and give up their énergy to it, if the cyclotron
resonance condition w — kv + wee /v = 0 is satisfied (Hasegawa, 1975). Here w ~ w,;, when
we; is the ion-cyclotron frequency; k and v, are respectively the wavevector and electron
velocity parallel to the magnetic field. It is then the interaction of the beam-cyclotron mode
and the Alfvén ion-cyclotron mode which leads to wave growth. To quantify this process,
we place ourselves in the limit of zero tilt angle. The dispersion relation for the electron

beam-plasma system may be written as

2
2_ 12,2 2 w 2 o Y (w — kwp) _
wi— ke “pe <w —l-wce) Wpi (w —wc,-> ( 5y ) [(w —kvy +wee/7)| 0 (10)

for the electromagnetic part. Here the electromagnetic dispersion decouples from the elec-

trostatic one (Godfrey et al., 1975). In the above w,, is the beam plasma frequency. An
approximate solution of Eq. (10) yields growth at w ~ we; and k =~ wee/yvp. A numerical
solution with the simulation parameters yields w/wpe > 0.02 and kL, /27 =~ 1, for the most

rapidly growing mode. The real frequency is on the Alfvén ion-cyclotron branch.
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V. APPLICATIONS IN ASTROPHYSICS

Electromagnetic simulations of the beam-plasma instability and evolution after tail for-
mation in the presence of a constant electric field have been performed and analyzed in view
of high-frequency electromagnetic radiation. The initial beam is parallel to the electric and
magnetic fields. Its final remnant was found similar to a runaway tail, a characteristic of elec-
tron momentum distributions in electric currents. In agreement with previous simulations
we note that (i) the runaway particles convert the energy of the dc electric field into plasma
wave (ac) energy; (ii) there is a runaway branch with frequencies w S ke cos 8, which strongly
couples to the normal modes of the system; (iii) the runaway electrons are dragged by these
modes while Ey. is being applied. The inclusion of electromagnetic effects shows \thafc (iv) in
the later runaway phase the fraction of wave energy in electromagnetic modes increases to
over 50% as we have seen in Fig. 3(a); (v) the low—frequeﬁcy magnetic modes are strongly
excited in the phase of clamping of the runaways; (vi) propagating electromagnetic ordinary
(and to a lesser extent extraordinary) waves are emitted and can yield intense observable
emission. The most intense electromagnetic wave is from w ~ wpe shown by a triangle in
Figs. 8 and 9(a) (more than three quarters of the intensity of the entire electromagnetic
radiation, depending on various conditions except for the case of the magnetic mode excita-
tion). Modes with w R wpe can most likely radiate out. The main spectrum w ~ wpe can be
radiative if the wave propagates toward a more tenuous plasma. The wave energy of w > w,,
originally in our simulation is probably less than 10% of the entire electromagnetic wave
energy. The mainly magnetic mode such as the Alfvén waves could be mo de converted into
propagating electromagnetic waves as Steinolfson, et al. (1989) have investigated. Similarly,
electrostatic waves can be converted into electromagnetic waves by a density gradient (Mel-
rose, 1980) in real plasmas. The efficiency of this direct conversion scales with the inverse
density scale length. Small density structures are generally expected in current sheets as

well as in MHD waves resulting from reconnection. Electromagnetic waves above the cut-off
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frequencies are of particular interest to astrophysics. Our simulations clearly show that their
two branches couple to the runaway tail of the electron distribution.

The simulations have been made for strong electric fields far beyond the Dreicer value
to reduce computing time. Leboeuf, et al. (1979b) have found a decreasing level of wave
energy for smaller Ea.. At Eg. ~ 0.1 this decrease, however, is weak enough to suggest a
considerable effect also at smaller electric fields above the Dreicer limit. On the other hand,
when we increase the acceleration, the level of wave energy and thus the radiation increases
rapidly as a function of Eg4., until it reaches maximum when Eg4. reaches the value defined
by Ee in Eq. (5). Beyond this, no beam-instability and thus no radiation is observed. That
is, when the acceleration due to Ey is too large, the beam-plasma system fails to sustain the
. beam-plasma instability. This effect may play an important role in radiation processes for
accreting matter near compact massive objects such as a black hole. For example, accreting
matter under the influence of gravitation radiates in the ambient magnetized corona ever
so brightly until it reaches the level defined by Eq. (5) and ceases its collective radiative
process. It is worthy to notice that this acceleration can be reached before matter accretes
within the Schwarzschild radius.

Let W (k) be the energy density of propagating transverse waves with wavevector k. Their
brightness temperature becomes (using the Rayleigh-Jeans approximation)

1 a nc®

Ty = T (11)

=57 —=4o
27b w3’
where T is the ambient electron temperature in energy units and we have used vy, = ¢, and

put the total wave energy density as

W (k)K*Ak Ar

o3 = anTy (12)

with o determined by the simulations, the bandwidth defined by Av = br, and the emission

solid angle Ar ~ 7. Emission by coupling the runaway (or beam) branches is expected to be
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very ‘na,rrow—banded as we observed in Sec. [Va. We will use b = 10~ —1073 in the numerical
estimates.

Spatially uniform dc fields above the Dreicer limit may be expected in a wide variety
of astrophysical plasmas. Here we consider as an example impulsive reconnection suggested
for solar and stellar flares. In the general scenario (e.g., Heyvaerts, et al, 1977) the size
of the current layer between two regions of differently directed magnetic fields decreases
due to external motions. As soon as the current becomes unstable, the resistivity suddenly
increases due to coupling between particles and waves leading to explosive annihilation of
the magnetic fleld. Assuming the current constant, The induced impulsive electric field by

magnetic fleld annihilation reaches a value of

Binp = Bo b | (13)
o

where Eq and 1o are initial electric field and resistivity, and nyu, is the anomalous resistivity
due to wave turbulence. FEj is given by Eg = (¢/ve,) B, Where v, is the contraction velocity
of the reconnection region at infinity. If the turbulent collision frequency vium is determined
by the electron dynamics in the direction out of the plane of reconnection, the resistivity
may be assessed by studying the wave drag on electrons seen in our simulation. Let the

equation of motion along the magnetic field near the reconnection point
p=eBac — Vyub P, (14)

where the dc electric field E4. is produced by the reconnection. From our simulation
Fig. 10(c) we learn
P 3 eFa . (15)

In this case Eqgs. (14) and (15) imply

2
Ve P = §6Edc . (16)
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With Ey. = 0.2m wz AJe and p ~ me, Eq. (16) leads the evaluation of vy, as
Vearb ~ 1072wy, (17)

and Neurp = 4T Vgurp /W] = 4107 2w

The impulsive electric field decreases from its value given in Eq. (12) with the spread
of the current sheet. It expands with a velocity c2nuyp, /47!, where [ is the thickness of the
current sheet (Heyvaerts, et al., 1977). The electric field falls back to the value E, after a

time

At = Tousd <i>2 : (18)

4t \ Ve

Let us use w, = 27 - 3 x 10° Hz, and v, = 100km/s for coronal conditions. Equation (18)
then yields At on the order of 10 ms.

The temperature Tp in the current sheet is of the order of 108K and the electron density
of this process is believed to be in the range of 10° — 102cm™3. Emissions near the plasma
frequency are thus in the range of 0.3-10 GHz. Our simulations are too limited to yield a
reliable estimate of the fraction a of transverse wave energy. We will use a = 10~* compatible
with Eg. = 0.2 at wp,t = 400 (cf. Fig. 3). The brightness temperature, given by Eq. (11),
and using the above value for Ty and w, then yields 106 — 10'8 K.

The above example shows a possible scenario of current driven (or acceleration driven)
radiation in astrophysics. The present mechanism could provide a physical process for in-
tense spiky radio bursts often observed from solar flares, which have a very bright radiation
temperature (~ 10'° K) and bursty in time and narrow in spectral width. Future simulations
closer to reality in ion mass, electric field strength, duration, etc., are required for actual
models. Nevertheless, the present simulation and discussion have shown the existence of an
efficient radiation process, which can be the observable signature of a strong current in as-
trophysical plasmas. The present instability is primarily due to the beam Landau resonance.

However, an equally effective radiative emission due to the beam cyclotron resonance is pos-
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sible. (Recall our parameters were such that wye = wg, in most runs). This is often called the
gyrotron instability (or the cyclot,ron resonance maser) (for example, Hirshfield and Granat-
stein, 1977). - Further, the cyclotron autoresonance maser instability (Pelenin, i974) is a
similar but distinct radiative mechanism. When the beam is driven by a dc electric field (or
gravitational) acceleration, we expect that the driven gyrotron emission would also have an
intense, bursty and bright, spectrum around w... However, a detailed investigation of this

problem is left for the future.
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Figure Captions

1. This diagram defines the tilt angle § and the beam propagation and guide magnetic

field directions along which the dc electric field is applied.

2. The electromagnetic magnetized beam-plasma instability without dc field and at var-
ious tilt angles 6.
(a) Maximum growth rate versus tilt angle § for the electrostatic field (dots) and the -
magnetic field (triangles). The circles represent theory. The solid line is a fit to cos? 6.
(b) Most energetic mode number versus § for the electrostatic field (circles) and mag-
netic flelds (triangles).
(c) Saturation time versus tilt angle 6 for the electrostatic energy (dots) and magnetic
energy (triangles). ‘
(d) Saturation energy versus 6 for the electrostatic (circles), transverse electric (dots)

and magnetic (triangles) fields.

3. Time evolution of the field energies at § = 15° for (a) E; = 0.2 and (b) Eqc. = 0.
The solid curves represent the magnetic energy, the dashed ones the transverse electric

energy, and the dash-dot ones the electrostatic energy.

4. Schematic drawing of the phase space trajectories for electrons moving in a potential

wave and acted upon by the dc electric field.

5. The electromagnetic magnetized beam-plasma instability with dc field and various tilt
angles 6.
(a) Electrostatic energy in the beam-plasma phase for Eq. = 0 (circles), Ege = 0.2
(dots) and in the runaway phase (triangles).
(b) Magnetic energy and (c) transverse electric energy in the same phases.
(d) Maximum energy achieved in the same unit. If electrostatic, a circle is plotted; if

magnetic, a triangle is drawn.

6. Dispersion relation for § = 15° and Eq4, = 0. The simulated frequencies are indicated by
dots, theory by solid lines. The modes with highest spectral intensity are represented
by triangles.

(a) Electrostatic component plotted against the normal modes of the system.
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10.

11.

(b) Electrostatic component plotted against the beam dispersion relation with p, =
7.63mvge and ny = 0.1n,,.
(c) Electromagnetic component plotted against the normal modes. The theoretical

beam branch is drawn in as a dashed line in (a) and (c).

Dispersion relation for § = 45° and Ey. = 0. (a) Electrostatic component versus
the normal modes. (b) Electrostatic component versus the beam-plasma dispersion
relation. (c) Electromagnetic component versus the normall modes. The theoretical

beam branch is drawn in as a dashed line in (a) and (c).

. Electrostatic dispersion relation for # = 0° and g = 0.2. The simulation frequencies

are represented by dots. The modes with highest spectral intensity are indicated by
triangles. The theoretical beam dispersion relation with (p) = 7mc and (n) = 0.2n, is

drawn in as full lines. The dashed line represents the 2w, harmonic.

Dispersion relations for § = 45° and By =02.

(a) Electrostatic component versus the normal modes.

(b) Electrostatic component versus the beam-plasma dispersion relation with (p) =
20mc and (n) = 0.25n,,.

(c) Electromagnetic component versus the normal modes. The theoretical runaway

branch (a,c) and Doppler-shifted cyclotron modes are drawn as dashed line (a).

Time evolution of the energy of the runaway mode 5 for § = 15° and Edc = 0.2 in
(a) the z component of the magnetic field, (b) the y component of the electric field as
compared to (c) the evolution of the runaway momentum where the full line denotes
free fall and the dashed line the %Edct asymptote. The dash-dot line represents the

%Edct asymptote. The dots are the simulation values.

A computer illustration of the perpendicular spreading of the momentum distribution
function at clamping for § = 45°: contours of the distribution function in (ps,p,)

space (a) just before clamping and (b) just after clamping.
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