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Abstract

The stability of the Global Alfvén Eigenmodes is investigated in the presence of
super-Alfvénic energetic particles, such as the fusion-product alpha particles in an ig-
nited deuterium-tritium tokamak plasma. Alpha particles fend to destabilize these
modes when wx, > w4, where wy is-the shear-Alfvén modal frequency and wx, is the
alpha particle diamagnetic drift frequency. This destabilization due to alpha parti-
cles is found to be significantly enhanced when the alpha particles are modeled Wﬁ;h
a slowing-down distribution function rather than with a Maxwellian. However, pre-
'viously neglected electron damping due to the magnetic curvature drift is found to
be comparable in magnitude to the destabilizing alpha particle term. Furthermore,
the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity
induces poloidal mode coupling, which enhances the parallel electron damping from
the sideband shear-Alfvén Landau resonance. In particular, for the paranieters of the
proposed Compact Ignition Tokamak, the Global Alfvén Eigenmodes are found to be
completely stabilized by either the electron damping that enters through the magnetic

curvature drift or the damping introduced by finite toroidicity.




1 Intrbduction

Recently the effects of energetic particles on magnetohydrodynamic (MHD) modes have been
studied extensively. In the neutral beam heating experiments on the Princeton Divertor
Experiment,’ the injected energetic trapped particles are thought to have been responsible
for destabilizing the internal kink mode and causing fishbone instabilities.? Subsequently,
ballooning modes were also found to be destabilized by the same group of hot particles,
thus serving as an explanation for the high-frequency fishbone precursor oscillations that
were experimentally observed.®* Furthermore, it has been shown that both the ballooning
mode® and the internal kink mode®~® can be stabilized by hot particles of even higher energy.
However, at these high energies, some new instabilities may occur: in particular, the shear-
Alfvén waves may be destabilized by super-Alfvénic energetic particles through the inverse
Landau damping process if ws > wy, where wy is the shear-Alfvén frequency and wx is
the diamagnetic drift frequency of the energetic particle species. This condition can readily
be satisfied by fusion alpha particles in an ignited deuterium-tritium tokamak plasma since
these alpha particles are born with an energy of 3.52 Mev and have a density profile that
18 sharply peaked at the center of the plasma due to the sensitive dependence of the fusion
reaction cross section on the plasma temperature. ‘

In the ideal MHD description with cylindrical geometry, the shear-Alfvén wave in a
nonuniform plasma satisfies a second-order differential equation that admits a continuous
spectrum®!® for w? over the range of (wW})min < W? < (W§)max, Where wy = kjvg is a
function of the minor radius, kj is the parallel wave number, and v4 = B/ (47rni m;)/? is
the Alfvén velocity, with n; m; the ion mass density. With the inclusion of parallel electron

response and finite ion Larmor radius, the continua become closely spaced, discrete spectra.

The corresponding eigenmodes, which are localized around the Alfvén resonances, are called




Kinetic Alfvén Waves (KAW).! Recently, extensive theoretical and experimental studies!?~17

have revealed the existence of discrete eigenmodes just below the lower edge of the Alfvén
continuum, i.e., w? < (W% )min. These modes are regular global MHD modes extending over
the plasma minor radius and are called Global Alfvén Eigenmodes (GAE).

The destabilization of shear-Alfvén waves was first studied by Mikhailovskii,'® using a lo-
cal dispersion relation. By including finite Larmor radius effects to discretize the continuum,
Rosenbluth and Rutherford!® found that the KAW can be destabilized by alpha particles.
Tsang et al.?® studied the details of the same problem numerically and reached a similar
conclusion. More recently, Li et a1.21' found that GAE can also be destabilized by fusion
alpha particles in a burning tokamak plasma.

In the present work, we study the stability of GAE modes in the presence of fusion alpha
particles in an ignited tokamak plasma. We first examine the GAE modes in the cylindrical
geometry approximation. We show that the alpha particle-induced growth rate is enhanced
significantly when the alpha particles are modeled in terms of a slowing-down distribution
function, rather than with a Maxwellian distribution. A preliminary version of this result,
derived analytically, was noted earlier, along with numerical conﬁrmatio'n.“’21 However, -
previoﬁs work*?! neglected the electron and ion contribution to the perturbed current due
to the magnetic curvature drift; only the alpha particle contribution, which destabilizes the
GAE modes through inverse Landau damping, was kept. In the present work we also find
that the electron curvature drift term is always stabilizing since the electron diamagnetic
drift frequency is much smaller than the Alfvén frequency. More importantly, this electron
term is comparable in magnitude to the alpha particle term. The reason is that the electron
density is much higher than that of the alpha particles, even though the electron velocity
is much larger than the Alfvén phase velocity and the alpha particle energy is much higher
than the electron temperature. |

Second, we consider the effects of toroidicity on the stability of the GAE modes. Previous




work®! only considered a single poloidal mode and neglected the intrinsic poloidal mode
coupling that is induced by toroidicity. Shown in Fig. 1 are the shear Alfvén continua
in cylindrical geometry for toroidal mode number n = 1 and poloidal mode numbers m =
—1, -2, and —3. In particular, the eigenfrequency of the cylindrical GAE with mode (n,m) =
(1,-2) is located just below the minimum of the m = —2 continuum, as indicated by the
dotted line. In toroidal tokamak geometry, the cylindrical (1,—2) mode will be coupled
to sidebands, especially the (1, —3) poloidal mode and the (1, —1) mode, as well as other
more distant poloidal modes. In particular, we observe that the sideband (1, —1) mode has
an Alfvén resonance near the edge of the plasma. We will find that this Alfvén resonance
enhances the parallel electron Landau damping and has a stabilizing effect. In particular,
for parameters corresponding to those proposed for the Compact Ignition Tokamak (CIT),
we find that the GAE modes are completely stabilized.

The outline of this paper is as follows. In Sec. 2 of this paper, we consider the stability
of the GAE modes in the cylindrical limit. We study the effects of using a slowing-down
distribution function, rather than a Maxwellian, to model the fusion-product alpha particles.
We also discuss the effect of the electron magnetic curvature drift on the stability of the GAE
modes. Séction 3 examines the stability of the GAE modes in a toroidal device. First we
construct a toroidal eigenmode equation for the GAE modes, and then the numerical results

are presented. Finally, Sec. 4 is devoted to conclusions and discussion.

2 Stability of the GAE in the Cylindrical Limit

2.1 Review of GAE Destabilization by Alpha Particles

Here we give a unified overview of the cylindrical results for the destabilization of the GAE

mode by alpha particles. The proper set of eigenmode equations for the cylindrical problem



has been previously derived by Li, Mahajan, and Ross,?* who started from Ampére’s law:
w2 |
VXVXE=<-§>X-E. (1)

All the physics of the plasma response is included in the susceptibility tensor X. An ignited
tokamak plasma has two components: the bulk plasma, which constitutes one component,
has relatively high density and low temperature, whereas the fusion-product alpha particles,
which are the other component, have low density and high temperaturé. Accordingly, the
susceptibility has two parts, i.e., X = X, + X, where X, and X,, come from the bulk plasma
component and the hot alpha particle component, respectively. From the well-known low-
frequency (w < wy;) susceptibﬂity tensor for a uniform plasma, a simple self-adjoint X, for the
nonuniform cold plasma may be constructed,'® including all the important kinetic effects.
The form for X,, on the other hand, is obtained?' from the solution of the drift kinetic
equation for circulating alpha particlés (the effect of trapped particles being neglected).

Furthermore, it is convenient to decompose the electric field E into E = E,r+ E, b xr+ Ejb

where b = B/B is the unit vector along the magnetic field B and r is the unit vector in

the radial direction. Also, the parallel component of Ampére’s law is replaced by V- J = 0,
which in turn enables us to eliminate Ej in terms of E, and E,. Thus, from the other two

components of Ampére’s law, we have the following two second-order differential equations,

~ = Lr'r L'r_L E )
LE = 0 2
(L_u LJ..L)<E-L ®)

where L is a differential matrix operator with the following elements:

written in matrix form as
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Here b = (w?/v})p? and do = (kyps)? [L+ (w/kyue)Z(w/hppe)] s with pf = 2Ti/mu

the ion Larmor radius, p? = T L /mw?, wy the ion cyclotron frequency, w the frequency

cid
of the perturbed field, and v. the electron thermal velocity. The wave numbers are given
approximately by ki = m/r and k| = (n —m/q)/R, where n and m are the toroidal mode
ﬁumber and the poloidal mode number, respectively, and R is the major radius. The terms
Srry Sr1, S11, and Sy, which arise from the equilibrium current and the shear of the

magnetic field, are given in Ref. 13, and the term @,,+; is the alpha particle contribution

given in Egs. (24) and (25) of Ref. 21 as follows:

@me+1 = —t 2ﬂ—§2 <-Pm:i:1 - w’:jm Rm:tl) | (7) |
2 0fx
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Ry = %g— / d*v (vi/2 + vﬁ)2 Jaob(w — Kjy) - -9



~ Here, B, = 8nngT,/B? and v2 = 2T, /my, with Ty, na, Ba, and v, being the temperature,

density, beta value, and thermal velocity of the alpha particles, respectively. Also, fso is
the alpha particle equilibrium distribution function. Notice that in the alpha particle terms,
the wave-particle Landau-type parallel resonance is of the form w = kjjm+19|jas rather than
w = k||jmV||; 1-€., the alpha particles resonantly interact with the sideband of the perturbed
field. This occurs because the poloidal variation of the alpha particle magnetic drift velocity
V4, enables the perpendicular fields £, and E, of mode m to resonantly drive two sidebands,
m % 1, of the perturbed alpha particle distribution. This kind of sideband resonance was
vividly described by Mikhailovskii’® — “A particle moving in a magnetic fleld with an
alternating curvature and in the field of perturbation with longitudinal wave number kj
behaves as if it moved in a straight magnetic field and in a field of wave with an effective
longitudinal wavenumber kg = k=1/qR.” However, in the end, these two sidebands of the
distribution contribute to a perturbed alpha particle magnetic drift current with the same
poloidal mode number as that of the perturbed field. We conclude that toroidal coupling in
the alpha particle response is necessary, even only one poloidal mode number is considered.
This is the first manifestation of the effect of toroidicity in what is here taken to be an
otherwise cylindrical problem. In Sec. 3, we will study the essential toroidal coupling due to
the intrinsically finite value of the inverse aspect ratio (r/R), which drives various poloidal
harmonics of the waves under consideration.

The physics of Eq. (2) can be briefly stated as follows. The b; terms represent the effect
of finite ion Larmor radius, whereas the d. terms come from the electron parallel dynamics,
which result in Landau damping. Without these b; and d, terms and the Q)41 terms, the
matrix equation Eq. (2) can be combined into a single second-order differential equation,
the cbefﬁcient of whose second derivative term vanishes at w? = kﬁvi: this admits a con-
tinuous spectrum. On the other hand, with these terms, a fourth-order equation results,

and the spectrum is discretized. Furthermore, the alpha particle terms, @m+1, can lead to




an eigenfrequency with a positive imaginary part; i.e., the alpha particles are destabilizing.
To understand this, it is useful to examine the simplest local dispersion relation, given by
Egs. (39) and (40) of Ref. 21. If one considers the case of a uniform background plasma den-
sity and a Maxwellian distribution for the alpha particles, the shear-Alfvén wave is described

by

[~

S — B — A~ (K +k)d. =0 (10)

vi
where

Aoz = (Qm+1 -+ Qm—l)

= —g 2’%2 (1 — %) (Rmg1 + Rm—1) | , (11)

The growth rate is then given analytically by the following expression:

,Boz Wikq
7/0').4 = —4kﬁR2 (1 - w ) (Rm+1 +Rm—1)
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We observe that for wy, > w, the alpha term is destabilizing; this competes with the second
term on the right-hand side of Eq. (12), i.e., the Landau damping. Also note that the
Landau damping is proportional to (k? + k% )p?, so that for a global mode like GAE mode,
the damping is very weak, whereas for the radially localized KAW modes with their large

k., Landau damping can be quite large.

2.2 Slowing-Down Distribution Versus Maxwellian Distribution

Here we study the effect of using a slowing-down distribution on the destabilization of
the GAE mode by alpha particles for typical ignition parameters, as compared to using

a Maxwellian distribution for the alpha particles. The eigenmode equation, Eq. (2), can be




Tablel: CIT tokamak parameters

['major radius "~ R(cm) 140 |
minor radius a(cm) 67
wall radius rw(cm) 85
toroidal field By(T) 10
central electron
density no(10M/cm?) 10

central alpha
particle density | n,(0)(10*/cm?) 2
central electron

temperature Teo(kev) 30
central ion

temperature Tio(kev) 30
effective mass meg (proton mass) | 2.5

effective charge | Z.g(electron charge) | 3.0

solved by the cubic-B spline finite element method. Shown in Fig. 2 are the GAE eigen-
functions for modes (1, —2) and (0, —2). Figure 3 gives the corresponding growth rates for
both Maxwellian and slowing-down distributions. The parameters for one version of the pro-
posed Compact Ignition Tokamak (CIT) have been used in the calculation; these are given

in Table 1. The CIT profiles were taken to be the following:

n=ng[l—r*/(a+d)? | (13)
Tei = Toei |1 — (r/a)?] (14)
g=1+2(r/a)® (15)

where the value of d is chosen such that the plasma density at the edge is 10% of its
central value: n(a)/n(0) = 0.1. The alpha particle density profile is taken to be n,(r) =
ny(0)exp(—r?/L2), where L, is the alpha particle density gradient scale length. Notice that

the (1, —2) mode is weakly damped for a Maxwellian distribution, but is slightly unstable for

9




a slowing-down distribution. However, for the (0, —2) mode, Which has been identified as the
most unstable mode for TFTR parameters,?* the effect of modeling the alpha particles with a
slowing-down distribution is quite remarkable. We observe that the growth rate for a slowing-
down distribution is about twice that for a Maxwellian distribution. More significantly, at
theA expected CIT alpha particle density scale length of L, = 0.4a, the mode is substantially
unstable for a slowing-down distribution, but is stable for a Maxwellian distribution.

. We can explain the difference in the results for the two distributions with the following
estimate. For a Maxwellian distribution, we have 0f,/0F = —f,/Ty so that Pny1 = Rpi1;
on the other hand, for a slowing-down distribution we have R, 4+1 > P41, since the velocity
integral is heavily weighted toward high energy where ;—Taa fof/OE = (3/2)(Tw/E)fa > fa
(Note that for CIT parameters we have T, ~ 1 Mev, where the maximum energy of the alpha
particles is 3.52 Mev). Indeed, this has been borne out by our analytical results. Shown
in Fig. 4 is the ratio of R4y for the two distributions plotted versus the phase quanti%;y
w/kjjm+1va0, along with the ratio of Pp,i; to Rps for a slowing-down distribution. We

observe that
(Rmil)slowing—down ~ (RMil)Maxwellian (16)
for w/kjm+1va0 < 0.8 and, more interestingly, that

1
5 (Rm:hl )slowing—down : (l 7)

ot
~y

(P

+1 )slowing—down

Hence, not surprisingly, the growth rate for a slowing-down distribution is greater than that
for a dewellian, as has been shown in Fig. 3. It is also worthwhile to point out that we can
estimate the ratio of the critical alpha scale length L, o that corresponds to zero growth

rate for the two distributions:

La cri i .
( ) t)slowmg—--down oy ( Rm:l:l ~1.4 . (18)

(La@‘it)Maxwel]jan Pmd:l slowing—down

which is remarkably close when compared to the numerical results shown in Fig. 3(b), which
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give

La cri i '
( ) t‘)slowmg—down — 0.47 =14. (19)
(La,crit)Maxwellian 0.33

2.3 Electron Damping due to Curvature Drift

Previous work®'®=2?! only considered the contribution of the fusion alpha particles to the
perturbed current that is due to the alpha particle magnetic curvature drift, which is desta-
bilizing through the inverse Landau damping process. Similar terms for the electrons and
ions were ignored since their drift velocities are much smaller than that of the alpha particles
and their thermal velocities are very different from the Alfvén phase velocity. Nonetheless,
here we will show that for GAE modes the electron contribution to the drift current term can
indeed be comparable in magnitude to the alpha particle contribution. The reason is simply
that the electron density is much higher than that of the alpha particles, especially away from
the plasma center, although the electron temperature is much lower than the alpha particle
temperature and the electron thermal velocity is much larger than the Alfvén phase velocity.
Notice that this electron curvature drift term is always stabilizing since wx./wa < 1, where
wsx, 1s the electron diamagnetic drift frequency. The ion contribution can still be neglected,
since its thermal velocity is much smaller than the Alfvén phase velocity. Shown in Fig. 5
for CIT parameters is the growth rate of the GAE (0, —2) mode (solid line) with the effect
of the electron curvature drift term included; for comparison, the growth rate without the
electron drift term (dashed line) is also shown. We observe that for these parameters the
electron drift term overcomes the alpha particle term and stabilizes the GAE mode.

To gain a quantitative understanding of the electron drift effect, we again examine the

local dispersion relation, including both the alpha particle and electron magnetic drift terms:

_ Ba (w*a 1>'UA <2UA)
/ws = 2kﬁR2 w 2 vaF Voo

11



Be v v
SR = — (K +#) i/ 2 (20)

where we have defined the function F(u) = (1 + 2u? + 4u*)exp(—u?). Equation (20) is
the same as Eq. (12) except that it includes the electron drift term as well as that of the
alpha particles (modeled with a slowing-down distribution). In writing Eq. (20), we have
approximated the velocity integral term for the GAE (0,—2) mode as Rpy1 + Ry ®
2(va/vs)F(2va/vs) aﬁd also neglected the w4, term since wx./wa < 1. Notice that the
second term on the right-hand side of Eq. (20) arises from the electron curvature drift,
whereas the third term is the usual electron Landau damping due to parallel electron motion,
which is smaller by a factor of w2 ,/w? < 1 compared to the second term, where wc4 is the

compressional Alfvén frequency. Thus we can estimate the overall electron damping rate as

[ v -
Yelwa = —2—]3?'—}2—2;':— =-1.0x107° (21)

for the GAE (0, —2) mode with CIT parameters. Numerically we obtain 7. /wy = ~1.7 % 103
and a maximum alpha particle-induced growth rate of v,/wa = 1.3 x 1072 at Lo/a = 0.45.
Therefore the GAE (0, —2) mode is stabilized by the electron damping due to their magnetic

curvature drift.

3 GAE Stability in Toroidal Geometry

In the preceeding section, we explored the stability of the GAE in the cylindrical approx-
imation. Here we investigate the effects of toroidicity on the stability of the GAE modes.
We will show that in addition to the stabilizing effect of electron curvature drift discussed in
Sec. 2.3, toroidicity will enhance the parallel electron Landau damping from sideband Alfvén
resonance to the point where the alpha particle-excited GAE modes can be completely sta-
bilized. In order to have a clear physical understanding, here we concentrate on the effects

of toroidicity and temporarily drop the stabilizing effects of electron curvature drift.

12



3.1 Eigenmode Formulation

We start with Ampére’s law, Eq. (1). It is convenient to separate the susceptibility tensor

X into three distinctive pai*ts:

X=X;4+ Xz +X,. (22)

Here Xy is the bulk plasma fluid response and X, is the bulk plasma kinetic response, which
includes finite ion Larmor radius effects and parallel electron dynamics. The following form
of X; can be derived from the ideal MHD equations:
)
X, = S (I-bb) , (23)
V4

where I is the unit tensor. To have a clear physical picture, we rewrite Ampére’s law in the

following form:

U)2
(V x V x —?Xj> E=(Xy+X,)E (24)

where the terms on the left-hand side correspond to the ideal MHD dynamics, and the terms
on the right-hand side represent the kinetic effects of both the bulk component and the
alpha particles, respectively. In toroidal geometry, all the terms in Eq. (24) contain some
mode coupling. Here we keep only the coupling from the left-hand side of Eq. (24) and
neélect the toroidicity effects contained in the kinetic response from the cold component and
alpha particles. This approximation may be justified for the following reasons. The mode
coupling from the alpha particles is small because of the ordering 8, < 1. Also, the kinetic
term X}, is small except near the shear-Alfvén resonance, so we can neglect the toroidicity
contribution from X, at least away from the Alfvén resonance. Furtherrnore,vwe find that
near the resonance the kinetic mode coupling can also be neglected, since the O(¢) mode
coupling contributions due to the ‘;"% and kﬁ terms combine and therefore are larger than the

corresponding kinetic mode coupling contribution. Hence, we may use the cylindrical form

of X}, in Eq. (24).

13



'Io simplify the mode coupling due to the operator term V x Vx and the X; term, we

assume concentric circular flux surfaces and use the following toroidal coordinates:

t = Rcos(—p)
y = Rsin (—¢p)
z=rsinf

R = Ry+rcosf

In terms of this toroidal coordinate system and with the representation E = (E,, E,, E|) for

the electric field, we find the components of V x V x E to be

1 &2 1 6 g

1 0,0 r 10609 RS B
r2R 86 87'\/——-—1-}-62 R0 Or J1t62)

(25)

i_@_Ra ré 1 80 R
rR 00 3r\/ﬁ.—§5 R? o Or /1 + 62 I

(VxVxE)l=(__1_££ﬁ J _3_1_8_) 4+

RV/1+820rrd0 r/i+tezorR Oy

L 0RO _r ¢ B
RVI+620r r Or /T+62 1ry/1+8620r

; i_*_li L §2 i_£> B +
RVito2\0p  qd0)rR\" 18, 00) JTxo°

1 Q0RO v § 8rd R }E
R/t orrorit62 r/itorRoritee) |

with § = r/qR. It is straightforward to show that the infinite aspect ratio limit of Eqs. (25)

(26)

and (26) — i.e., with R replaced by Ry — reduces to exactly the same equations as were
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derived by Ross et al. for cyindrical geometry [cf. Eq. (1) of Ref. 13]. Following Ref. 13, we
shall not make use of the parallel component of Ampere’s law; instead, as before, £ can be

eliminated in terms of E, and E, by means of V-J = 0:

B = 7{% (B -v)” (R*V-(X-E),) . (27)

Notice that the operator R*B -V = RqBy(0/0¢ + 8/q0¢) contains no toroidicity, and hence
we can invert it algebraically. In any case, we will neglect the toroidicity due to Ej terms
since these are kinetic terms.

In this way, we eventually find that Eq. (24) can be rewritten in the same form as
that of Eq. (2), but now the operator L contains toroidal coupling. It can be expanded

stfaightforwardly, with the inverse aspect ratio € = a/R as a small parameter:

L=1ILo+e 2(2 cosfLs + 2isin 6L ,) (28)
Here L, is the cylindrical operator and is the same as that given in Egs. (2)-(6). The toroidal

terms Lg and L4 are given by

- 1 0
Bl = "R 5a

1008 ,, 1008 6

(Ls)s = "ﬁ'@"é@r ° RoOp0r.[11g2

(f,) —_l __1____52+§_(2l_.(.9_ _0_______50____ .?i+,~.2 i
Sir = 7y 1+ 82 " r Or) 08 rRoy/1 + 62 \2 or ) By

(Is) _1lp010 1L 010 50
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~ (10 r 1 0 5.
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Under Fourier transformation and keeping only nearest-neighbor sideband coupling, we

find that Eq. (24) then becomes an infinite set of coupled equations:
é‘(zs + ZA)m—IEm—l + (EO)'mEm + E(zs - zA)m—}-IEm-I-l =0 (29)

where £ = er/a. In the limit of ¢ — 0, Eq. (29) reduces to the cylindrical form, i.e.,
LomEym = 0. For nonzero &, we have an infinite series of coupled equations. To truncate
this infinite series, we consider only three poloidal modes. This is consistent with expanding
only to first order in &. Thus, we finally obtain the following six-by-six matrix of coupled

second-order differential equations to be solved numerically:

Eoyms  &Ts — La)m 0\ [ Bnu
g(Zs + zA)m—l (Zo)m g(f/s —_ EA)m+1 E'm =0. (30)
0 g(ZS + zA)m (zo)m-i-l E'm+1

3.2 Numerical Results and Discussion

Here we consider the (1, —2) mode as a typical GAE mode with n # 0, for CIT parameters.

The cylindrical results of this mode have already been described in Sec. 2. Notice that

16



the value of the edge density is not zero, in order to have the Alfvén frequency be finite
at the edge. Also we choose the edge density value to be small enough for a sideband
resonance to exist. For the sake of comparison énd of numerical calculation, we use € as an
independent variable in Eq. (30). Thus, for € = 0, our calculation will recover the cylindrical
eigenvalues. The known cylindrical eigenvalues will then provide us with very good guesses
for the cbrresponding toroidal eigenvalues, which can be traced as the value of ¢ is increased.

Shown in Fig. 6 is the radial electric field for the main poloidal mode (1, —2) and its
two sidebands (1,~1) and (1,-3), for € = 0.1. Figure 7 shows the sideband (1,—1) for
various values of the toroidicity parameter . Figure 8 shows both the Landau damping rate
obtained without alpha particles, as well as the growth rate induced by alpha particles, with
L./a = 0.25. Note that this value for the alpha particle density scale length L, corresponds
to the maximum growth rate in the cylindrical limit, as shown in Fig. 3(a).

The following observations emerge after examining these results:

(1) The structure of the sideband (1,—1) near its Alfvén resonance has two distinctive
types of behavior depending on the value of €. For small values, (viz., € < 0.3), the sideband
(1,-1) is like an Airy function and the mode propagates toward the center of the plasma.
In fact, Stix®? has shown that for 8./(m./m;) > 1 at the resonance, the essential evanescent
compressional wave at the edge of the plasma will convert to a kinetic Alfvén wave, which
propagates toward the high density region. Our results confirm this physical process. Fur-
thermore, as € increases, we observe that the sideband .resonance shifts toward the edge of
the plasma. As a result, the value of 8./(m./m;) at the resonance decreases and eventually
becomes less than unity, at which point the KAW becomes the so-called cold surface Alfvén
wave.'®?2 Notice that the toroidal coupling will lower the (1,—1) Alfvén continuum, and
therefore its resonance moves toward the outside as € increases. Finally, for € = 0.48, which
corresponds to the CIT value, the (1, —1) singularity simply disappears.

(2) More or less related to the above observations, we note that there are three distinct
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stages for the Landau damping rate 74z and the total growth rate v including the alpha
particles. For small values of ¢ < 0.1, we find the scalings 71 €2 and v o« €2 for
intermediate values of €, 0.1 < € < 0.2, we find that both scale linearly, v « € and v « ¢;
for still larger values, ¢ > 0.25, 71, eventually saturates and begins to decrease, while the
trend for v is exactly the opposite.

Recall that the electron Landau damping rate for the localized KAW mode is much
higher than that for the GAE modes. Thus the toroidal GAE mode, which is a mixture
of the cylindrical GAE mode and a sideband KAW mode, has a greatef damping rate. On
the other hand, the KAW sideband should contribute little to the alpha particle destabi-
lization since it is localized near the edge of the plasma where few alpha particles ;‘eside.
Therefore, as € increases, the electron Landau damping is enhanced and the total growth
rate decreases. For ¢ = 0.1, the mode is stabilized. However, as the value of ¢ is raised
further, the Landau damping begivns' to saturate and, eventually, to decrease; consequently,
the stabilization through toroidal coupling is weakened. The reason for the reduction in the
Landau damping is the shifting of the (1, —1) resonance toward the edge of the plasma as
¢ increases; correspondingly, the coupling betweén the GAE mode and the KAW sideband
ié reduced. For the CIT value of ¢ = 0.48, the GAE mode is still stabilized. Moreover, the
inclusion of the additional sideband (1,0) is expected to shift the (1, —1) resonance toward
the center of the plasma, as opposed to the (1, —2) mode. Thus we expect the stabilizing
effect to be further enhanced.

At this point, it is instructive to apply quantum mechanical perturbation theory to our
mode coupling problem. In previous work?® the toroidal Alfvén modes had been analytically
constructed by means of a superposition of cylindrical eigenmodes in the ideal MHD limit. In
the present theory, however, kinetic effects are included in our eigen-equation. Our problem is
similar to a quantum mechanical system in the following sense. Equation (30) can be viewed

as an eigenvalue equation, with the diagonal elements as the unperturbed operators and the
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off-diagonal elements as the perturbation. In the limit of ¢ — 0 or zero perturbation, the
eigenvalue of our system reduces to the unperturbed spectrum or the cylindrical spectrum.
Making the analogy with quantum mechanical perturbation theory, we can now reproduce
the scaling of the frequency shift and the sideband amplitude due to toroidicity. For small €,
the unperturbed spectrum is non-degenerate; consequently the amplitude of the perturbed
sideband is proportional to ¢ and the frequency shift éw has the scaling dw o 2. As ¢ is
increased, the spectrum becomes degenerate and we must invoke the method of dégenerate
perturbation theory. In this case, we have the linear scaling éw o €. These analytical scalings
agree well with our numerical results for € < 0.2.

We also considered GAE modes with n = 0. In particular, we found that the (0, —2)
mode can also stabilized by toroidicity. However, for n = 0 modes, two sidebands are no
longer adequate to describe the toroidal coupling. The reason®¥2¢ is that in the MHD limit,
the (0, —m) mode and the (0,m) mode have equal amplitude, and hence the destabilizing
alpha particle source is eliminated due to cancellation between the wxy,m and wxq,—n, terms.
Therefore, complete toroidal coupling for the (0, —m.) cylindrical GAE mode must include
at least the harmonics with poloidal mode number from m = —(m,+ 1) to m = m. + 1..
harmonics. This has been done in the work reported in Refs. 25 and 26, where all necessary

poloidal harmonics were included for the n = 0 GAE modes, but in the MHD limit.

4 Conclusion

In this work, we have studiedk the stability of the Global Alfvén Eigenmodes in the presence
of fusion alpha particles in an ignited tokamak plasma. In the cylindrical approximation,
we found that alpha particle destabilization of GAE modes is significantly enhanced when
the alpha particles are modeled with a slowing-down distribution function rather than with
a Maxwellian. On the other hand, we found that the electron damping due to the magnetic

curvature drift contribution is stabilizing and can, in fact, be comparable to the magnitude
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of the destabilizing alpha particle term. In particular, for CIT parameters, the GAE modes
is stabilized by this electron damping. In toroidal geometry, the intrinsic toroidicity induces
poloidal mode couping, which enhances the parallel electron damping from the sideband
shear-Alfvén Landau resonance. As a result, we found that toroidicity can stabilize the
GAE modes for CIT parameters. We conclude that the GAE modes will be stable in a
typical ignited tokamak plasma.

The results of this work have several important implications. With regard to Alfvén wave
heating, the sideband resonance may lead to substantial edge heating, which is very unfa-
vorable. In the case of tokamak divertor operation, the toroidal mode coupling is expected
to be even stronger and more complex since the magnetic surfaces are now elongated and a
magnetic flux separatrix exists at the edge of the plasma. Much work is needed in this area.
Another important aspect of toroidal coupling is the so-called discrete Toroidicity-Induced
Shear Alfvén Eigenmode (TAE),?"?® whose frequency lies within toroidicity-induced gaps in
the Alfvén continuum. This new toroidal global mode has a parallel wave length that is typ-
ically longer than that of the cylindrical GAE mode and therefore is more easily destabilized
by alpha particles. We have shown that TAE modes can in fact be strongly destabilized
by alpha: particles for a typical ignited tokamak.?*=26 The complete results will be reported
elsewhere.?? Thus, even though the present work indicates that the GAE modes are likely
not to be a threat in ignited tokamak plasmas, these toroidicity-induced TAE modes could

be quite problematic.
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Figure Captions

1

Cylindrical shear-Alfvén continua for mode numbers n =1 and m = —1, -2, and -3.

Numerical eigenfunctions for the cylindrical Global Alfvén Eigenmodes, with CIT pa-
rameters: (a) mode (1,—2); (b) mode (0, -2).

Growth rate v for the cylindrical GAE modes as a function of the alpha particle
density gradient scale length L, for a Maxwellian distribution and for a slowing-down

distribution, with CIT parameters: (a) mode (1, —2); (b) mode (0, —2).

Ratio of (Rm+1)stow/(Rmt1)Max and the ratio of (Ppi1/Rmi1)sow as functions of the

phase w/kjm+1 Vag-

Growth rate « for the cylindrical GAE mode (0, —2), both with the electron curvature
drift term (solid curve) and also without this term (dashed curve), as a function of L,

with a slowing-down alpha particle distribution, for CIT parameters.

Numerical eigenfunctions for the toroidal GAE mode (1, —2) and the sidebands (1, —1)

and (1, —3), with CIT parameters, for the inverse aspect ratio € = 0.1.

Numerical eigenfunctions for the sideband (1,—1) of the toroidal GAE mode (1, —2),
with CIT parameters, for the inverse aspect ratio values of ¢ = 0.05,0.20,0.30, and

0.48.

Electron Landau damping rate 4z and the total growth rate 4 (with alpha particles),
as functions of the inverse aspect ratio ¢ for the GAE (1, —2) mode coupled to the

sidebands (1,—1) and (1, —3).
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