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Abstract

The toroidicity-induced shear Alfvén eigenmode is found to be destabilized by fusion’

alpha particles in an ignited tokamak plasma.



In a reacting deuterium-tritium tokamak plasma, fusion-product alpha particles are born
with an energy of 3.52 MeV and a density that is sharply peaked at the center of the plasma,
due to the sensitive dependence of the fusion reaction rate on the plasma temperature.
Thus, drift-type instabilities can occur, with the alpha particle density inhomogeneity as
the free energy source. In particular, shear Alfvén waves can resonantly interact with the
transiting alpha particles via inverse Landau damping to tap this free energy source and
become unstable.

The destabilization of shear Alfvén waves was first studied qualitatively by Mikhailovskii,*
using a local dispersion relation.” By including finite Larmor radius effects to discretize the
continuum, Rosenbluth and Rutherford? found that the Kinetic Alfvén Wave can be destabi-
lized by alpha particles. Tsang et al.® studied the details of the same probleﬁ numerically and
reached a similar conclusion. Recently, Li et al? found that the Global Alfvén Eigenmode
(GAE) in cylindrical geometry can also be destabilized in a similar manner. More recently,
however, it has been found that GAE modes can be readily stabilized when toroidicity effects
are taken into account.®=7 |

In this letter, we study the possibility of alpha particle destabilization of another typé of
low-mode-number global Alfvén wave called the Toroidicity-Induéed Shear Alfvén Eigenmode
(TAE),® whose frequency lies within gaps in the Alfvén frequency continuum. Cheng et al.%°
were the first to show the existence of both low-mode-number and high-mode-number TAE
modes, in the ideal MHD limjt, without alpha particles. Here we show that low-mode-
number TAE modes can be strongly excited by fusion alpha particles in a burning tokamak
plasma. This result is relevant to plasma confinement in proposed ignition experiments.

Simply described, the TAE mode is a type of shear Alfvén wave that.can exist only in
toroidal geometry. For example, if the cylindrical geometry Alfvén continua corresponding

to modes with toroidal and poloidal mode numbers (n,m) and (n,m + 1) intersect at r =




o, where ¢(ro) = (m + 1/2)/n, then toroidicity resolves this degeneracy with a “gap” in
the coupled toroidal continuum. Frequencies within this gap are forbidden (analogous to
Brillouin zones for the motion of electrons in a periodic lattice potential), except for a
certain discrete frequency, which constitutes the TAE mode. In as much as this is a global
mode (i.e., low mode number and radially non-localized), its stability can be a significant
issue. Here, we show that the presence of highly energetic alpha particles, as in an ignited
tokamak plasma, can strongly destabilize the TAE mode.

The theory to describe this physics becomes analytically tractable by adopting a low
beta, large aspect ratio, circular flux surface tokamak equilibrium. Following Rosenbluth
and Rutherford,? we describe the dynamics of the shear Alfvén wave with alpha particles by
the linearized drift kinetic equation, using ¢; the electrostatic potential and Ay the parallel
vector potential to represent the perturbed electromagnetic fields (this implies that By = 0
where Bj is the parallel magnetic field). We integrate the linearized drift kinetic equation
over all velocities, multiply it by the charge e,;, and sum over all species (indexed by “s”),

thus obtaining a moment equa,tion" for the perturbed current density:
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where the subscript “1” denotes perturbed quantities, b is the unit vector along the mag-
netic field, jj is the plasma parallel current, e, is the particle charge, fi, is the perturbed
distribution function, B is the magnetic field strength, Va = B/(4mn;m;)*/? is the Alfvén
speed, and vg, = me(pB + vﬁ) /(e.B*)b x VB is the magnetic curvature drift velocity (in
the low beta limit) with g4 = v2/2B the magnetic moment. The alpha particle contribu-
tion to the polarization current has been neglected, owing to the ofderings ne < n; and
Bs <& B;. The contribution of the alpha particles to the quasi-neutrality condition can also
be neglected due to the same ordering. However, the perturbed alpha current caused by

the drift velocity v4, due to the gradient and curvature of the equilibrium magnetic field



is retained, because of the very high energy of the alpha particles. The perturbed electron
drift current will also be retained, whereas that of the plasma ions may be neglected because
v; € V4 where v; = (2T;/ m;)l/ 2 is the ion thermal speed. Finally, we have also neglected
the finite ion gyro-radius term contribution in the polarization current since the TAE mode
width is much larger than the ion gyro-radius. With the help of Ampére’s law and using the

quasi-neutrality condition to eliminate Aj; in term of ¢;, one can rewrite Eq. (1) as follows:
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For simplicity, we assume concentric magnetic flux surfaces. Expanding the toroidicity
effect to first order in the inverse aspect ratio.a/R < 1 and retaining only the two dominant
poloidal modes for the TAE mode, we then arrive at the following two coupled second-order

eigenmode equations for the poloidal electrical field E o ¢, /r:
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where € = 3a/2R, the prime denotes radial differentiation, and the sﬁbscripts m and m + 1
are the two dominant poloidal mode number. Also, ky, = (n —m/q) /R is the parallel

wavenumber, with R the major radius and ¢ the safety factor. The quantities A, and B,



represent the kinetic response arising from the perturbed curvature drift of species s with

poloidal mode number m and are given by

As,'m = .Qs,m—l + Qs,m+1 (5)
Bs,m = Qs,m—l - Qs,m+1 . (6)
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where f, is the beta value of species s, wxsn is the diamagnetic drift frequenéy, and v? =
2T,/ m, is the thermal speed. The forms for A, and B,,, can be derived by solving the
linearized drift kinetic equation.? These two‘quanti.ties originate from the drift current due
to the perturbed electrical field with toroidal and poloidal mode number (n,m), when only
the resonant part of the response is retained. The two contribufions to A;m and B,
from the sideband resonances w = kjjn+19), result from the poloidal variation of the particle
drift velocity. Because of this, the resonant part of the perturbed particle distribution has
poloidal variation exp[i(m =% 1)6] in response to the perturbed field E,, exp(im#), although
the perturbed drift current has the poloidal variation exp(im#), at least to lowest order in
the inverse aspect ratio. Finally we remark that the mode coupling due to this drift current
is small by the ordering £, < 1. -

First, let us consider the MHD limit of Egs. (3) and (4), dropping the kinetic terms
A, and B, temporarily. In cylindrical geometry (¢ = 0), the two poloidal modes E,, and
Em41 are decoupled. Then Eqs. (3) and (4) are singular at wf = kf v} and wf = K, 03,
respectively, which give the two cylindrical shear Alfvén continua. In tokamak geometry,

Eqgs. (3) and (4) are coupled due to the finite toroidicity, and the poloidal mode numbers are
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no longer good “quantum” numbers. The toroidal shear Alfvén continuum can be obtained
by setting the determinant of the coefficients of the second-order derivative terms equal to

zero. This yields the following two branches of the toroidal continuum:
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where £ = r/a is the normalized radius. In particular, at the crossing point of the two
cylindrical continua where kjjn, = —kjjm+1, or ¢ = (2m +1)/2n, a gap appears whose width
is given by

Fjmval) (11)

Aw = Wy —w. = 2(]:13 ( g=(2m+1)/2n ’

Figure 1 shows the toroidal continuum (solid curves) given by Eq. (10) for n = —1,m = -2,
and ¢ = 0.375 with a constant density profile and ¢(r) = 1+ (r/a)?. The cylindrical continua
(dashed curves) are also shown in Fig. 1. The corresponding TAE mode structure is shown
Fimoval)
eigenmode was obtained by numerically sblving Egs. (3) and (4) with the shooting method.

in Fig. 2; its eigenfrequency w = 0.93( ; lies inside the continuum gap. The

g=1.
We observe that the mode is peaked at the location of the gap, i.e., near the crossover point
of the cylindrical continua.

Nekt we consider the kinetic effects of alpha particles and electrons on the TAE modes.
The resonant contributions of these fast particles can be included perturbatively by assuming
that the imaginary part of the frequency is small compared to the real part. To begin with,
we expand the solution of Egs. (3) and (4) as E,, = Egm + 6E,, and w = wy + bw, where
Eom and wo are the MHD eigenfunction and eigenfrequency, respectively. We expand the
coupled equations to first order in B, (where it is assumed that 8, < €). Exploiting the self-
adjointness of the coupled equations, we obtain the change in frequency due to the kinetic

terms as follows:
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where T4 is the Alfvén velocity normalized to its value at the center of the plasma. Using
Eq. (12), we calculate the growth rate for the TAE mode of Fig. 2. Figure 3 shows the growth
rate (normalized to the real frequency) as a function of the alpha particle density scale length
L,, for the typical ignition tokamak parameters of a/R = 1/4, pso/a = 0.05, vy, = 204,
Be(0) = 6%, Ba(0) = 3%, and T, = 1 MeV and for the profiles B, = B,(0) exp(—r?/L2%) and
Be = Be(0)(1 —r*/a?)®. A maximum growth rate of (7/wp)max = 2.5 x 1072 is obtained at
Lo = 0.5a. Over the range of 0.20a < L, < 0.87a, the TAE mode is un.sta,ble. -

In the limit of large aspect ratio, the TAE mode is highly peaked around the ¢ = (2m +
1)/2n surface. Then .a simple analytical form for the growth rate of the TAE mode can be
obtained by evaluating A, at this surface:
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where the function F is defined as F(z) = z(1 + 222 + 2z4)e~%". All the radially dependent
quantities are evaluated at the ¢ = (2m + 1)/2n surface, where the TAE mode is peaked.
The first term in the square bracket on the right-hand side of Eq. (13) comes from the alpha
particles and is destabilizing if wxo/wo > 1, whereas the second term is due to electron
Landau damping and is always stabilizing since |wx/wo| < 1. Thus we have two conditions
for the TAE modes to be unstable. The first condition requires wao/wo > 1, i.e., that the
alpha density scale length is small enough. The second condition requires that the alpha

particle destabilization overcomes the electron damping effect. Balancing these two terms



gives a critical alpha-particle beta value for the TAE mode to be unstable:
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Using the parameters of Fig. 3, we obtain By it (0) = 0.3% from Eq. (14). We also calculate
the growth rate, using Eq. (13), and obtain (v/wo)max = 2.5 X 1072 at L, = 0.59a, which
agrees with the numerical results in Fig. 3 very well.

We conclude that the low-n Toroidicity-Induced Shear Alfvén Eigenmode (TAE) can be
destabilized by fusion alpha particles in an iénited tokamak plasma. The same result, ob-
tained here with a model equilibria, has been confirmed in a two-dimensional, finite aspect
ratio, finite beta, toroidal equilibrium.” Regarding their possible detrimental effects on the
plasma confinement; nonlinear investigation of TAE modes is required. A preliminary anal-
ysis of TAE nonlinear saturation has been recently carried out by Breizman and Berk.!®

Experimental studies are also needed .
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Figure Captions

1. Toroidal shear Alfvén continuous spectrum with gap, for safety factor profile ¢ =
1+ (r/a)® and a constant density profile; the cylindrical spectra (dashed curves) for

m = ~1 and m = —2, with n = —1, cross at the flux surface where ¢ = 1.5.

2. Radial profiles of the dominant poloidal harmonics for the n = —1 TAE mode, for the

same equilibrium as in Fig. 1.

3. Growth rate (normalized to the real frequency w,) for the n = —1 TAE mode as a

function of the alpha-particle density gradient scale length.
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