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Abstract

Electron diffusion in tokamak geometry is calculated including both the Coulomb
collisional pitch angle scattering and the electromagnetic drift wave fluctuation spec-
trum. In the weak fluctuation limit the neoclassical banana-plateau diffusion coefficient
is recovered. At higher fluctuation levels typical of the mixing length amplitude the

anomalous transport formulas of drift wave turbulence are recovered.




I. Introduction

The drift motions of electrons in the low frequency electromagnetic drift wave fluctuations’2

that are ubiquitous in tokamaks are probably the reason for the measured enhancement
of the electron thermal conductivity and particle diffusion rates over the neoclassical rates.
The nature of the anomalous transport in the drift waves is a collisionless stochastic diffusion
which occurs in the nonlinear particle guiding-center equations of motion.?* The stochastic
drift motion has been studied earlier in both the tokamak and simple, local geometries®®" in
the collisionless approximation. The question naturally arises, however, as to the role of the
finite time between collisions which limits the Hamiltonian description for the guiding-center
motion.

Earlier studies of the Hamiltonian guiding-center motion for the electrons show the onset
of diffusion in the presence of two drift waves. The two drift wave study of orbital stochastic-
ity for the sheared slab by Robertson et al.® models the description of the passing electrons.
The two drift wave study of guiding-center motion for k| = 0 modes®’” models the description
of trapped electrons. In these studies the details of the KAM surfaces and the overlapping
resoﬁance condition, that generalize the classical Chirikov overlap condition® for motion in
longitudinal waves, are developed. Subsequently, Parail and Yushirnamov‘1 have shown that
in the case of a single electromagnetic drift wave where the scalar potential ® and parallel
vector potential A have different drift surfaces b.V® x VA # 0, the trapped particle
motion of an electron in a single wave becomes stochastic due to the competition from the
E x B drift and the v)(¢)6B drift motion.

All of these physical processes were incorporated in a recent joint study by Horton and

Choi with Yushmanov and Parail in a collisionless, toroidal calculation.® In that work a

low order, isotropic k space with a power law spectrum spanning the space scales from



Ps = Cs/wei t0 1/kmax < 8, = c/w,e was used to represent the electromagnetic drift wave
fluctuations. The Horton et al.® study showed that in general the trapped electron diffusion
was considerably stronger than the passing electron diffusion. The results of the collisionless

stochastic diffusion in the model fluctuation spectrum where found to be given by
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where £1/2 is the fraction of trapped electrons, the ¢; contribution arises from the smaller
scale ¢/w,. part of the fluctuation spectrum, and the ¢, contribution from the larger scale
Cs/wei part of the fluctuation spectrum. The relative strength c;/c; depends principally on
the shape of the fluctuation spectrum, as well as other detailed considerations. For a typical
spectral index and mixing length amplitude level it was found that ¢; <1 and ¢, <2 — 3.
In the actual tokamak experiment, however, the Coulomb 90° scattering rate v, with ions
and impurities changes trapped electrons into passing electrons at the rate veg = v./e. Even
at the highest temperatures and lowest densities the number of bounce periods for a single
electron is probably limited to wy /veg < 10%. Thus, it‘; becomes important to understand the
effect of the finite pitch angle scattering rate v, on the anomalous diffusion of the electrons.

In the present work we re-investigate this problem by expanding the model in Ref. 3 to
allow for the finite time between collisions. Introducing the Coulomb collisional scattering
of the electrons through elastic pitch angle scattering in guiding-center motion allows the
model to take into account the finite lifetime of the trapped electron. It also allows the
model to recover the neo-classical diffusion® of the electrons in the limit of low fluctuation
amplitudes.

The previous Hamiltonian studies suffer from the limitation that to establish a well-
defined stochastic diffusion coeflicient, it was typically required to follow the electron orbits
for the order of 10 — 10® bounce periods, greater than the lifetime 1/veg of a trapped orbit.

In this work we follow the electrons in their parallel motion along the magnetic field




assuming the exact conservation of the magnetic moment. The electrons are given frequent,
small pitch angle scatterings in velocity space which then allow those particles near the
trapped-passing separatrix to scatter out of the trapping region of velocity space at the rate
Vet = Ve/€ With € = r/R measuring the depth of the magnetic well. At sufficiently low fluc-
tuation a,nllplitudes we recover the neoclassical diffusion D, determined by &'/ 2vet(vD [wee )?
for the trapped particle fraction. Here vp is the electron VB-curvature drift velocity and
vp /wee the radial banana excursion distance of the trapped particle.

For small €, where the collisionless, parallel motion can be given by the elliptic function,
the observed diffusion reproduces the Hinton-Hazeltine banana-plateau formula.®

The calculations for the positive, definite microscopic diffusion coefficient

determine the diffusion rate of each energy E component of the electron spectrum.

The work is organized as follows: In Sec. II the guiding-center equlations of motion, the
collisionless Hamiltonian and the pitch angle scattering operator are described. In Sec. III
the results of the integration of the guiding-center motion and the parametric dependence
of the anomalous and neoclassical diffusion rates are presented. In Sec. IV the results are

summarized in conclusion.

II. Electron Guiding-Center Dynamics

The motion of an electron in fluctuations with frequency components w € w. = eB/m.c

and wavelengths ki p. < 1 where p. = v./w,, is described by the guiding-center equations

of motion
dx B ccbxVd cmn /1
% = ’U“-E-i- _B +qB2 ({)'UJ_+'U”> bXVB (3)
_d’U” = _#b .VB + 4 E” (4)
dt m



where p = v2 /2B is a constant of the motion. In the presence of electromagnetic drift wave

fluctuations

_vo P94 (5)
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where @ is the scalar potential and A the parallel component of the vector potential, the
unit vector b following the magnetic field line has the ambient or mean component by and
the fluctuating component éB/By. In the limit of small § B, /By < 1 the unit vector reduces
to

~ ~ 6B

b=b0+—B;—. (7)

Neglecting the finite shift of toroidal magnetic surfaces the mean field is
B = (B,he + Bs(r)8) /(1 + £ cosb) (8) -

wheree =r/R.

We measure the helical pitch due to the toroidal current with

T‘B¢
and compute from the ambient field that
bo = ¢+°8 B = ByB(r,0)

q
B(r,0) = (14+ecos)™. (10)

With € = 1v? and A = pBy/e we also have

mee(2 — A\B) /- o .

vp = " BE (0cos€+rsm0) (11)
y = o(2€)Y%1-AB)Y? (12)
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where 0 = £1.
For drift modes with kj ~ 1/¢R and w ~ ki(cT'/eBa) the parallel acceleration from the
mirror force greatly exceeds that of ¢Ej;/m from the fluctuation. In the approximation where

E) is neglected the system becomes

) 1/2 _

§ = ;—|}|2=0‘(2;;2 (1 - B2 (13)
. XeB?sin §

U= TR (14)

and in the local cross-field coordinates z = r(t) — rq, y = rof

i = -5 (w000 (15)
i = 92 (59,00 (0)1) - (16)

The system (13)-(16) is the 13-D Hamiltonian dynamics introduced in Ref. 3 for calculating

the stochastic electron diffusion. The effective Hamiltonian is
- _c v||(t)
H=H + HD - E (P(wayat) - -_C— A(CE, yst) + vpr cos (g(t) + y/'f‘o) . (17)
The effect of magnetic shear is included in A by writing
A= §Asm + A(z,y,t)

where A, = B,/z = (By/qR)(d1n ¢/dIn 7).

For the fluctuation spectrum we adopt the same model used in Ref. 3 and do not repeat
here the detailed argument given for the spectrum. The electrostatic potential is represented
by an isotropic truncated power with k, = (nk;,mk;), (n,m = 1,...,N) and ¢®y/B =

(62whe)d1/|kL|™¢. The resulting model for the dimensionless fluctuations is

é(z,y,t) = ¢lzmsm kzx + ay) cos (ky(y — ut) + Br)

and the Hamiltonian is




R(z,y,t) = @(z,y,t) +10(t)A(z,y,1) (18)

where u is the phase velocity mg and m is spectral indices, and {ax, Ak} are random phases.
The parameter ¢; is the dimensionless amplitude and the parameter v measures the particle

coupling to the parallel vector potential with

5 Fioy _ Bow®)

¥0 o Bou (19)

The details of the calculations and values of u,~, ¢;,m4 are given in Ref. 3.
In the present study we use the collisionless Ohm’s law® to relate ¢y and Ax and as the

result we have

h(z,y,t) = é Zk: k—i‘g [1 + 173-(122} sin(kyz + o) cos (ky(y — ut) + Bx) .

In Eq. (18) and the following we use the dimensionless space time variables given by

Wpe

wpeA
T—2 —_—y =Yy Wt — £
c c

where wp = v.6'/?/qR. The root-mean-square level @ of the fluctuation spectrum is given

by
1 . 1/2
F=5h [zkj (k-zm)} : (20)
The E x B nonlinear circulation frequency §x is given by
cki®x _ wieké

= = 2
Qk .B km‘f’ * ( 1)

The ratio of the nonlinear circulation frequency (x at the scale wavenumber k is

S _ 4 (22)

Whe B kme=2
We take m, = 2 as the reference spectrum in which Q is constant and equal to wy.¢;.

The parameter Qy /w;. determines the stochasticity due to the w;. and E x B overlapping

resonances. For Q) < wy. the motion is integrable in the model Hamiltonian (18).
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In the dimensionless variables the Hamiltonian motion in Egs. (15) and (16) reduces to

dz oh .

- = —a + vpsinf

dy Ok

o = -a—a;-i—vpcosﬂ-}-u-i-v,m (23)

which is written in the wave frame y — y — ut.
Here we relate the electromagnetic amplitude parameter ¢; to the electrostatic drift
wave parameter ¢yp. We define @y, as the dimensionless mixing length parameter!? in the

formula

ePx _ ¢émL _ 6 ML

T. . korn rn k (24)

with k = kyc/wpe, T = |[dln N/dr|™! and 6, = c/w,.. For relating ¢; to ¢y it is convenient

to introduce the MHD ballooning mode pressure limit stability parameter «,

_2¢°B.
== (25)

where the ballooning stability limit (for n; = 7. = 0) is @, < 0.8s!/? with s = dIn ¢/dIn r,
€, = o/ R. Using p,/6, = (m;B./2m.)"/* we find that

O a1/2

— = = 2een )1/ ML ‘ (26)

Whe
so that ¢y, ~ 1 implies ¢; > 1 provided a, > 4ee, which is typical.
For @, <1 then ¢; > 1 for ¢mL > 2(e€,)'/?. We consider the range 0 < ¢; < 5 as

relevant to the tokamak experiments. The dimensionless drift velocity in Eq. (23) is

" 22 : 1/2 ' ~
D =<q 5) ~a,1,/2. (27)

J,wbe €

(

The asymptotic banana diffusion rate is

D, = vaq’p?le,




and in units of 2wy, it is

b 2 qzﬂe En D)
Dy /85wre = vae N = W VikeQp (28)

where v, = Ver/whe = Ve qR /€3 v,
Coulomb interactions of the electrons with the ions and impurities gives the effective 90°
angular scattering rate

drn.Zet
Ve = ——m

il (29)

where Z = ¥; n;Z?/n. and In A is the Coulomb logarithm taking into account multiple
small scatterings. The scattering rate (29) is taken into account through a rotation of the
velocity vector v — v/ with cosy = v - v//v?. At each time step At the small, random angle

~ is taken from

7 = [veAt In(1 —n)]'/?

where 7 is randomly distributed on [0,1] and v,At < 1 is applied to the pitch angle variable

¢ = v)/v in such a way as to produce the diffusion

9f _ve 9
ot~ 2 o

u—ﬁ%. ' (30)

In terms of the 6, £ variables the parallel particle motion from Egs. (13) and (14) is

_wr(1-¢%) 8B

6 = wré (¢ = — 5B 09

where

wp = —
T = R
While 6, ¢ are convenient variables for the numerical integration of the parallel motion,
the theoretical analysis is often more convenient with the magnetic moment per unit of

energy ), that is, the invariant of the parallel motion in Eq. (31), )\Eé + Xef =0,

A= 1:—62 and E=0(1- AB)Y/? (33)
B(6)




where ¢ = %1 gives the branch of v. The distribution f, of N particles in the variables

z,y,0, A satisfies

0fs oh 0f, Oh df, 0f,

5 (z,9,6,\,1) + b;a—y—a—y‘E'FUwTﬁ'ge—
_ o, 1=AB) 8 gy/2] 9fe
=2t [\(1-AB) ]aA (34)

where the energy per unit mass e = E/m = %v2 is a parameter in the motion.

When the equilibrium drift motion dominates the E x B and v 6B drift motion VAp >
Vh the distribution functions from Eq. (34) reduce to the neoclassical distribution which is

approximately

vpo(2)%/*(cos § ~ cos b7)/2 8f  2vvph Of
W Oz wi, Oz

(35)

f = fO(eax) +

for trapped particles. The net radial flux of particles with given € is obtained from [ d6 [ dAB(1-
AB)2yp sin0f and given by
2

2 2 .
Dnc = 51/2 Vig:D J{II(V*e,E) - 61/2 (%) V*el\’ll(V*eas) [w:):{ ] ’ (36)

where Ki; is a dimensionless function of order one in the banana regime vx. < 1.

For the Lorentz collision operator, the function Ki; is given by Hinton-Hazeltine® as

-1 ‘
Ky = K9 [1 + avi{,z + bu*e] (37)

with 1{1(‘1’) = 1.04, a = 2.01 and b = 1.53 for e € 1. The aui{f correction is obtained from the
boundary layer particles with 6 >~ vA¢f/qR ~ v/(A€?) such that Ayj/v = A¢ = (v/wr)?
which is order of the magnetic well depth Avyy/v ~ €1/2 when vk, ~ 1.0. The formula (37)
(and the large € version in Eq. (6.125) of Ref. 9) is obtained by a least square fitting in the

range 1072 < va, < 10 of the numerical analysisA of the transitional regime in Hinton and

Rosenbluth.!® The analysis is restricted to small €.
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In Fig. 1 we show the results of our statistical simulation of the neoclassical problem
for a distribution of 64 particles with € = 1/4. The solid line gives the results from (36)-
(37) and the vertical lines the simulation values along with the standard deviation from the
fluctuations in D. The simulation is in good agreement with Eqgs. (36)—(37) for v, in the
range 1072 to 10. In addition we have tested the vp dependence of the measured neoclassical

diffusion and find good agreement with

D,.=0.1100%°  with  §<0.005

at v« = 0.0865 and € = 0.25.

IIT1. Anomalous Transport Properties

In this section we describe the parametric dependence of microscopic diffusion coeflicient
D..(p,) where

{pn} = {5‘53 m,U,Vp, Vk, &, Usaﬂe} )

and we discuss the statistical properties of the measured transport.

We find that the z-motion is well described as a diffusion process. For typical parameters
we show in Fig. 2 the time dependence of the variance of the z-motion for a string of 32
particles starting at ¢ = z¢ and kyy; = 27(¢ — 1)/N with ¢ = 1,2,... N. The variance

o) = = 3 ((t) —2(0)) (35)
i=1

in Fig. 2(a) shows a clean linear increase in time after a small number of bounce periods
except at the largest (@ = 7,9) values of the turbulent field where some oscillations in o(t)
appeé,r.

The running diffusion coefficient

N
Do) = B = 557 2 (=(t) - :(0) (39)




given in Fig. 2(b) shows a well-defined D, except at the largest values of @ = 7,9 where

the oscillations of D,,(t) about D,, produce the significant root-mean-square deviations

6D = [(Dm(t) - E,,I)ZJI/2 found in some of the following graphs showing D, & 6D,, against
a parameter. Here we use ( ) for the average over the distribution of particles and A for
the time average.

The variation of Dy with N is studied and found to decrease as 1/N'/2. Thus, we
are able to obtain reasonable accuracies of order 20%, 12%, and 8% with 32, 64, and 128
particles. In Fig. 3 we show the dependence of D,, with @ and €. On the scale of ¢
shown the increase of D,,(@) is linear almost immediately and continues until @ ~ 10 — 12
and then begins to oscillate with between 1 and 2 as found earlier in Ref. 3, 5, and 7.
In high amplitude regime the E x B circulation frequency )y is considerably greater than
the electron bounce frequency and it becomes time consuming to calculate D,, as noted in
earlier works on E x B stochastic transport. The amplitude beyond @ = 5, however, are
probably well above those expected in the tokamaks. Below this regime ) < wj. the linear
increase of D.,, = D,$ with @ is consistent with renormalized propagator theory of stochastic
transport. Also we note that the maximum of D,, in Fig. 3 is about 2 while the maximum
of D,, measured in Ref. 3, which considers only trapped particles, is about 3. In the present
case we included all passing and trapped particles, while in Ref. 3 the contribution from
the passing particles to the transport is neglected. They considered only trapped particles
and calculated the transport by multiplying the trapped particle fraction (~ €1/2) to the
observed D,,. Therefore, our results and theirs should differ in magnitude of transport by
factor of 1/ =~ 0.5 which is similar to the 2/3 ratio from the present calculations. The slight
enhancement over 0.5 can be ascribed to the fact that passing particles that are close to the
separatrix also contribute to the transport.

At fixed & the diffusion coefficient increases'? with increasing collisionality vs.. The

increment of D,, with v, is shown in Fig. 4. The straight line is the least square fit to the
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data as

Do (vae) = 1.26(1 + 0.325v4,) . (40)

In the high collisionality regime, the electrons are significantly scattered in pitch angle in each
bounce period. The collisions change the pitch angle and thus the Z(m, y, vy, t) drift surface
of the electrons producing an anomalous diffusion proportional to the collision frequency.
Althbugh some theory for D,, can be developed, we do not attempt it here. Detailed analysis
as well as a theory to understand D,, is presently under active study and will be reported
elsewhere.

In Fig. 5 we show the effect of shear on the anomalous transport. It shows rapid reduction
with increasing electron velocity due to shear. The role of shear velocity on the anomalous
transport is to impose the directionality of the particle flow in the phase space. Thug, the
system becomes less stochastic when shear velocities are present. In our case, shear velocities
are includéd in the form of v,z and the presence of finite v, induces a strong directional flow in
the phase space for large . This strong directional flow for large z takes the role of a barrier
for particles diffusing radially. Thus, they affect the transport significantly and reduce D,
very rapidly with increasing v,. This feature of the reduction of transport with increasing
shear is recently utilized successfully to fit a large confinement database by Kesner.??

To see the effect of collisions, we plotted the location of particles in (A, ) space. Ini-
tially, particles are positioned in constant A(= pBo/€) and equidistantly along §. When we
integrated the equations of motion without collisions, this string of particles remain on this
constant initial A string because ) is constant of motion of our equation of motion. When
collisions are introduced, the particles scatter and fill the entire accessible phase space within
a few 1/veg time. Figure 6(b) is a snapshot of the system of particles in (), ) space when
about 3/v.q is elapsed. We note that the particles are nearly uniformly spread over the full

accessible space. As shown in Fig. 6(c), which is a snapshot of the system when about 8/ves

is elapsed, the particles completely fill the space showing the effect of collisions.

13




IV. Conclusions

In the low collisionality or banana regime the electron transport is dominated by the stochas-
tic plateau from trapped electrons.

In the collisionless plateau there are two competing mechanisms as reported earlier® giving
X3 4+ X2, Using the shear dependence of the diffusion as shown in Fig. 5 Kesner'® gives a
model thermal diffusivity for the interior plasma that predicts well the energy confinement
time in a large tokamak database. The diffusivity formula is not large enough to explain the
edge plasma transport which is semi-collisional.

In the semi-collisional or collisional plateau regime there is an additional anomalous flux

contribution proportional to the collision frequency given by
X® ~ Cu, % ,
W
which may explain the large edge transport observed in tokamaks as analyzed by Yushmanov
and Parail.}2,

Well into the banana regime the principal loss mechanism is the stochastic diffusion
of the trapped particles. In the banana-plateau transitional region the losses arise from a
much larger region of pitch angles, since collisions can prevent a transiting electron from
completing its revolution around the magnetic axis. Only those electrons that can complete
several rotations around the magnetic axis can average out the effect of the radial VB-
curvature drift and the fluctuating drift velocity b x V.

In terms of the transitional particles and the boundary layer effects associated with
collisional crossing and stochastic layers along the separatrix between trapped and circulating
electrons more detailed theoretical and simulations studied may be required. The formulation
of the guiding-center Hamiltonian then becomes H(z,y,6,v),t) with 2% degrees of freedom.

Theoretically this can allow the process of Arnold diffusion along the resonant webbs in the

4d phase space, in principle, to increase the diffusion rate. In our view, the role of collisions
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is sufficiently strong as to prevent the formation or practical importance of these long-time
limit Hamiltonian structures. In contr&st, the stochasticity of the 1% D Hamiltonian is
clearly important for actual tokamak experiments once the fluctuation level becomes such
that 5, = |VA| > vp the V.B-curvature drift velocity. The stochasticity arises both from the
Aw of the fluctuation spectrum which resonates with the E x B circulation frequency and
from the wj, frequency of the parallel motion resonating with smaller scale E x B and ki’l"v“
circulation frequencies. This work shows that the actual motion of electrons in tokamak

traps to be complex trajectories with structure on at least three space-time scales.
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Figure Captions

1. Comparison of neoclassical diffusion coefficient D, with the numerical simulation for
e = 0.25 and B, = .01. Solid curve is the Hinton-Hazeltine banana-plateau transitional

formula and the vertical lines are the mean and rms-deviation from the simulation.

2. Time dependence of the z-variance and the running diffusion coefficient for ¢ =
0,1,3,5,7,9. (a) Variance o, = (N)~1%; (z:(t) — 2:(0))%; (b) Running diffusion coef-
ficient D = o,(t)/(2t).

3. Dependence of D on the amplitude @ (root-mean-square) at fixed collisionality va. =

0.186.
4. Dependence of D on collisionality vx,. at fixed § = 5.0.
5. Dependence of D on shear v, at fixed & = 5.0.

6. Collisional evolution of a string of trapped electrons placed at ) = 1.0 in tokamak with
e = 0.25 and v = 0.186. Distribution at (a) initial string, (b) £ = 3/veg and (c) at

t = 8/veg in A, 8 space.
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