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A local, hydrodynamic model of the short wavelength electrostatic drift waves driven unstable
by the electron temperature gradient in toroidal geometry is used to find the saturation level and
the mode coupling to the longer wavelength collisionless skin depth ¢/wpe magnetic turbulence. For
plasma with . > 2 m./m; the k-spectrum is peaked in the c/wpe wavelength region at the mixing
length amplitude and the magnetic turbulence is sufficient to produce the empirical neo-Alcator

and Goldston type of confinement formulas.
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The increase of the electron confinement time with plasma density, major and minor
radius described by a large quantity of tokamak data is given by the empirical confinement
laws of either the neo-Alcator! or the Goldston? laws. Attempts to explain the observed
confinement have largely centered on the dissipative trapped electron mode, k; p; < 1 scale
turbulence. Here p; and p. are the ion and electron gyroradius, respectively. Ohkawa® first
observed with a simple argument that electromagnetic fluctuations with characteristic scale
of the collisionless skin depth § = ¢/w,. may be the relevant step size in an electron random
walk at the rate associated with transit frequency of the electrons in the toroidal trap: the
resulting diffusivity X, ~ wc—ge 2 leads to a reasonable first approximation for the magnitude
of the empirical scaling. Furthermore, electron transport scaling? studies in reversed ﬁeld
pinches (RFP’s) show reasonable agreement with T, versus current scaling provided kj ~
1/Ly ~ By/rB, ~ 1/a for the RFP. The amplitude of the magnetic fluctuations are given
by 6B,/B ~ k) § where § = ¢/wpe with kjj = 1/¢R for tokamaks and k) ~ 1/a for the RFP’s.

In the present Letter we develop for the tokamak system the suggestion of Guzdar et al.®
that the nonlinear development of short wavelength drift wave instabilities driven by the
electron temperature gradient 7, may be the source of the ¢/wy, turbulence. The instability
is a short wavelength version of the toroidal ion temperature gradient instability® except
that the roles of the ions and electrons are reversed so that the source of fluctuation energy
is at ki pe Z 0.5. The linear toroidal kinetic stability theory giving the threshold value of
ne and the scaling of the growth rate and wavenumbers for both the n. ~ 1 and the large

'ne vegimes are given by Horton et al.” In the limit of strong shear and weak toroidicity the
instability reduces to the sheared slab form given by Lee et al.®

Here we show that the toroidal 7, instability evolves due to the influence of the E x B
convective nonlinearity and the 6B - V magnetic field line nonlinearity to a saturated state

of electromagnetic drift wave turbulence. The amplitude of the fluctuations in the saturated



state is given by the mixing length formulas obtained by balancing the mode coupling terms
with the dominant linear terms driving the instability. We find that the three-dimensional
form of the equations is important to obtain the correct level of the magnetic fluctuations.
Although the magnetic fluctuations are small in the short wavelength region of the fluctua-
tion spectrum near the maximum linear growth rate,”® and thus the direct E x B transport
is smaller by (m./m;)*/? than the p, scale drift wave transport, we find that as the nonlinear
mode coupling terminates the exponential growth phase of the instability, there is a transfer
of fluctuation energy to the wavelengths of order ¢/wy. as shown in Figs. 1 and 2. After the
break of the exponential growth phase during which the small scale damping is unimportant,?
there is a slow transfer of energy along the spectrum to shorter (p;!) wavelengths. The spec-
tral features that determine the anomalous transport, however, are established by the longer
wavelength, components produced during the breaking of the exponential growth phase.

The equations describing the toroidal 7, instability used in this Letter are based on the
hydrodynamic electron ‘equations assuming an adiabatic ion density response (kip; > 1),
quasineutrality i. = 1; = —no(e®/T;), and the conservation of particles, parallel electron
momentum and electron thermal energy in the region on the outside of the torus. The equa-
tions give a self-consistent field model for predicting the type of electromagnetic fluctuation
spectrum of the type assumed in the earlier studies.®~® The derivation of the equations and
compdrison of the linear hydrodynamic modes with linear Vlasov theory is given in Horton
et al.”

In the dimensionless variables of (z,y) — pei(2,y), 2 — 7Tz and ¢ — rpt/ve with

Ve; = (Ti/mMe)M?, pei = Vei/wee and the scaling of the amplitude of the fields by

T. ve €@ 2 evs
Te, Vet ’ Te ’ ﬂiCT:,;

Pei /5
A”) = E (Te?v> ¢>A)

which makes the low-f dependence of §B, = ik, A explicit. The nonlinear equations

for the coupling of the short wavelength electrostatic fluctuations to the longer wavelength



electromagnetic fluctuations are as follows:
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where I' = 5/3 in fluid theory. In Egs. (1)-(3) we include electron crossfield diffusion,
resistivity and electron thermal conductivity to absorb energy transformed to |k| = ki pe; >
1 outside the range of validity of the fluid equations. Using the classical transport coefficients,
the dimensionless dissipation coefficients are d; = (VeiTn/vei) (Te/Ti), 1 = 0.51 (VesTn/Vei)s
X1 = 4.67 (veirn/ves) (Te/T;) and Xj| = 3.16 (vei/vei ) (To/T3).

Including the energy conserving nonlinear FLR. terms [T, V2¢] 4 [0, T, 058 + [0, Te, 0, 9]
in Eq. (1) givés a more complete nonlinear model of the turbulence with é slightly reduced
transport rate. In Eq. (3) the parallel thermal flux requires the use of the nonlinear derivative
(9” =0, — (Bi/2)[A, Jand X > 1> X,.

In deriving Eqgs. (1)-(3) it is assumed that the dominant nonlinearities are the E x B
convective derivative and the B - V magnetic gradient due to the perturbations in the mag-
netic field lines. In writing these two nonlinearities we use the Poisson bracket operator [f, g|

defined by
B-Vf=-2-VAxVf=-[Afl , v8-Vg=%-V¢x Vg=][d,g] (4)
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with the property mw = —Bm@ = Bx@ where the bar denotes the y,z average.
We define the volume average by (F) = V7! [ d®z F(a,y,2,t) = L;! [ dz F(z,t) and note
the properties ([f, g]) = (flg,2]) = (g[h, f]).

The crossfield correlation functions,®® Q.,(z) and Q.m (z) giving the transport of thermal

energy are defined by

300 ~ |cTe pe; ne dTe
Q=3 g0 [ e ]
3B B; O0A OA [cT. pei ne dT, '
Qem(®) = 3 Tx“e(z Te By V”T) By |eB r, n. do (5)

with Qem(z) analyzed by Hong & Horton in the quasilinear limit. The three fields energy

components are

Bo= (84 (V8F) , Bam 3 (VAP + GVA?) B =3 (@F) . O

The total energy Eror. = Eg + ngi"_ﬂ + a +f)7(11“—1) grows and decays according to

dExs, 2 4 XL
CZ—: =Te <Qes> - < V.L¢) > - <(v > (1 +7_)( — 1) < VJ.T) >

_ X
(1 +7)(

T—1) (v Te)2> : (7)

Since enstrophy is not conserved by the syst.em there is a power transfer in the fluctuation
spectrum to both high k-modes and low k-modes. |

Now we give the magnitudes of the nonlinear terms and the mixing length level of sat-
uration for the rms amplitudes of the fields. In the electrostatic limit B, S 2m./m; the
equations are the same structure as the toroidal 7; equations where the mixing length level
of saturation was shown analytically® and numerically® and the resulting Q. is greater than
‘the neoclassical plateau value but small compared with the p, scale X,.

In the nonlinear regime there are two mixing rates: (1) the E x B mixing frequency

g determined by the time for convection around the vortex given by ®x(z,y) and (2) the
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spatial rate of mixing kl’lw determined by the distance along Bg required to go around the
magnetic vortex given by Ajx(z,y). The E x B mixing rate and kﬁz magnetic mixing rate

are given by

ckyk e® "
O = 5 Y Py = (kmrnTek> Wike and k”j" =

kol
B

Ax . 8)

The mixing produces!®!! stochastic E x B transport at the saturation level Qg ~ |w| and
which the stochastic magnetic transport when kﬁ‘f ~ kﬁ. For MHD-like fluctuations with
E)| ~ 0 the mixing rates are related by kﬁ“’ =~ kj(Qp/w). The end of the linear regime and
“wave breaking” occurs at the saturation levels |w| ~ Qg and Af ~ kITIw yielding the mixing

length fluctuation amplitudes

w 6B, kﬁ

e 1 jw|l . ~
Wk ! B Tk

TB kmrn (9)

Test electron orbits in tokamaks with such levels of electromagnetic drift wave fluctuations
shows global stochasticity with transport well described by the diffusion approximation.t!
For ne, €, well past their threshold values®"® the linear modes grow until the mixing rates

are sufficiently rapid to essentially eliminate the electron pressure gradient over the width

7/ kg of the fluctuation. Thus we estimate for the saturated state that
vg - V(T.+T.)~0 and B-V(T.+7T.)~0, (10)

in the strongly turbulent state. Both conditions in Eq. (10) determine the same mixing

length level of the temperature fluctuation

a,
dz

@ Tk

. (11
™ (11)

eliminating the driving mechanism. Using Qg ~ |wi| ~ v and the rate of magnetic mixing
when kITE o~ kﬁ, then the ratios of the nonlinear fluctuations are consistent with the linear

fluctuations” equations of Egs. (1)-(3). For example, using the dominant terms in Eq. (3)



and Eq. (11) yields

e®r w_:zji_% 1 .1 2\ (12)
Te - WkTe Te B Wike k:z:'rn B Ikm, R‘T’Te

consistent with Qg ~ 4. Using level (12) for ®; and Eq. (2) gives for Ay

ck”

Wike

1 chﬁ I+7,

eA)x o 1 — wikpe/w
korn — Wike kyry, [(ne/Zen)1/2 + czkﬁ_/wge]

(13)

Lot
Ze
which is consistent with kﬁ“q = kj.

From numerous simulations on the CRAY 2 and the Fujitsu VP200, the z-y contour plots
of ¢(x,t), A(x,t) and T.(x,t) in the turbulent state are shown in Fig. 1 for the parameter
values €, = 0.1, 7. = 1.0, . = 0.0, 7 = 1 and d. = n = X; = 0.1 and X; = 10. The
contours (Fig. 1(b)) of potential fluctuation, which are the streamline of E x B drift motion,
show that the E x B flows are chaotic. The magnetic fluctuations, which are initially small
and random, saturate into large scale (2 ¢/wy.) magnetic vortex structures formed in the
steady state (Fig. 1(c)). The linear growth rate has a maximum at ks pe; ~ k.7 = 0 and
kypei = 0.8. During saturation the spectrum evolves into the isotropic state peaked at
Kz pei ~ ky pei ~ (B:/2)"* 2 0.05 to 0.1.

In Fig. 2 the wavenumber spectrum of Ery. as a function of &, summed over k,, &k, in
panel (a) and as a function of k, summed over kg, k,, is shown for two time values in the
steady state. The high k) contributions is larger than that given for the 2D n;-mode theory
(k7®) in Refs. 6,9 due to the stronger 3D effects in these 5, simulations. The isotropic, long
wavelength fluctuation spectrum shown in Fig. 2 has direct implications for the X, formulas
due to the stochastic diffusion of electrons over the correlation scale ¢/wpe. Turbulent energy
on space scales larger than that shown in Fig. 1 falls into the k; p; < 1 regime of n;-modes
where nonadiabatic ion behavior applies, which mociiﬁes Eq. (1)—(3).

The electrostatic component of the energy flux shown in Fig. 3 follows approximately



from Egs. (5), (11), and (12)

3 pei cTe (kypei) [2enme]"* dT

Qes >~ —=n

4
2 °r, eB (k2r2) dz (14)

which is smaller by (m,/m;)*/? than the E x B transport produced by p; scale turbulence.
Here (k,) and (k2) are averages over the fluctuation spectrum.

In terms of the dimensionless A field we have B2/B2 = (B;pei/2rn)? k2| Ax|*. Now using
Eq. (13) to evaluate |A;|*> and from Eq. (5) for Qem (z) we find that for a turbulent spectrum

with c%i/wge < |1 = wape/w| = (10/2€0) /2

3 Ve C°
e 2 [Sn 773 IB ] T'n wge ( 5)

for T, ~ T;. As noted earlier, the simple model (1)—(3) used here does not give an accurate
threshoid for 7, [see Ref. 7] so that Eq. (15) applies for 3 2 Ne > Neeit = 1. For larger 7. the
rescaled, large 1. equations’ are required and the higher k, slab modes® become important.

The calculation shows that the condition on the plasma pressure B, R 2(m./m;) is
required for the magnetic transport to compete with electrostatic E x B transport. The
Guzdar et al’® formula for the sheared (s = rq’/q) slab analysis is X, = 0.13c%sn.(1 +
M)/ Wye 4.

Studies with ¢/wpe transport formulas show that the scaling and magnitude of electron
thermal confinement in both the Ohmic heated tokamak’ and RFP.* The auxiliary heated
tokamaks can be interpreted with formula (15) 61‘ closely related formulas. Taking into
12

account' both the p, scale turbulence and the c/w,, turbulence Yu et al.'® are able to

reproduce several (five) features of the observed dependence of the energy replacement time
7 on the system parameters. Eliminating all long wavelength (> p,) turbulence still leaves

a substantial anomalous X, according to Eqs. (14) and (15).
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Figure Captions

1. Contours of electrostatic potential ¢(x,t), magnetic flux function A(x,t), and temper-
ature fluctuation Ty(x,t). (a) The linear regime potential and (b)-(d) fields in the

turbulent state.
2. Steady state wavenumber spectrum. (a) The &, spectrum and (b) the &, spectrum.

3. The steady-state E x B heat flux component versus the temperature gradient param-

eter 7,.
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Fig. 3



