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Abstract

A numerical study is made of the dynamics of translating ion rings in conductive
plasmas. A hybrid computer code (particle ions/fluid electrons) is employed. An
important process whereby translational kinetic energy of such rings may be removed
1s via the generation of Alfvén waves. When the initial axial velocity of the ring is
greater than the local Alfvén speed in the plasma, a typical slowing down length is
z4 = (ar /4C)v50/(vEvY) where a, is the ring radial width, ¢ = §B/By where 6B is an
estimate of the ring self magnetic fleld strength, and By is the strength of the axial
magnetic field, v,o is the initial translational velocity of the ring, vy is the average
toroidal ring particle velocity and vg = Bg/+/4mp is the Alfvén velocity, where p is the
plasma mass density. Also discussed is the dynamics of ion ring motion in the vicinity
of a field reversed configuration.
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I. Introduction

Previous studies have shown that closed magnetic field line ion rings may be useful for
confining plasmas for magnetic fusion.m? Ion rings may also provide a part of the current
of a field reversed configuration (FRC) for the purpose of for heating the confined plasma
or stabilizing it against macroscopic instabilities.® For the latter situation, ion rings may be
formed and then merged with the FRC. However, if there is any excess translational energy
in the ring formation, this could be deleterious to the merging process. This excess energy
may be removed by the resistive dissipation of plasma return currents that are generated
due to the motion‘of the ring.” Alternatively, it may be accomplished by the generation of
Alfvén waves in a conductive plasma, and this is the process that we are mainly concerned
.Witlh in this paper.

The usual configuration for translating ion rings is shown in Figure 1. The figure shows
the r, z plane of a cylindel;, where the ring of IV, ions is translating axially (z) in an external
magnetic fleld By = (B,0Bgo). Generally, the theta magnetic field is either absent or smaller
than the axial field. The axial velocity v, is usually small compared with typical ion velocities
in the theta direction, such that the ratio of translational to total kinetic energies is K, /K =~
0.1. The axial and radial widths are a, and a,, respectively. In the present numerical study,
the rings are assumed to be not excessively elongated, that is a,/a, ~ 0(2). Immersed in the
magnetic field is a background plasma of density n, and conductivity o.

Molvig and Rostoker® give a physical description of the process of wave generation in
terms of the Chernkov resonance condition w(ky,k,) = k,v,, where k; = 27/a, and k, =
27/a.. For a cold plasma, in the limit |k|c/w; < 1 and w < Qrg, Q;, the magnetosonic wave
has dispersion fela,tion w = |klvg where k* = k¥ + k2. The branch that is perpendicular to
the magnetic field has a resonance at the lower hybrid frequency zz, while in the parallel

direction it becomes the whistler branch when k,c/w; > 1. Another candidate is the shear




Alfvén wave which has a dispersion relation w = k,v4; this wave travels along the field lines,
parallel with the translating ring. In experimental situations where the wave velocity is less
than v,, there can be no resonance for the shear wave. However, the magnetosonic wave can
travel perpendicular to the field lines, thus satisfying the Cherenkov condition. In the limit
that v, > vy, the ring generates a magnetosonic wave which travels radially outward to the
wall.

Chu and Rostoker® recognized that the axial slowing down of the ring particles is via the
Lorentz vp,6 B, / c force. The magnetic field lines move out radially with the plasma ions, and
this generates a radial magnetic field §B,. Molvig and Rostoker® calculated a slowing down
length based on the two fluid model with non-self consistent beam dynamics. However, they
did this for a critically damped magnetosonic wave (v° = 2(Q,9;)Y/? = 2Q15), where v° is
the electron collision frequency, and §2, and §; are the electron and ion cyclotron frequencies,
respectively. This calculation then gave rise to resistive slowing down lengths, these have
also been studied by the present authors in a related paper.”

This slowing down length for relativistic electrons is

s = LT (v_)‘*’ re

2ny \e¢/ kv

np is now the beam ion number density v = 1/v(1 —v?/c?), and & = 1 4+ Q,0;/v°v%. This
corresponds to Eq. (13b) in Ref. 7 in the non-relativistic case considered by Lyster and
Sudan.” In another paper Molvig and Rostoker'® calculate, in slab geometry, the kinetic
energy transferred between a layer and the magnetosonic waves. Their model assumes axial
invariance 0, = 0, and the energy removed from the layer is that which is transferred to the
self-magnetic field energy. In open slab geometry, with the assumption of non-self-consistent
lziyer dynamics, there is no limit to the energy which is transferred to the magnetosonic wave.
In one dimensional cylindrical geometry, Peter and Rostoker! showed that the maximum

energy per unit length which is transferred is W = (27 RyIo/c)*(1 — RZ/R%), where I is




the layer current per unit length. The energy is limited by the localization of the layer
self-magnetic fields. For a ring of finite length this energy is approximately »Ky where
v = Nyreif/ Ry, Tei = €*/m;c? and Ky is the theta ring kinetic energy. In the above analyses
no‘attempt was made to use the generation of plasma waves to calculate the axial dynamics
of the ring.

Alfvén wave activity has been observed in some ring translation experiments. Roberson!®'?
showed that the above equation gives a reasonable estimate for the observed axial slowing
down of electron rings in a resistive plasma. Also for preionized plasma, magnetic field fluc-
tuations characteristic of the magnetosonic mode were observed. Similar observations were
made by Kapetanakos et al.’* for rotating relativistic electron rings, and Golden et al.’® and
Schamiloglu®® for translating ion rings.

Some experiments in which electron rings were trapped involved using an external theta
magnetic field. This field was imposed by passing a current through a conductor on axis. This
has been found necessary in the case of vacuum stacking of layers in the Astron experiment
to avoid particle losses due to the electrostatic precessional instability.!®*"'® For some high
plasma density runs on the Astron experiment, there was observed an unusual enhancement
in the electron layer trapping efficiency with this external field present.'® Also, for ring
stacking work done at Cornell’s Relativistic-Electron-Coil-Christa experiment (RECE), it
was found that the theta field enhanced the ability to trap the rings.?’ The theta magnetic
field had to be in excess of that needed to stabilize the magnetic precessional instability in
order to trap the rings.?® Although the above experiments were carried out in a resistive
plasma, the question can be asked: what effect will the theta magnetic field have on the
Alfvén wave slowing down mechanism?

Once a ring has slowed down to v, < vga, the self-magnetic field associated with the
toroidal current are formed. The generation of Alfvén waves (v, > v4) and self-fields

(v: < v4) may be thought of as radiative and non-radiative limits respectively. In some




experimental situations it may be necessary to translate a ring along with its self-fields to-
ward an FRC. The collective interaction between the particles and self-fields have already
been discussed in a previous paper relating to dynamics in resistive plasmas,! and the results
of simulation for a conductive plasma will be discussed here. Where the self-fields (6B) are
so strong that the moving ring becomes field reversed (( = |§B/By| = 1), highly nonlinear
phenomena, in particular, magnetic field line reconnection, may become important. This
will be discussed in a future paper.

In the following section the theoretical description of ion ring dynamics in axisymmetric
(0s = 0) geometry is presented. Firstly, we discuss single particle motion tilat is relevant
for the case of weak ion rings ({ < 1), and then the collective ion ring motion is analyzed.
In section III the result of particle‘code simulations is presented. The main results are for
the case v, > vy with only an axial (B,) .ﬁeld present. Some simulations were perfoi’med to
check the single particle and collective ring motion in the presence of both By and B,, and
a discussion is made for the case of slowing down when v, < v4. Finally, some simulations
are presented for the behavior of rings which have weak but finite field reversal factors ¢ in

the presence of an FRC.

II. Theoretical Description of the Translation of Ion
Rings '

A. Single Particle Dynamics

Consider first the case where the self-field of the ring § B is much weaker than By. The particle
motion is unperturbed by 6B and the ring can be fully described as a set of single particle
orbits. Assuming that there are no electrostatic fields present, the motion is described by
the Lorentz force law

d q
—v =2y X B
mdt - 0




where v = v,# + vgf + v,3 is the velocity, ¢ is the charge, and m is the mass. It is well
known?®? that in asymmetric geometry (8 = 0) each particle has a constant of the motion;

the cannonical angular momentum .
e «
Py = mrvg + E'gb , (1)
and a potential energy function

7= g (P59 g

"~ 9mr

such that the poloidal (r, z) motion is described by the equation

m(b,7 + 9,2) = —VH* + Lo, x By (3)

¢
where B, = Vi X é /r is the poloidal magnetic field and v, = v,# + vg. Taking the dot
product of v, with Eq. (3) gives "

(5} + H*) =0 ' (4)

where d/dt = 8/0t + v, - V. Equation (4) described the interaction between the poloidal
kinetic and the potential energies; the poloidal motion is confined by contours of H*. Note
that the result is independent of the toroidal magnetic field structure.

Consider a particle injected in a uniform axial fleld B, > 0 (axial variations are ignored),
at radius 7y, with axial velocity v,0, and theta velocity vy = —r;,Q2,, where Q, = eB,/mec.
Then

m 2 (s +77)

H* = 203 | (5)

Thus VH* = 0 at r = 1y, and the poloidal force is determined by the second term in Eq. (3).
Of interest here is the poloidal motion of the particle as parameterized by the quantities

By/B, and f = (v,0/vg)%. When f is small and By/B, is large, the poloidal Larmor radius




of the particle will be small compared with the scale length of magnetic field variations.

Therefore, the drift approximation will apply, and the expression for the drift velocity?? is

_ ¢(F) x By
V= (6)

where (F) is the orbit averaged force on the particle. Since there are no axial variations
in the field, only the radius r of the particle is important in calculating (F). Write r =
rp+7iS(1+sin Qgt), where S = —sign(By), By = Bgo’l"w/?" Bgy = By(r = 14), Qy = eBgy/mc

and r;p = v,0/Q¢. Then the force corresponding to the first term in Eq. (3) is

(Fyg= ;29 * dt(-VH*) = (S’mQ rg + O <n:) ) zZ. (7)
The drift velocity corresponding to this force is
VH = Uy (Bz/Beb)z 2?) (8)

and this is always in the direction of the axial injection velocity.
The second term in Eq. (3) gives rise to a gradient drift due to the 1/r dependence in

the toroidal magnetic field. The expression for the gradient drift velocity is

v _ E Bg X VB@ (9)

where the magnetic moment is 4y = mv%,/2|Bg|. In the geometry described above, this is

evaluated to be

1 B,
Vv = '?: f’l)zoB—ebZ. (10)

The drift direction depends on the sign of the theta magnetic field. The net drift in the

z direction is

| 1 =B B,\?
= = v, | = 2 Z) 3. 11
Vp =VyB +VH 00(2\/?3%) + <Beb> z (11)
For a fixed value of f, the behavior of the drifts is divided into a number of regimes. The

following lists the values of By, which delineate these regimes:
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(1) |Bes/B:| > 1;up = vws.

(2) Bp/B, = — (4/ \/7), at this value of toroidal magnetic field, the net drift velocity in

the negative # direction, Eq. (9) is maximized. This velocity is (vp/v.0) = —f/16.

(3) Beg,/B, = ~— (2/ \/]—”>, at this point the drift velocities cancel, v4 = 0, and the particle
remains at a fixed axial position while performing a small Larmor radius orbit in the

poloidal plane.

(4) Bg, /B, = —/f/ (\/Zle) '—I- N 1); here the particle performs cusp-like motion
as it drifts in the positive z direction. This expression is obtained by equating the
approximate expression for the poloidal Larmor radius v,o/ s, with Rupax — 7, Where
Bopax = (m + ﬁ) 7 is the maximum radius Which. is energetically accessible
to the particle. Therefore, Bys is the approximate magnetic field at which the particle
motion changes over from being a cyclotron orbit in the poloidal plane to a wavy drift

in the axial direction.

(5) Bg = 0; Eq. (9) is inaccurate since the particle does not perform small Larmor radius
orbits in the poloidal plane. In fact, when the theta magnetic field is zero, the average

axial drift velocity, (v,) is trivially equal to the initial injection velocity v,q.

(6) Bs,/B. = /f/ <l —/(f+1)+ ﬁ), for this positive value of the theta magnetic

field, the particle performs cusp-like motion in the poloidal plane. However, unlike

the particle in category (4) above, the cusp is determine by the particle reaching the

minimum accessible radius, rp;, = (,/( f+1) - ﬁ) Tp.

For a fixed value of the ratio of poloidal to toroidal injection energy, f = 0.2, the correspond-
ing values of the relevant important ratios, as set out above, are: By /B, = —8.94 (with

(vD/V20)in = —0.012), Bys/B, = —4.47, Bgs/B, = —0.83, and Bgy/B, = 1.27.




B. Ion Ring Excitation of Alfvén Waves

Consider an ion ring that is translating axially in a conductive plasma in an external
solenoidal field By. The energetic ring ions will be considered to be collisionless. For the
plasma, the two fluid equations are employed,?* and an analytical reduction is performed in
the manner of Sudan and Lyster.?® The equations for the plasma ion mass density p; and
fluid velocity v; are

Opi +V - pivi =0, (12)

Pi@

where the plasma current J, = (n:29; — n.ev,) ~ n.e(v; — v); the plasma is quasineutral

d v; = —myZyeE+ J, x Bc, (13)

Ne = Zin; + Zpny and ny K n;; and the subscripts b,7 and e refer to ring ions, plasma ions
and electrons respectively. The inertial term in the electron fluid momentum equation is

neglected. Combining this equation with Faraday’s law gives
O:B=V xvexB—cV xJ,/o. (14)
Finally, Ampere’s law without the displacement current is
¢
—V xB=Jd,+Js. 15
4:7'(' X 2 + b ( )

For a cold plasma, the pressure term V(P + F;) has been neglected in the moment equa-
tion (13). For ring injection studies, the electron E x B drift motion is responsible for the
return current. Thus, the first term in Eq. (13) is approximately —(ny/n,)Z3J, X B/c, which
may be neglected relative to the second term to order n;/n, < 1. Next, use Eq. (15) to

eliminate v, and J, from Egs. (13) and (14) in favor of v;, J, and V x B
pd—dtv = (VxB)xB/ir—J, x B/c, (16)

&B::vaxB—Vx(i<iVxB—JOxB>
ne \4m

2

—f—VXVXB+§VX%, (17)

o




where the subscripts have been dropped from p;, v; and n;. Now write B = B, + By , invoke

axisymmetry, and neglect the poloidal components of the ring current; Eqs. (16) and (17)

can be rewritten in the form?®
) 2
Bp+v-Vip = ——Agp+ =Sy — —B, - VrB,, (18)
dro o 4ne
1
8By+v-VBy = —BgV-v+Bew,/r+1B, V=2 B,  V— (J,, + —C—A*¢>
r ner 4oy
1 2 92 c? 2 2
< 2+ S _ 1
+ 0 v( er2> X Vi*B}[2+ (V2 By — Bo/r),  (19)
V37 1 1 232
P (&v,, + v, va — ——fi—-) = — (47‘_ *'(,b + — Jb) V7,1) — ——V e (20)
P <8t'06 + v, - Vog + ’Ue’UT> = —1—]3 -VrBy (21)
r 4y

where v = v, + vp0 and A, = V2 — 20/ror.
The rate of change of kinetic energy K of the injected ring is given by

d _d1
—K = dtz “mge? = / #ady E = / &z (Jy, Es)

27
- = / rdrdzJy,00b, (22)

where k is a ring particle subscript. The neglect of the term J;,E, can be justified on the
grounds that |J;,| < [Jss|. From Eqgs. (18) to (21) the equations for the perturbed field and

fluid quantities are

0i6%p = —6v, - po
N 23
+ Tro P, (23)
0:6By = B, -V ((Jbe + Z;i;—VM%/)) /noer + 5vg/r> , (24)
Jbg 1 .

poaﬁvT = . ’Qbo 7‘2 (A*é’gb) V'Qbo, (25)
Bifvy = LB . VréB (26)

Po0t0Vg = 4t Po r g5 |




where 89, 6By, and dv, are perturbations induced by the injection of Jy,. The A, terms
in the above equations may be omitted for v, > vy, since the beam current is completely
cancelled by the plasma current.?® With this restriction, the term §vg /7 may also be neglected

in Eq. (24). Combining Egs. (23) and (25),

0;8¢ =

J,
be |v,¢)0,2 .

crpo 4dmnge

c

. 7

Nper

(B,, - V)r*(B,, - V) ( ) + L0, 27)

The second term in this equation is a result of the inclusion of the Hall electric field. The
ratio of this to the first term is A?/a2, where A; = c/w; is the ion inertial length. This
quantity is small for high density plasmas (n, ~ 10'*). The ratio of the perturbed toroidal
field to the external field strength is approximately v);/a,. Therefore the neglect of terms
to 0(Ai/a.) amounts to the neglect of the perturbed toroidal field. Integrating Eq. (27) with
respect to time and substituting the result in Eq. (22), the rate of loss of ring energy is?®

d 2
ZK = / rdrdz (cf—poojbe / dt Jy, + J,,Ze/a) . (28)

Integrated over time, the loss of energy is®

_ _ @B 1t e
AK =K — Ko = —21 / rdrdz ( s /0 dt' 7z |, (29)
where
t
Qu(x,t) = /0 dt' Ty, (x, ). (30)

Note that the RHS of Eq. (29) is a negative definite. The first term represents the energy
expended in displacing the plasma through the J, x B force. The second term arises from
the resistive decay of the plasma return current. The magnitude of the Ohmic loss term

relative to wave generation term is

ohmic losses T4 v,
wave generation losses 7,71 drovia,’
-1
= R *(v.ar/vaa,), (31)
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where 74 = a,/va, T, = dmoa/c?, 70 = a,/v,, and R,, = 7,/74. To estimate the rate of

slowing down, assume a beam current density of the form
Joo(2,t) = Ny(r)evga; T [(z — Z(t))/a.], | (32)
where v,(t) is the mean axial velocity and

_ /0 " dtho,(#). (33)

Also, ‘
207 gr=1, (34)
Gy J—o0
and
Ruw _
27r/ rdrNy(r) = Np. (35)
0
Equation (28) can be employed to obtain
d. v  dz <z ~Z >
dtK = —87 / drr /Oo 2 (Nyevy)?J o
z dZ' z—7
< g )
V4 Buw — 2
— _8n’ ( - ) ——G(Z/az) [ drr(®ryv)?, (36)

where

G(Z]a;) = / dzJ( )/ dz'J ( Zl) | (37)

It has been assumed that v,(t) changes by a small amount in a time a,/v,(¢). Also, after
the initial transient (i.e. for Z > a,), G — 1/2.

While the ring is axially translating there is no change in the azimuthal energy. This is
understood by evaluating the electric field Ej in the beam frame using the Lorentz transfor-

mation

E}) = Ey+v,B,/c, (38)
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where Ej is the electric field in the lab frame. The radial magnetic field is obtained from
Maxwell’s equation, 8,8, = cd,FEj. Neglecting transients in the beam frame, the partial time

derivative can be replaced by —v,d,. Therefore,

B, = —2E,, ' (39)

z

which, when substituted into Eq. (38), gives Ej = 0. As long as the ring is moving through
the plasma, the energy loss, as calculated from Eq. (36), is subtracted from the translational

component of the ring kinetic energy. The ring translational energy is given by
1 Ru _
K, = <§) mvf/ 2w drr Ny(r). (40)
: 0

The rate of change of ring energy is

d d

ZK, =v,—K,. (41)

dt dz

Substituting Eq. (36) into this, with G = 1/2, gives

ZZ%U‘Z = —j—g%vgvi]\f, (42)
where ,
w 2
N:%ﬁ%%. (43)
This has a solution
“gae w

where the Alfvén slowing down length is given by

4 = (m ) Vo (45)

8welN | vivg

For a ‘top hat’ shaped radial density distribution of width a, the following is obtained:

4
adr U
24 = - ;02. (4:6)
4:1/'0‘9'0A
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Hence the scaling of the Alfvén slowing down length with respect to various quantities is
za ~ By?, vy, v, npand v, Notice that 24 is independent of a,; this is because the axial
retarding force on the ring particles, vpéB,/c, is proportional to @, which depends only on
the number of particles in the ring. However, since the retarding force on the ring particles
is non-uniform along the cross section of the ring, there may be some axial spreading as it
slows down.

In order to.calculate the ring axial spreading and slowing down, the axial velocity v,(z,1)
is assumed to be a fluid-like quantity. The time dependence of v, is determined by the
Lorentz force arising from the radial magnetic field

d

mavz

= —-z-’UbgB,,.. (47)

The axial electric field E, = ve B, /c is neglected since it is smaller than the RHS of Eq. (47)
by a factor ny/n,. The plasma is taken to be infinitely conducting, and there is no initial
poloidal ring pressure. The calculation also uses Egs. (23) and (25) for the perturbed flux
and plasma radial velocity. The model is one-dimensional, that is, only axial variations are
included, and v, > v4 so that current neutralization is assumed. As in the above analysis
c?Jwla? < 1, therefore the perturbed toroidal magnetic field component is ignored.

Perform a transfer of coordinates to the beam frame
2 = z—uu,t (48)
T = t (49)

Then the steady state response (9, < v,00,) of the perturbed radial magnetic field is
B3

2
CPoVz0

B(z) = — /oo Joo(2") d2". (50)

Equations (47) and (50) along with the continuity equation for ring particles, gives

d
-—.vz

Vs = —kN (51)
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o= —n0,v, (52)

where £ = {o+ [ dTv,(€o, 7) is the Lagrangian ring fluid displacement, n is the beam number

density so that Jyg = nevs, & = dnry;(vave/vs0)?, and

N(6o,) = N, 0) = = [ (€5, 0) dé (53)

These equations have solution

02(5077-) = —'K’TN(&O) 0)7 (54)
£E(o,7) = &0 —(1/2)r7N(&,0), - (5%)
n(bo,7) = {80, ) (56)

(1+(1/2)x7n(60,0))

From these equations, the following average quantities can be calculated in the beam frame,

5. — 2o dévy (o, T)n(€o,T) oy (2AVs 2 N
T dén(be,m) 2 ( ) fr(r)m, (57)

where n(éo,0) = £ () f(0), [S2% [2(2) dz = 1, and [3™ f.(r)27r dr = N,.

© déén(&yT v 9

zZ= ?}g" dii(f((i 'r)) = —7Tg <U—A—9) fe(r)T2, (58)
Gzp = (f dg(¢ —f_)zn(fo,'r) df)llz
z [ dén(éo,7)

where 9, and Z are the respective ring center of mass velocity and position in the frame

Vz0

V4Vg

= Gzho + —%Tci <E> fr(T)T_2a (59)

moving with velocity v,q. Also, a,; is the ring axial half width which is calculated for an
initially ‘top hat’ axial beam shape. The quantity N(&o,0) is a measure of the number of
particles upstream of the fluid element at {. Thus Eq. (55) shows that the fluid elements are
being slowed self similarly. The axial shape of the ring remains the same but the density is

- everywhere decreasing in time. Equation (57) shows the dependency of the average velocity

14




U, on the radial line density. Equation (59) shows that the ring axial half width increases

quadratically with time and that the time for this quantity to double is approximately
Ty = 2(12)1/4(2Aa2ho)1/2020. (60)

In the following, an estimate will be obtained for the effectiveness of an externally imposed
toroidal magnetic fleld on slowing down a translating ion ring. Recall that the radial electric
field is responsible for accelerating the plasma ions; this is the mechanism by which energy

is imparted to the plasma. This field is given by
E, = (vezBe - veeBz) /C (61)

where By is the toroidal field strength at the ring radius. The second term in this expression
represents an added contribution above that which occurs when only an axial field is present.
The electron velocity in this term arises from the axial beam current neutralization. This
will represent a smaller effect, compared with the first since the axial ring velocity is smaller
than the toroidal velocity by /f. Note that the slowing down now depends on the sign of
By.

The expression for the rate of change of ring kinetic energy is

%Kb = [ Po(Balo+ B.1). ‘ (62)

From the linearized plasma ion momentum equation, and writing J, = —J;, for v, 3> vy

1 1 1 v, B,
pOivye = By~ <hoBr = —dwB. (1= 22 (69)
Therefore, the first term on the RHS of Eq. (62) becomes
‘ 2
/ P EygJyp = —/9" dr dz4m? (U—A> <1 — ’sze> Jb9/ dtJyg (64)
c v B,

where vy = B,/1/(47p). For the second term, the axial electric field is

E, = (veg By — ver Bg) [ c. (65)
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The ratio of the first to the second of these terms is approximately (n,/ns)(Bs/B;)v/F. Thus,
the first term dominates for the case of a low density beam. With the assumption c/wia, L 1,
the perturbed toroidal magnetic field can be neglected. Therefore, from Ampere’s law the

radial electron and plasma ion velocities are approximately equal, so that
E, =~ —v,,By/c. (66)
The second term on the RHS of Eq. (62) becomes

3 — 2 :l_)_é 2 <'UzB€>2_'sze t
/d zE,Jy, = /rdrclz47r <c> ( oo "B, Jw/ dtJyg (67)

Putting the two equations (64) and (67) together and integrating to get the total change in

ring energy, gives

2 2
AKy = — /rclr dzdr*Q* (v—A> (1 - UZB9> . (68)

c ve B,
The condition for the enhancement of slowing down in the presence of a toroidal magnetic
field is v, By /vy B, < 0.
Performing a similar calculation as before, an expression for the axiai position of the ring

as a function of v, obtained:

ar v2y B2 1
Z(v;) = 75?( +A+Z—2<1_A+31n(1—A)>>
1 /v:\2 2w,
_§<E> T Avy,
—i(;-iﬂln(l—ﬁz—A)) (69)
A? ].—A;L—Zo Vz0 _

where A = (Byv,0/B,vs). The slowing down length is

L GuoB2 (1 2 1 3
Po-=0) = vvﬁ&?( TRt Ry TRl ))

4

= %v;‘)’;g when A < 1,
%Az
2 2

= Z; vz0§2 when A > 1. -~ (70)
4
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This analysis assumes that all of the energy going into the plasma comes from the axial
translational ring energy. Since the toroidal field perturbs the single particle orbits in the

poloidal plane, this assumption is valid only in the limit A < 1.

C. General Discussion on Slowing Down Lengths

In an earlier work by the present authors, typical slowing down lengths in a resistive plasma
(Rn S 1) were calculated”. Two regimes are appropriate for the velocities where 0,2,

where v, = va R (a,/az),

Zg = Vx0T, Ve < Ve (71a)

2 = gvzcm,[l - (vc/vo)Z] v, > U, (71b)

where 7, = 2c%a,/(a2ovQ?), 7 = (72/4)(ara,/RE)(ve/c)?c/(vO?), Q= eB,/myc. From
the discussion in section B, we know that in a conductive plasma the scale lengths that
are relevant are z4, Eq. (46) and z,, and that the former is applicable when z/24 =
Rmvaa,/(vsa,) > 1.

Another important regime corresponds to the removal of axial translational energy in
a conductive plasma when v, < vy. A crude estimate for the slowing down length in this
regime can be obtained as follows. As the ring translates through the plasma, the self fields
perturb the uniform external field. In a conductive plasma, the plasma ions move radially

with the field lines through a distance
ér = (Ryp. (72)

The time for this displacement to occur is approximately the ring transit time, a,/v,. As-
suming that the energy imparted to the plasma motion is not fed back to the ring, the rate
of change of ring energy can be estimated from conservation of energy. The result is

d 7 Ria,
=1z

z

2 2§
¢“Bg (73)

vy’
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Following the discussion of section B, the energy is assumed to be removed from the ring

translational kinetic energy. The axial velocity as a function of time is easily solved for:
v, = v/ (1 +1/7), (14)

where 7 = 4a20% [v,omCa,vi. The Alfvén slowing down length 2, for v, < va, can be
obtained by integration; [” v, dt:
W 4 aZvy

It should be noted that when v, < Vg4, steady state Alfvén wave generation does not occur.
This weakens the assumption that energy is removed from the translational component of the
ring kinetic energy. Indeed, in regime v, < vy, the theta kinetic energy is being transferred
to the energy in the ring self fields. Therefore, the application of Eq. (74) to experimental

situations should be guarded.

II1. Particle Code Simulations
A. Ring Translation in an Axial Magnetic Field

The simulations were performed using the hybrid code CIDER.%" Ions that make up both
the energetic rings and the background plasma are modeled as particle in cell (PIC), and the
electrons are treated as a fluid. The transverse displacement current in Maxwell’s equations
is neglected, thus eliminating the speed of light as a determinant of the code timestep. Also,
the electron mass in the momentum equation is neglected and quasineutrality is assumed.
With these conditions, the two strongest lirrﬁtations on the timestep comes from the Courant
condition Kmava At < 1, where kp,y is the maximum wave number represented and the par-
ticle integrator accuracy condition Q;At < 1. Note that the Courant condition is appropriate
since it is Alfvén wave activity that we want to model. Since CIDER uses an explicit algo-
rithm to advance the physical quantities in time, the Courant condition determines not only

accuracy but also a numerical stability limit.
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A typical ring is shown schematically in Flg 1. The parameter of a base run are: wall
radius R, = 150 cm, total axial length z, = 900 cm, B, = 75 cm, Ny = 2.0 X 10Y(v =
0.41), B,o = 1.7 kg, n, = 5.0 x 10*® cm™2, and v,0 = 4.2 x 10% cm s™(v,0/v4 = 8). For
the moment we are considering only slowing down in a uniformal axial magnetic field. The
numerical grid is 30(R) x 40(z). With these parameters, the upper limit on the timestep
is At = 5ns which gives kmaxvaAt = 0.33 and Q;At = 0.08. If a timestep much larger
than this is used the code fails to conserve energy and ultimately becomes unstable. Tile
ring is initialized with no poloidal temperature. Figure 2' shows, for the base run, selected
particle positions in the poloidal plane at various times. Notice that the axial width of the
ring increases throughout the run, this is caused by the nonuniform axial stopping force
F, ~ Jy0B, across the ring; varying from. zero for particles at the head of the ring up to a
maximum for particles at the rear. Careful observation shows that the particles in the front
of the ring are not slowed whereas those behind are slowed successively more and more. This
process takes place until v, < vy, when self fields envelop the whole ring. Fig. 2(g) shows
the poloidal field lines, including the self field perturbation, at time ¢ = 2.5us. Note that
there is some radial dependency of the slowing down rate; those‘pa,rticles in the center of
the ring, where the density is highest, are slowed to a greater extent than those at the inner
and outer radii. For the run shown in Fig. 2, approximately one half of the particles were
fully stopped and the remaining escape.

Figure 3(a) shows, for the base run, a plot of the ring axial translational energy against
time. The slowing down occurs during the first microsecond, after which the particles at the
front of the ring start to pass out of the system. Fig. 3(b) shows the total toroidal energy
of the ring particles. During the period of slowing down there is very little change in this
energy. This verifies the assumption made in the above analysis that the energy is removed
only from the axial component of the translating ring. The sudden drop in energy at the

end of the run is due to the loss of particles at the right hand wall.
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A number of runs were performed with varying v,o/v,. In accordance with Eq. (44), the
slowing down length z, is measured by taking the length scale from a plot of v; against z.
Figure 3(c) shows such a plot for the base run. Note that the radial magnetic field, which
acts to slow down the beam ions, is only generated after the beam transits across itself. Thus
tlie slowing down does not begin until the ring has traveled a aistance a,. The slowing dovvn
length for this run is 257 cm compared with the theoretical estimate 2,=237 cm. Table 1
shows the measured slowing down lengths compared with the theoretical estimate z4 for the
range of initial axial ring translational velocity v,o/v4 = 1.0 up to 14.1. The assumptions
that went into the theory breakdown for v, ~ vy, and this is clearly borne out here.

According to Eq. (46), the slowing down length scales as v;. This scaling is checked
using Fig. 4(a), which is a plot of log (z,) against logv,0/vs. The gradient of the curve,
for v,0/va > 1, is 3.41 compared with the theoretical result of 4. When v, Jva ~ 1, the
measured slowing down length is considerably in excess of z4. This is clearly demonstrated
in Fig. 4(b), which is a plot of log(z;/z4) against v,o/v4. Note that the axial grid spacing
for that run is 5 cm so that the first point on the curve in Fig. 4(b) is close to the limit of
numerical resolution. |

A series of runs was performed using the code CIDER to test the theoretical results of
the one-dimensional ring fluid model. This model includes both the axial slowing down and
the axial spreading of the ring. The same general physical parameters are used as for the

runs which are described earlier in this section. These runs were intended specifically to test

the power law dependency in the expression
— Uy ~ — ~ (76)

Figure 5(a)-(f) shows plots of log dv,/dr against the logarithms of v, By, a, ., Vs0/v4,
and n,, respectively. The theoretical exponents are checked against the gradients of straight

line fits to the curves. The results are summarized in Table 2. The points which do not
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fall on the straight lines correspond to some limit in which the above analysis is not correct.
Therefore, in Fig. 5(a) the deviation corresponds to the large number of particles (v > 1),
so that the self fields are of the order of the external fields. This breaks the linearity
approximation used in the theory. In Fig. 5(e) the deceleration is diminished for v,o/v4 ~ 1
as discussed earlier in this section. Finally, at low density in Fig. 5(f), the same situation
pertains as when v,o/vs & 1.

For the run shown in Fig. 3, a number of quantities éan be checked. Firstly, as mentioned
earlier, the slowing down length is measured to be 257 cm compared with z4 = 234 cm. The
initial deceleration of the ring as calculated from Eq. (57) is —1.83 x 10** cm s™2, while the
measured value is —2.37 x 10 cm s~2. Finally, the time taken for the ring axial h;mlf width

to double is calculated from Eq. (60) to be 0.76y s, while the measured time is 0.98y s.

B. Ion Ring Translation in an Axial and Toroidal Magnetic Field

For the case where a toroidal magnetic field is present, a number of simulations were per-
formed using a single particle version of CIDER. A uniform axial field was imposed, as well
as a toroidal field with 1 /r radial dependence. The results are summarized in Fig. 6(a) and
(b) which show the average axial velocity (v.), as taken from the simulation, (solid curve)
as well as the theoretical drift velocity vp (dashed curve). The plot shown in Fig. 6(b) is an
enlargement of the region Bg/B, < 0. This clearly shows the opposing drifts as expressed
in Eq. (11). The theoretical drift velocity is shown to be approximately correct outside of
the limits set by Bys and By,. In the regime where |Bgy/B,| > 1, the guiding center theory
is clearly inapplicable, and the ratio (v,) /v, tends to unity as the toroidal field vanishes.
A set of runs was also performed to assess the role played by the toroidal magnetic field
on the removal of ring translational energy. For this, the fully self-consistent version of
CIDER was employed, and the same parameters were used as for the slowing down runs in

Section A. An external By ~ 1/r was imposed by passing a current along an axial conductor.
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The ratio of the initial parallel ring velocity to the Alfvén speed was v,0/v4 = 10.2; therefore
f = 0.18. This makes the run very similar to RUN#5 in Table 1. The values of |By/B,|
were 0.0, 0.25, 0.5, and 1.0. For v, > 0 and B, > 0, a positive toroidal field corresponds to
an enhancement in the ring translational energy loss.

Table 3 summarizes the results of the present series of runs. The quantity

e=(-323) 0

appears inside the integrand in Eq. (67); it is a measure of the contribution of the toroidal field
to the rembval of ring kinetic energy. The quantity 6 is the rate of change of ring energy
measured just after it has traveled an axial distance a,; the results are normalized to the rate
for RUN#1. This quantity ShOLﬂd be equal to {. It can be seen that the comparison is good,

especially where |By/B,| is small. For these runs where the fast ions are collisionless and the
plasma resistivity is zero, the total field and particle energy should be conserved. Figure 7(a),
(b) and (c) show plots of the total energy (less the energy of the externally imposed magnetic
fields) against time for RUNS#1, 3 and 6, respectively. In RUN#1 the energy is constant
up to a few percent until ¢ = 1.5us, when the ring particles start to be absorbed at the right
hand wall. However, in the remaining two plots the energy steadily increases before particle
absorbtion occurs. The quantity €, which is shown in Table 3, is the amount of excess energy
divided by the energy exchanged between the ring and the plasma waves. It is measured
during the same time period that the quantity § By is evaluated. This shows that RUN’S# 1, .
2, 5 and 6 are reliable, however the others are in doubt due to energy non-conservation.
This occurs when the code becomes numerically unstable or inaccurate. The quantities
kmvaAt and k203 At/Q; must be less than unity to ensure numerical accuracy and stability.
As the toroidal field is increased these factors also increase, and in some cases they exceed
unity. The RUN#7 was repeated with a redﬁced timestep such that kpAAt = 0.08 and

F*v3At/Q; = 0.33. However, the quantity ¢ = 43% represented only a slight improvement.
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The lack of energy conservation is probably a combination of the timestep constraint and
the tendency for numerical noise to develop due to the sharp By contour close to the current
carrying conductor on axis.

Figure 8(a), (b) and (c) shows the plots of the tracer particle orbits in the poloidal plane
for RUNS#1, 3 and 6, respectively. In the first plot, where there is no external toroidal
magnetic field, there is no radial motion of the ring prior to its slowing down. The second
plot, where By/B, = 0.5, corresponds to a reduction in the slowing down length compared
with RUN#1. The orbit is initially axial; however the toroidal magnetic field soon deflects the
particle toward the axis. Thereafter, it travels with a cusp-like trajectory. From the theory
presented in Section II, the cusped motion occurs when By/B, = /f/(1 — \/Z]Tl) ++/f =
—0.831.

In deriving Eq. (68), the radial and toroidal components of the riﬁg energy were taken

to be constant. Thus, the energy that is transferred to the plasma waves was assumed to

2

be removed only from the axial translational energy Ny(1/2)mvZ. Therefore, the result is

correct when A < 1. In this limit the expression for the slowing down length [Eq. (69)] is

- U 8
” a ’Uzo2 (1—|——A-I—--'>. (78)

- 4 302 5

The slowing down lengths were measured for RUNS#1, 2 and 5; where A = 0, —0.11 and
0.11, respectively. Figure 9(a), (b), and (c) shows the respective plots of (v,/v,0)* against Z.
Note that the plots (b) and (c) show oscillations due to the cusp-like ring trajectory in the
poloidal plane. For these cases, the slowing down length z; can be calculated by taking the
scale length from a line which connects the peaks of the oscillations. Table 4 summarizes the:
results. The quantity « is the slowing down length z, normalized to the length for RUN#1.
The sign of the toroidal field is found to have the predicted effect on reducing or increasing
Zs.

The situation where k,c/w; > 1 (k, = 27/a,p) is relevant when there is a low plasma
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density or the axial length of the ring is small. This is the regime where the Hall electric
field (J, x B/nyec) in Ohm’s law becomes important; the toroidal magnetic field which is
generated by the motion of the ring can no longer be neglected, and the above analysis for
slowing down is not strictly correct. Computationally, this is a difficult problem because
the usual Courant condition becomes modified by a factor kmaxc/Q; > 1. This puts a much
greater restriction on the timestep, thus increasing the CPU time requirement.

A number of simulations were performed to assess the effect of the Hall field on the
slowing down lengths. The initial axial translational velocity of the ring was v,0 = 2.5v4.
The results are summaﬂzed in Table 5 which shows the meésured slowing down length z,
divided by the calculated length z4. The factor k,c/w; is adjusted by changing either the
ring axial half width a,;, or the ion plasma frequency w;. In order to keep z4 invariant
for these runs, the Alfvén speed was not altered. Thus, for the purpose of varying w;, the
ratio n,/m; was changed while n,m; was held fixed (m; is the plasma ion mass). The last
column in the table shows the ratio of the toroidal magnetic field energy to the poloidal
field energy generated during the run. This gives a measure of how much the increase in the
quantity k.c/w; generates greater toroidal field perturbations. For the last run, the magnetic
field energy is almost equally distributed between the three components. For the parameters
indicated, the results show that the increase in k,c/w; to a value greater than unity does not

substantially alter the slowing down length.

IV. Coalescence of a Weak Ring with a Field Re-

versed Configuration

In this section we consider the dynamics of a weak ion ring, ¢ < 1, in the vicinity of a field
reversed configuration. Because the background plasma is taken to be highly conductive,
the code CIDER was employed. However, this code can only be used to simulate processes

which take a small number of Alfvén transit times Ry /va of the system, where R, is the
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wall radius of the confining cylinder. Because of restrictions on computer time, and because
the code is inherently noisy, it would be impossible to simulate the whole process of ring
formation, translation, and merging. Hence the initial ring particle-field configuration was
established using the RINGA? code. This code may be employed where the plasma is highly
collisional. RINGA uses about one third as much computer time as CIDER, for an equivalent
run, and since it is an implicit code it provides a more noise free simulation. The FRC was
established using an axisymmetric force-free spheromak equilibrium.?® This is suitable for
use in CIDER because the force-free current is carried by the fluid electrons. Therefore, the
electric field, which can generate noise by perturbing the plasma ions, is identically zero.

The expression for a force free magnetic field is
V x B = &B. (79)

The quantity % is nonzero inside of a sphere of radius ry, corresponding to the location of
the spheromak. Elsewhere x is zero, corresponding to vacuum magnetic fields. In spherical

coordinates (p, 8, ) the fields inside of the sphere are given by
B, = 2b.Pji(kp)/kp,
By = —bysinPY (rjy(kp))/kp,
B, = b sin0PYj;(kp), (80)

where P)(z) = z, ji(z) = sin(2)/2? — cos(2)/z and kro = 4.493. Outside of the sphere the

vacuum field is given by
B = BoV {(p +1$/20") P} (cos 6) }, (81)

which tends to a solenoidal-field By at large p. The matching condition at the boundary
gives by = 3kroBo/2sin(kro). These fields were initialized in the cylindrical (7*,0,2) code

CIDER.

25




As noted by Rosenbluth and Bussac,?® there are no unstable surface modes at rq for
the above axisymmetric field solution. This is important because it is necessary to avoid

instabilities which would cloud the interpretation of the coalescence runs.

For the simulations which are presented in this work, the wall radius was chosen to be

150 cm, the separatrix was ro = 100 cm, the axial length of the system was 450 cm, and
the spheromak was located at Z, = 300 cm. The external magnetic field By was set ot
1.7 kG; this determines that the peak magnitude of the toroidal magnetic field is 5.0 kG,
and the magnitude of the axial magnetic field on axis, at the position of the spheromak, is
7.83 kg. Figure 10(a) show the resulting poloidal field line configuration, while (b) shows
a Contour plot of the toroidal magnetic field. Once again, the numerical grid the used
for the 30(r) x 40(z). The density in the vacuum region was 4.5 x 10*° cm™, and the
timestep of the runs was At = 5 ns; this gives the accuracy-stability conditions kmaxva At =
0.35, k2, v3At/Q; = 1.5 and Q;At = 0.081 to 0.37. The density is artificially increased in
the vicinity of the spheromak so as to keep kmaxva At from increasing, and approaching the
Courant stability limit of unity. It was found that the code failed to conserve energy when
the ring entered the spheromak. This was traced to the increase in ;At due to the large
toroidal magnetic fields there. The particle integrator became inaccurate since there were
not enough timesteps to resolve their strongly curved ion trajectories. This problem was
eliminated by reducing the timestep to 1ns as the ring entered the spheromak.

A very weak ring (¢ < 1) can be considered as being a collection of single particles in the
sense that the self fields of the ring, being very weak, do not affect the particle dynamics. In
Section II it was shown that the potential H* determines the accessible area forl the motion

of an ion in the r, z plane, as expressed in the following
(1/2)mv? + H* = const. (82)
~ where v, is the velocity of the ion in the r, z plane. Furthermore, this result holds true even
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in the presence of a theta magnetic field. Also, when there are a finite number of particles,
the self field perturbation must be weak enough so that 0;H* < v, - VH*. An extensive
discussion of charged particle motion in field reversed configurations is given by Lovelace.??
For the fields which are used in the present work, as specified by Egs. (80) and (81) and
for a particle that is injected at » = 75 cm. a large distance away from the spheromalk,
the contours of H* are plotted in Figure 11. It can be seen that the contours are mirror
symmetric about the axial position of the spheromak at Z, = 300 cm.

By way of instruction, a number of single particle orbits were calculated. A single particle
version of the code CIDER was used for this purpose. The loci of these orbits in the r, z
plane are shown in Figure 12. The particles were injected with velocity v, = 0, v, = 0, and
vg = r{lg, with initial positions #z; = 70 cm, and r; = 35, 45, 55, 65, 75, 85, 95, 105 cm.
Clearly, the accessible area includes the initial point and the mirror image of the injection
point on the other side of the spheromak. For particles injected near the midplane, r = 75,
the accessible area does not intersect with the outer wall. The toroidal field does not alter
the a,ccessiblelarea,, however it does alter the trajectory of the particles in that area. The
particle which is injected at r; = 55 shows a significant radial jump, due to the v, x By force,
as it passes through the spheromak. The accessible area of particles which are injected at
larger radii includes the radial wall. It can be seen in Fig. 12 that so:'me of these particles do
pass very close to the Wall.

A ring with finite self fields is expected to show some deviation from single particle
behavior. In another paper by the present authors’, in relation to the merging of ion rings in a
resistive plasma, it was shown how the self flux of a weak ion ring creates a shallow well in the
local potential H*. The depth of the well is approximately ( Ko, where Ko = (1/2)m(Ry2)?,
where Ry is the ring radius, and Q = eBy/me. Also this quantity, ( Ko, is approximately the
amount of kinetic energy which is transferred between the particles and the self fields during

injection. Using the RINGA-CIDER interface, a ring with field reversal factor { = 0.25
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was initialized'a,t Zy = 120 cm. and R, = 75 cm., in the spheromak fields which were
specified above. Figure 13 shows the resulting contour plot of H*. Note that the canonical
angular momentum (Py), which is used in the expression for the potential, is taken to be
the algebraic mean over the set of simulation particles. The manner in which the average is
taken is not important because the ring is injected with a large aspect ratio, and the particles
have a small spread in initial velocity, so that the spread in canonical angular momentum is
minimized. Figure 13 clearly shows the shallow well of the incoming ring to the left of the
potential well of the spheromak. This shallow well corresponds to the self fields of the ring
which prevent it from spreading axially. The weak ring is attracted toward the spheromak,
and it moves axially along with its self fields. As it approaches the spheromak, the strong
magnetic fields of the latter will cancel the self field of the ring in the region between them.
This corresponds to a diminishment of the potential H* in that region. A point will be
reached in the motion of the ring where its particles will become deconfined from the self
fields, and they will “spill out” into the spheromak. From the point where they spill out,
until they coalesce with the spheromak, the ions perform single particle motion, since the
magnetic fields are static during that time.

The spill-out position can be estimated by finding the axial position where the radial
self field at the leading edge of the ring is equal to the radial field of the spheromak. At
that point the net radial magnetic field, which is responsible for the axial confinement of the

particles, is zero. The self flux threading the ring is approximately
§s = wR7( B. (83)

Next, assume that this flux passes through half of the ring axial cross section at the ring

radius; so that

6, = 2R, (%) B, (84)
where a, is the axial cross-sectional width of the ring. Finally, use the divergence free nature
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of the magnetic fleld to estimate the radial field of the spheromak in terms of the axial

derivative of the axial magnetic field
B®® ~ —R,0,B°". (85)

Using the above three expressions, the spill-out condition can be given in terms of the

strength of an incoming weak ring below which the particles will spill out of their self fields
(c = —5-0.B;". (86)

Four runs illustrate the above behavior. The basic configuration of the runs has been
described above, while the specific characteristics of each run are given in Table 6. The
initial field reversal factor of the run is (; the axial position of the ring at injection is Zo;
the initial value of trangslational velocity is v,o; the initial value of the critical field reversal
factor is (q; NABS is the percenta,ge.of particles which are absorbed at the right hand wall
after the ring coalesces with the CT.

For RUN#1, the ring was initialized with a translational velocity so that the particles
immediately separated from the self flelds, and coalesced with the spheromak. For RUN#2,
the ring was initialized with no translational velocity, but its self fields were sufficiently
weak, and it was close enough to the spheromak so that spill out occurred immediately.
In contrast with this, the ring self flelds for RUN#3 were stronger so that (,/¢{ < 1, and
the point of injection was further fr01'n the spheromak so that the ring had to move some
distance before spill out occurred. RUN#4 was similar to RUN#3, except that there were
fewer particles in the ring ({./¢ > 1), so that spill out occurred immediately. The time
development of RUN#3 is illustrated in Figure 14(a) and (b). Plot (a)shows the poloidal
magnetic field lines. The self ﬂeld perturbation can be seen to travel with the ring, and is
then left behind after spill out occurs. Plot (b) shows selected ring particle positioﬁs in the

(r,z) plane as the ring moves closer to, and is then trapped inside the spheromak. Figure 15
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shows an axial cross-section of the potential H* at the ring radius before (solid line), and
after (dashed line) coalescence. After spill out, the magnetic field perturbation convects
away, and the potential restores almost to its initial state. This represents a barrier to the
return of individual particles to their initial positions.

Figure 16(a) and (b) shows plots of the average ring translational speed, normalized to
the Alfvén speed, against time. Plot (a) shows the velocities for RUN#1 and 2, while (b)
shows the plots for RUN#3 and 4; the plots (a) and (b) are separated for clarity only. The
plots for RUN#1, 2, and 4 show that the rings are never confined by their self fields. For
RUN#1, the ring was injected with a large translational velocity, while RUN#2 and 4 and
¢ < (.. For RUN#3, the ring builds up axieﬂ speed steadily, and only exceeds the Alfvén
speed late in the run when it enters the spheromak.

The number of particles absorbed at the right hand wall is a measure of how well the
ring coalesces with the spheromak. The RUN#3 can be directly compared with RUN#4.
Figure 17(a) and (b) shows the initial accessible area in the poloidal plane for thesé two
runs. The ring in RUN#3 is stronger and therefore the particles lose more energy due to
the creation of the field energy. This leads to a reduction in the poloidally accessible area
compared with RUN#4. Comparing the kinetic energy of the two rings on initialization
(after their self fields have formed), the particles in RUN#3 have 10% less energy than
RUN#4. In RUN#4 the ring was weak enough so that spill out occurred immediately; the
particles performed essentially single particle orbits, and the accessible area of these, by
reason of their higher initial energy, includes the right hand wall.

The improved confinement of ring particles in RUN#3 seems to arise from their sitting
at a lower H* contour due to the creation of self fields. A second phenomenon might be
operating. The increasing axial width of the ring as it enters the spheromak means that it
is unlikely to tunnel, with its self fields, through the potential barrier to the wall. Note that

while spill out occurred early in RUN#2, the small number of particles absorbed at the wall

30




is due to the initialization of the ring close to the spheromak with no axial velocity, so that

the accessible area was smaller.

V. Conclusion

We have completed a numerical study of ion i‘ing dynamics in highly conductive plasmas.
For the translation of a ring in a uniform axial magnetic field faster than the Alfvén speed, a
slowing down length z4 = (a,/4¢)v’/(v3v?) has been derived analytically, and verified us-
ing the hybrid particle code CIDER. We have also considered the dynamics of weak (<1
rings in the vicinity of a field reversed configuration. The results agree with the conclusion
of a previous paper by the present authors” that a stronger incoming ring in more effective
in terms of the number of particles that are ultimately confined. In particular, if the trans-
lational energy of that ring is greater than (ko (where &y is the theta kinetic energy) then
the ring will be unconfined. In that case, one way to improve the situation would be to
translate the ring over one of the relevant collisional or collisionless slowing down lengths,
as discussed in Sec. IIC, before attempting coalescence. In a highly conductive plasma, an
added aspect is that a ring that translates with its self fields will travel not faster than the
local Alfvén speed. This is true up to the spill out position where the field reversed factor
equals a critical value, (; = (a,/B;)d,B,. Beyond that point the dynamics are described by
single particle orbits in a static magnetic field.

Recently an experiment on translating ion rings in conductive plasmas has been com-
pleted at Cornell University.'® Magnetic oscillations that are characteristic of magnetosonic
(Alfvén ) waves were observed. The energy that was transferred between the beam and
plasma was consistent with the expression derived by Peter and Rostoker,!* however the
field reversal factor was sufficiently small (¢ ~0.01) so that no unequivocal statement could
be made as to which of the resistive or Alfvénic slowing down lengths was operable.

Finally, we note a difference between the above slowing down mechanisms and the process
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by which a ring is reflected from a magnetic mirror. In the latter, the particles at the front of
the ring may be reflected, but the field perturbation that they generate may allow subsequent
paiticles to pass through. In the case of the Alfvénic or resistive slowing down mechanism,
the particles in the front of the ring may pass out of the system while succeeding particles are
slowed down. The apparent paradox is resolved by recognizing that in both cases the first
particles perform. single particle orbits; the latter particles have orbits that are determined

by both the external and the self consistent magnetic fields.
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Figures
(1) Physical setup of a translating ion ring in an external magnetic field Bo.

(2) Particle positions for the base slowing down run (a) ¢t = 0 (b) 0.5, (c) 1.0, (d) 1.5 (e)
2.0 () 2.5pus. Also (g) shows the perturbation due to the self field of the stationary

ring.

(3) For the base run, plots of (a) ion ring axial translational energy and (b) theta kinetic

energy against time. Plot (c) shows v? against the axial position (Z) of the ring. -

(4) (a) Plot of 2, against log(v,0/v4). The dashed line is the gradient taken from Eq. (46),

(b) Plot of log(zs/24) against v,0/va.
(5) Numerical check of the scaling laws indicated by Eq. (76).
(6) Plot of the single-particle average axial velocity against the theta magnetic field strength.
(7) Plots of the magnetic field and particle energy.
(8) Selected ion-ring tracer-particle trajectories in the r — z plane.

(9) The quantity (v,/v,0)* versus Z for slowing down in the presence of axial and toroidal

magnetic fields.

(10) (a) Poloidal magnetic field lines, and (b) contours of theta magnetic field for a sphero-

mak surrounded by current-free magnetic fields.

(11) Contours of the potential H* for a particle that is injected at » = 75 cm. a large

distance away from the spheromak (H* |_, = 0.77 MeV, H* | . = 0).

(12) Single particle trajectories in the (r,z) plane, in the vicinity of a spheromak. The

separatrix of the spheromak is indicated by the broken half circle. The axial point of
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injection is z; = 70 cm., and the radial points are r; = (a) 35, (b) 45, (c) 55, (d) 65,
(e) 75, (f) 85, (g) 95, and (h) 105 cm.

(13) Contour plot of the potential H* for a spheromak with a weak ring (¢ = 0.25) nearly.

(14) The coalescence of a weak ring (( = 0.25) with a spheromak: (a) poloidal magnetic

field lines, and (b) ring particle position.
(15) Axial cross-section of the potential H* at the ring radius Rj.

(16) Ring translational velocity divided by the Alfvén speed for (a) (A) RUN#1, and (+)
RUN#2, and (b) (x) RUN#3 ad (V) RUN#4.

(17) The initial accessible areas in the (r,z) plane for (a) RUN#3, and (b) RUN#4.
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Table 1: The measured slowing down length zg compared with the theoretical estimate z4
for various values of the ratio of the initial translational ring velocity to the Alfvén speed.

RUN # | v,0/va | 24 (cm) | 25 (cm)

1.0 0.06 6.7
2.5 2.30 18.0
5.0 36.7 77.0

8.0 240.0 257.0
10.0 587.0 533.0
12.0 | 1220.0 | 1024.0
14.1 2320.0 | 1690.0

~J| O O ] o] DO

37




Table 2: Simulation results showing the power law dependence of ring deceleration on various
physical quantities.

Theoretical | Measured
Quantity | Exponent | Exponent

Ny 1 1.1
By 4 4.3
ay -1 —1.1
ay 0 —0.24
V20 -2 —2.4
Ny -1 —1.04
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Table 3: Summarizing the results of the slowing down runs with an externally imposed theta
magnetic field.

RUN Bg/Bz f 5Eb 5% /ZC’UAAt ZL"U%AZ&/QZ

00 (1.0 |1.0 1.0 [ 0.17 0.67
025 |1.22]1.30| 10.0| 0.19 0.77
0.5 |1.47]1.83|106.0]| 0.25 1.00
1.0 [2.03 251 |240.0 | 0.40 1.64
—0.25 | 0.80 | 0.83 1.5 0.19 0.77
—0.5 10.62 | 0.69 7.8 0.25 1.00
—1.0 [0.33(0.80| 45.0 | 0.40 1.64

| S O i | W Do
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Table 4: A summary of the measured slowing down length compared with the calculated
slowing down length for RUNS #1, 2, and 5.

RUN | z4 (em) | zs (cm) | « (1 + %A)

1 650.0 604.0 [1.0 | 1.0
533.0 454.0 | 0.75 | 0.82
S 767.0 632.0 |1.05]1.18

[\
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v

Table 5: The measured slowing down lengths zg compared with the calculated value z4 =
2.29 cm. Note that zg is measured by plotting v; against z and taking the appropriate scale
length in accordance with Eq. (44) Also, the quantity k,c/w; is varied by changing . or by
altering n,/m; while keeping the ratio n,m; constant. The last column shows AB which is
the perturbed theta magnetic field energy divided by the perturbed poloidal magnetic field
energy. The ratio v,0/v4 is equal to 2.5 for these runs, and y is the proton mass.

RUN | azn | np x 10%8 | myp | kye/w; | z5/za | AB

30.0 | 5.0 1.0 0.67 | 7.95 |0.12
30.0 | 16.0 V10| 6.7 | 4.66 |0.17
1.0
V10

7.5 | 8.0 26.8 2.10 | 0.31
7.5 |16.0 134.0 3.23 | 0.55

>l w|o|—
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Table 6: A summary of important characteristics for the case where a weak ring coalesces

with a CT.

RUN | ¢ | Zo | &/C | vso/va | NABS %
T [025 [150.|0.41 500 |25.0
2 10125 |175. [ 1.21 | 0.0 3.0
3 025 |120.]0.3L] 05 5.0
Z 005 |120.]1.55| 05 |520
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