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This work considers three aspects of ion-temperature-gradient driven tur-
bulence (“n;-turbulence”) in tokamaks, and the transport it causes.

Chapter Iis a primer for those not familiar with the basics of this instability.

Chapter II presents a theory of weak 7;-turbulence near the threshold of
instability. The model considers kinetic ions and adiabatic electrons in a sheared
slab geometry. Linear theory shows that for n;; < ni S+ (1+1/ 7)Ln/L,
(where n¢, = 0.95 is the instability threshold and L,/Ly < 1)theny €« wand a
weak turbulence theory applies. The nonlinear wave kinetic equation indicates
that ion Compton scattering is the dominant nonlinear saturation process. The
wave kinetic equatioh is reduced to a differential equation for the spectrum, from
which it is shown that the energy scatters to the linearly stable low ky, modes.

The resulting spectrum of fluctuation levels (peaked about k p; ~ 1) is much
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lower than that suggested by naive extrapolation from the strong turbulence
regime. The resulting ion thermal conductivity is also extremely low, so that
strong ion heating can be expected to drive the ion temperature gradient to a
level where this weakly turbulent threshold regime is surpassed.

Chapter III develops a theory of diffusive momentum transport driven by
n;-turbulence, in order to investigate the relation between momentum and ther-
mal transport in neutral-beam-heated tokamaks with subsonic toroidal rotation
velocity. The associated ion thermal diffusivity, x;, is identical to the kinematic
ion shear viscosity:
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In addition, the instability and level of n;-turbulence is enhanced by radially
sheared toroidal rotation. Thus, a scenario based on velocity shear enhanced ;-
turbulence is consistent with the experimentally observed relationship between
thermal and momentum confinement.

Chapter IV is a study of n; turbulence in the presence of flat density pro-
files, relevant to the high confinement discharges (“H-modes”) on the D-III-D
tokamak. Fluid theory predicts that as the density profile is flattened the ion
thermal transport increases, reaching a plateau beyond the point L, > /I, L.
From this, We conclude that straightforward application of the fluid theory is
not suited to explain the observed improvement in energy confinement, and it
may be necessary to invoke kinetic threshold effects as expldred in Chapter II.

Chapter V is a summary of this work, and a list of suggestions for further

investigation.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis consists of three studies of ion temperature gradient driven turbu-
lence (“n;-turbulence” for short) in limits not considered previously. This work
is part of a greater effort, ongoing since the éarly 1950’s, to understand how
plasmas transport across strong magnetic field lines as fast as they are observed
to. The heat loss in fusion plasmas has generally been much faster than the
traditional collisional (classical and neoclassical) theories predict, thus limiting
the accessible temperature range to below that needed for energy breakeven.
This is a major obstacle in the quest for economically feasible fusion energy.
Traditionally, attempts to explain anomalous thermal transport have
focused on electron dynamics (with ion transport assumed neoclassical), owing
in part to the fact that electron temperatures in a plasma are much more easily
measured. However, beginning in the mid 1980’s, direct measurement of ion tem-
peratures has become possible (through active charge exchange spectroscopy ),
leading to the conclusion! (from méasurements on D-IIT) that ion heat transport
is often comparable to that from electrons, and a good deal larger than predicted
by nea.classi;:al models. The underlying mechanism of the anomalous transport

was not well understood. At the same time, experiments on ALCATOR-C gave
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the first indication that the n; mode (which was developed theoretically in the
1960’s) was linked to significant thermal transport in tokamaks.? This mode,
described in further detail in Section 1.2, is basically a sound wave destabilized
when the ion temperature gradient is steeper that the density gradient. Ion
transport was suspected to underlie the degradation of energy confinement in
ohmically heated plasmas at high densities, since in this regime the ohmically
heated electrons transfer their energy to ions most rapidly. Following the suspi-
cion that the anomalous ion channel was relatea to the n; instability, hydrogen
pellets were injected into the plasma, which tend to steepen the density gradient
(which inhibits n; transport). The experiment was a great success, with anoma-
lous transport decreasing after the pellet injection, thus dramatically increasing
the Lawson product nrg into the breakeven regime. This provided the first
experimental evidence for the existence and importance of 7; modes.

More direct observation of n; turbulence came on the TEXT experiment
in 1986.3 Laser scattering measurements indicated density fluctuations propa-
gating in the direction of the ion diamagnetic drift (opposite to the more usually
observed electron diamagnetic propagation), becoming large in the high density
regime, just as predicted by the 7; theory. Furthermore', these fluctuations van-
ished after pellet injection, in accord with expectations based on experience from
the ALCATOR-C experiments.

The above both concern ohmically heated plasmas. Evidence for the

presence of 7; modes in beam heated tokamaks in low energy confinement (“L-



mode”) regimes is given indirectly by the common observation that momentum
and thermal confinement times tend to be the same, with similar scalings.*5
This suggests that a common mechanism underlies the transport of both, and a
detailed analysis (Which is the subject of Chapter III) shows that the n; theory
indeed predicts this result.

| The above is rather compelling evidence for the presence of 7; modes in
tokamaks. However, the existing theories are rather limited, neglecting a large
number of effects which are potentially important in tokamak regimes. Thus,
while the gross features of the theory have been more or less confirmed, more

detailed issues remain to be addressed

1.2 Basic Description

Here, I outline the simplest possible scenario for transport from the n; mode,
from the local fluid instability to turbulent transport, with emphasis on the
underlying physical picture.

In its most basic form, the n; instability is a sound wave propagating

parallel to the magnetic field, and destabilized by a radial ion temperature gra-,

dient. To demonstrate this, we consider an infinite, strongly magnetized plasma
with magnetic field B= B2, and the density ny and ion temperature T} varying
in the z direction (representing the radial direction in a tokamak). We assume
the usual scale separation in time and space dimensions, so that fluctuations

may be described as evolving on a stationary background with constant gradi-



ents. Thus, the ion dynamics are described by the density, n; = no(z) 4+ 7;(%),
the parallel velocity, v = 9|/(Z), and the pressure, P; = Pyi(z) + p:(Z). The
perpendicular ion motion is given, to lowest order, by g = %l; X VqﬂS, where
b=F /By and @ is the electrostatic potential.

The ion dynamics can best be seen by retaining only a few terms in the
linearized fluid equations. (Thes‘e also emerge as the largest terms after a more
careful ordering.®) Ion density evolves by parallel compression and perpendicular

convection along the density gradient.

on;
ot

+ %(8 X ng) - Vng + n0V||17|| =0. (1.1)

The parallel ion motion is driven by pressure fluctuations:

%%ﬂ _ _Y_pﬂoﬁ, (1.2)
Pressure fluctuations are caused by E x B convection along the equilibrium
pressure gradient (where adiabatic corrections are negligible),

9p;

c . .
S+ 20 x V) VR =0, (1.3)

Electron dynamics are relatively unimportant, and may be taken as adiabatic,

along with the quasineutrality condition:

’I’:Le =n0§$ =’;:Li. (14)
e

Taking the fluctuations to be of the form exp(ik-& —twt), then Egs. (1.1)-

(1.4) yield the following dispersion relation:

2 <1 _w ) 12 T; no dPy;/dz (1.5)

Wae W, Po; dng/dz’




where wy, = _%%. When |w| < |wye|, this has the purely growing solution

w= ik”’ui(l + 7‘]5)1/2, (1.6)

where 7; = dInT;/dIn noi, pi = n;T;, and v; = T;/m;. In this most basic form
of the growth, it is evident that the n; mode is a parallel sound wave (since vy
is driven by pressure fluctuations) and destabilized by the ion pressure gradient
(since growth is proportional to dPy;/dz).

To understand the instability physically, we consider Figure 1, with the
geometbry and gradients as given for Egs. (1.1)-(1.3). A slight pressure fluctua-
tion, arising spontaneously, will drive a parallel veloéity fluctuation, by Eq. (1.2).
The V9| compression then gives rise to 7; by the continuity equation, and thus
gg from quasineutrality and adiabatic electron response. The <Z then feeds back
to the pressure equation, convecting higher pressure fluid down the gradient and
reinforcing the initial perturbation. (For the low frequency regime that yields
Eq. ( 1.6), the 7i increase, produced by pa,ra.llel‘ compression (at a rate of w), is
quickly relaxed (at the rate of w,. ) by the E x B convection along Vng, although
the small 72 that remains is sufficient to produce a gg with significant effects).

It is interesting to note that compression, while generally considered
to be a stabilizing effect, here exerts a purely destabilizing influence. This is
because for the low frequency mode considered here, the sound wave produces
negative compressibility relative to the radial density convection in Eq. (1.1), and

the mode is effectively mass incompressible, V+(n;;) o~ 0 This serves to maintain
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FIGURE 1.1: Physical picture of the local 7; instability mechanism.



the destabilizing dynamical effects of the parallel sound wave fluctuation, while
minimizing the energetically stabilizing effects of compression.

This physical picture also illustrates how diffusive thermal transport
arises from this instability, which comes from the convection of higher pressure
fluid down the gradient. This transport is described by the ion heat flux,

g = (VE.Bi) (1.7)
where (.. .) represents an ensemble, time, or space average. Thus, the same phase
relation between ¥z, and p; that produces instability will also yield diffusive heat
transport. For the simple picture given here, these two quantities are completely
in phase, and heat transport is maximal. However, the other two fluid quantities,
mass (i) and parallel momentum (proportional to ) are 90° out of phase with
Ug, and not transported. Phase shifts here can be provided by additional effects
such as nonadiabatic electrons (transporting particles), or a velocity shear flow
(which is the subject of Chapter III).

This linear picture implies that the instability simply grows until the
free energy source is exhausted. In reality however, after sufficient growth, non-
linear terms become important, and the linearized equations are no longer valid.
The nonlinear terms do a number of things to the exact dynamics of the modes,
but considerable simplification can be gained from the fact thatnwe are 'only
interested in the effects which .persist when averaged over the long time scale of
transport. With the assumption that no long lasting phase relations build be-

tween different modes (the “random phase approximation”), then the dominant




contribution of the convective nonlinearities is diffusion of the phase coherent
part of the fluctuations. Energetically, this nonlinear diffusion is a consequence
of the transfer of excitation between different modes, but it can also alter the
dynamical structure of the individual modes, although this latter effect has not
been well explored. Linear growth shuts off as energy from the unstable modes
couples to stable modes and is dissipated. In such a scenario (if it is dynamically
allowable), the final outcome is a saturated spectrum of modes, all fluctuating
in amplitude but remaining within a constant probability distribution (ie., the
saturated turbulent spectrum). The aim of a nonlinear theory is to calculate
the saturated spectrum, or at the very least estimate its amplitude, for use in
the turbulent heat flux calculation, Eq. (1.7). Short of this, a “mixing length”
estimate is commonly used,” which in the present case is given by k1 p ~ V| P;.
This is based on the argument that the growth shuts off when the gradient that
feeds the instability is balanced by the gradient of the fluctuations. While this
estimate often agrees with more detailed nonlinear calculations in ca.seé where
the mode structure is not significantly altered in the nonlinear stage, it does
nothing to resolve the dynamics of the nonlinear evolution, which can be signif-
icantly different. In general, this kind of detailed question can be answered only
by bypassing the mixing length assumption, and considering the nonlinear equa-
tions directly (through numerics or through clos-ure schemes such as the DIA®).
In the case of the fluid n; mode, it has generally been found that the mixing

length predictions persist in a more thorough analysis (except near threshold,



as in Chapter II), but one can never be confident of thisva priori. In other cases
(such as the nonlinear rippling mode®) the nonlinear dynamics have been found
to be fundamentally changed.

Tugbulence models like this give the local transport for a fixed set of
profiles, but they are limited in two respects. First, experiments generally mea-
sure only global confinement parameters, which depend on a variety of transport
mechanisms acting at different locations, and so only the crudest comparisons
are possible analytically. Second, since the levels of transport contribute to
determining the profiles, the model is not self consistent until the resulting pro-
files are known. To check both of these, it is necessary to use a transport code
that combines this and other transport coefficients (assuming they are known! )
with sources and sinks to predict the steady state profiles. Since this is the
only method available for quantitative comparison of transport coefficients with

experimental results, order of magnitude and qualitative comparisons (such as

scalings, or relative levels of x;, x., D, and X) tend to be more persuasive.



1.3 Additional Effects

Section 1.2 presented the most basic scenario of the fluid, unsheared, slab n;
mode dynamics and induced transport. Obviously, this is highly idealized, and
the influences of a large number of other effects have been, and are being, con-
sidered. Here, I briefly review some of the more important effects.

Magnetic shear, whereby the poloidal component (~ y direction) of B
varies radially, is a feature common to most magnetic fusion devices. This results
in a kj that varies with 2, and since the dynamics are quite sensitive to k|, this
serves to give the mode a radial structure.®

Perpendicular compression generally has a stabilizing influence, oppos-
ing V}9) and thereby shutting off the potential fluctuations that destabilize the
mode. For the sheared slab modes (considered exclusively in the chapters that
follow), perpendicular compression is provided by the polarization drift,® which
acts to shield the potential fluctuations, and thus determines the radial mode
width.

For toroidal geometry (with varying |B| and curved field lines), per-
pendicular compression can come from the lower order curvature drift, which
tends to obscure the sonic nature of the mode. However, the mode remains
unstable from the concomitant introduction of bad curvature, but with a bal-
looning structure rat‘her that the quasi-slab structure of the sound wave.®:11 A

fokamak will generally be somewhere between the slab and toroidal regimes,

depending on the strength of the magnetic shear, §/g, where § = dlng/dInr
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and ¢ = rB,/RBy is the safety factor.

Landau damping is negligible so long as |w| > kjv;, but for higher k|
or lower |w| (which occurs as the mode approaches threshold) this condition
no longer holds. As it turns out (for the slab-like modes) when n; > 1, the
mode is centered on a region of low kyj, so that Landau damping is negligible
(and the fluid picture is valid). However, as n; — 1, this is no longer the case,
and the mode rapidly becomes stabilized.!? Thus, while the fluid picture incor-
rectly suggests that the mode is stabilized at n; = —1, the true threshold with
Landau damping is 7; ~ 1. One might note that the mechanism of Landau
damping for n; modes vis different from the usual picture of flattening of the
velocity space distribution. For n; modes, the distribution of resonant particles
changes through radial E x B convection along the spatial gradient of the distri-
bution function. Resonant particles see a constant electric field, and hence are
convected in one radial direction only, whereas nonresonant particles oscillate
radially at various frequencies (and thus transport only statistically averaged,
fluid quantities). Thus, Landau damping (or growth) comes from the response
of ¢ to the changing number of resonant particles.

The eigenmodes with [ > 0 (where [ is the radial modenumber) are
generally ignored in most studies. However, for sufficiently high n; these modes
are both more unstable and broader than the I = 0 mode, with both effects

yielding a higher quasilinear diffusion rate. While this effect has been studied??

for modes of a given [, a fully nonlinear theory which takes into account Landau
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damping and nonlinear coupling of different radial eigenmodes has yet to be
developed.

Magnetic field fluctuations (“finite 3 effects”) do not have much influ-
ence on the 7; instability for 8 < 1, since in this limit B is too feeble to alter
the magnetic field lines enough to influence ion motion.'® Electron transport,
however, can be greatly influenced by much smaller B, and this effect in the
strong turbulence regime is an area of current research.4

Near the threshold of the instability, the growth rate becomes less that
the real part of the frequency, and the strong turbulence of the fluid regime
changes to weak turbulence. Accompanying this transition, Compton scattering
replaces triad resonances as the nonlinear saturation mechanism, resulting in
much lower saturation and transport levels as the threshold is approached. This
is the subject of Chapter II.

When a sheared velocity field parallel to the magnetic field is introduced
(as when a tokamak is heated by tangential neutral beam injection), there are
two important effects. First, the growth rate is enhanced from the effect of the
shear flow as a free energy source. Second, a phase shift is introduced between
the parallel the radial velocity fluctuations, allowing a radial flux of parallel
momentum, which can be parametrized in terms of a positive definite turbulent
viscosity or momentum diffusivity. This is the subject of Chapter III.

In the limit of no density gradient (as purported to be the case for H-

modes on the D-III tokamak?!5) the nonlinear and linear theories must be revised
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somewhat to account for mass compressibility entering the basic dynamics of the

mode. This is the subject of Chapter IV.
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CHAPTER II

ION TEMPERATURE GRADIENT DRIVEN TURBULENCE

NEAR THE INSTABILITY THRESHOLD

2.1 Introduction

In recent years, ion temperature gradient driven turbulence® (“n; turbulence”)
has become a promising explanation for the anomalous ion heat loss observed
“in tokamaks.!” Most basically, the theory predicts that when the ion temper-

ature gradient is steeper than some threshold value (parametrized by n; =

dln T}

dln o

> nen = 0.95 in the simplest version of the theory'®), the mode is desta- -
bilized and the resulting fluctuations cause ion heat conduction (parametrized
by x:). This feature can qualitatively explain such experimental results as the
improved energy confinement (7z) which accompanies pellet injection,? and the
7p degradation that accompanies neutral beam heating of low confinement (“L-
mode”) plasmas.’® Other successful qualitative predictions include the turbulent
density fluctuations propagating in the ion drift direction observed in TEXT
tokamak,? and also the equality of momentufn and thermal confinement times
for neutral beam heated tokamaks.®?0:2! Quantitatively, strong turbulence the-
ory predictions’® of x; (valid in the “Auid limit” of n; > n¢s, where wave-particle
interaction is negligible) are easily large enough to account for the anomalous

heat loss observed.
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With these strong indications of the relevance of the basic theory, the
more detailed issue of self consistency arises. For the fluid regime, this requifes
that the predicted y; establishes an ion temperature profile consistent with the
assumption that n; > ny,. To examine this, a transport simulation has been
performed,?? vs;hich lets the profile evolve under the influence of the fluid regime
Xi, combined with other sources and sinks of ion heat. The vanishing of y;
at the instability threshold (not accounted for by the fluid regime formula) is
modelled by interpolating between the fluid regime (for n; > n:,) and 0 for
n: < M- Results show that this y; is large enough that the ion temperature
gradient cannot steepen significantly above threshold, and remains well below
the fluid regime level (even with strong ion héating present). However, the
validity of using the fluid y; for the threshold region is by no means clear, since
the character of the instability changes quite a bit as threshold is approached.
Thus, in order to determine whether the regime of fluid theory is accessible, a
separate theory is required to resolve the transport in the threshold regime.

Previous linear studies!®:2%:24:25 have determined the location of the
threshold analytically, and investigated the growth rate near threshold numeri-

cally, but very little analytical theory valid near the threshold has been devel-

~oped. Construction of a rigorous linear theory of these modes is complicated

by the facts that stability comes from ion Landau damping (requiring kinetic
theory), and that near threshold the last unstable modes have k) p; ~ 1 (leading

to nonlocal interaction). The nonlinear and transport behaviour of the n; mode
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near the threshold has naturally been even less well understood. There have
been mixing length estimates of the quasilinear y; near threshold,?® but this
approach leads to spurious results (such as a fluctuation level of ¢ ~ 1 /kiL,
which does not vanish at threshold). A reliable prediction requires more careful
consideration.

The difference between the fluid and threshold regimes, in addition to
linear Landau da,mping,‘ involves several important changes in the nonlinear be-
haviour. First, as the growth rate becomes lesé than the frequency, the strong
turbulence approximations of the fluid regime become invalid, and a transition
to weak turbulence ensues. Commonly used estimates such as e¢/T ~ 1 JkiL
to find saturation levels, and D ~ /k? for transport, .apply only for strong tur-
bulence, where the nonlinearities are large enough to balance the linear terms.
For weak turbulence (where the nonlinearities are small), a calculation based
on the wave kinetic equation is necessary to obtain reliable predictions. Sec-
ond, the frequency broadening of strong turbulence becomes negligible, and the
triad resonances that are automatically allowed in strong turbulence for match-
ing wavevectors (l—c' =k +E ) must satisfy the additional constraint of linear
frequency matching (w; = wg, +wy,, ). Finally as linear wave particle resonances
grow more impoftant, nonlinear wave-particle interaction becomes a more ef-
fective saturation mechanism. A weak turbulence expansion is appropriate for
considering these changes.

This chapter presents a theory of n; transport near-the threshold of in-
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stability, with an emphasis on weak turbulence theory. We consider the usual
paradigm model of sheared slab geometry with gyrokinetic ions and adiabatic
electrons. The linear theory uses an eigenmode analysis for the real part of the
frequency (for v =~ 0), and a local approximation to find the growth rate. This
technique retains the essential features and orderings of the threshold regime, but
is also simple enough for construction of a tractable nonlinear theory. The non-
linear theory follows the weak turbulence expansion, whereby the linear modes
are substituted iteratively into the nonlinearity (which is smaller by an approx-
imate factor of y/w). This leads to a wave kinetic equation, describing the
evolution of the spectrum as a balance of linear growth and nonlinear scatter-
ing and damping. This is solved for the saturated spectrum, which is used to
calculate the turbulent ion thermal flux.

The principal results of this chapter are the following:

1. When nyp <mi < + (1 + 1/7‘)%—’:, (where n;, = 0.95
and L,/L, < 1), then v < w and a weak turbulence
expansion applies. |

2. Linear theor;;r shows that near threshold, the modes
that are unstable have frequency w ~ (L,/Ls)?wys,
linear growth rate v ~ (L, /Ls)(n: — nc)wsi, and width
Ay ~ p;, where n, is the k) dependent threshold. Fur-
thermore, only the | = 0 radial eigenmode mode is

unstable at threshold.
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3. The frequency is very dispersive, ddlln% # 1, and there-
fore wave-wave interactions and turbulent shielding are
negligible in this regime.

4. Nonlinear saturation of the instability occurs through
ion Comptoﬁ scattering to the lower k, modes, which

are stable. The resulting spectrum is given by

() -2 2 (5 (2)
T; m \rd n; Ly L,
where I(b) is a spectral intensity function of b = kZp3,
which vanishes at threshold and is concentrated about
b =1 (Fig. 2.2 and after Eq. (2.29)). The coefficient of
- I(b) is smaller that that for n; > n,; by a factor on the
order of (L, /L)% < 1.
5. The ion thermal conductivity from turbulent E x B

convection is given by

A+ 1/n)? (Lr\? s
XZ_Nth 2\/;; ‘L,‘9 Ls

where Ny, is a threshold dependent function of 7; given

by Eq. (2.35) and shown in Figure 2.3. The magnitude
of x; is less than an extrapolation from the n; > ny,
regime by a factor on the order of (Lr/L,)? < 1.
The remainder of this chapter is organized as follows. Section 2.2

presents the basic model and equations used in the theory. Section 2.3 de-



velops a simple semi-local linear theory (frequency, growth rate, and basic mode

structure) valid in the neighborhood of the threshold. Section 2.4 develops the

nonlinear theory, including derivation of the wave kinetic equation, which is an

integral equation for the spectrum. This equation is solved approximately for
/

the saturated spectrum. Section 2.5 outlines the derivation of the ion thermal

conductivity, x;. Section 2.6 contains a short summary and conclusions. Also of

interest are Appendix A, which addresses the stability and growth of the [ > 0

radial eigenmodes, and Appendix B, which addresses the stability of the flat

density modes (L, /L, — o).

2.2 Basic Model

The goal of this work is to develop only the framework of an analytical theory of
the n; inétability near thé ‘threshold. The essential features of the n: instability
are the drive from the ion temperature gradient, ion Landau damping (from
magnetic shear) and thé nonlinear £ x B drift, which determines mode coupling

and transport. These are described in our model by the nonlinear electrostatic

1ion gyrokinetic equation®? with adiabatic electrons, in a sheared slab geometry,

with all inhomogeneities (density, ion temperature, and magnetic shear) in the

- radial (z) direction.

In a sheared slab model, the magnetic field is B = B, (34 (z/Ls) §).
There are density and ion temperature gradients in the z direction, characterized

by L, and L7, where —dno/dr = ng/Ly, and —dT;/dr = T;/Lr. In general,
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we consider the regime Ly ~ L, < L, usually true for tokamaks. (We also
consider, in Appendix B, the stability of the L, > L, “fat density” case, which
may be relevant to H-mode discharges.) Since all inhomogeneities are radial,
‘then linear perturbations have the form f(x)exp (—iwt + tkyy + ik,z). The
modes are centered about the point where E-B = 0, which in the closed field
line configuration of the tokamak is allowable only on rational surfaces, = 8(1?)
The point z = 0 is chosen at the rational surface of the “test mode”, so that
k| = kyz/Ls, and for the “background modes” (which are nonlinearly coupled
to the test mode) ky' = k,/(z — xs(E’))/Ls = k,z'/L,. The mode has low
frequency, w S wy;, radial width on the order of pi (since the broader modes are
stabilized by Landau damping), and has phase velocity w/ kj S v; over most of
the mode.

In the gyrokinetic model, electrostatic ion dynamics are described by
the pvhase space distribution function F (7, 7,t) = Fy(z,v) + f(F, 7,t), where Fy
is a local maxwellian (i.e., with ng (z) and T; (z)), and f is the rapidly varying
part of the distribution function. The nonadiabatic part of f evolves according

to the nonlinear gyrokinetic equation?” in the electrostatic limit:

a . ~ g . mv? 3 kivy eqzk:
(g1t ) o= (5 oo (10 (557 -5) ) ) 2o (22 =

where,
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Jo is the zeroth Bessel function, and || and L refer to the magnetic field direction,
b=F /|B|. The right hand side of this equation describes mode coupling due
to the E x B nonlinearity.

Electrons are taken as adiabatic (7, = nge¢/T.), and Eq. (2.1) is closed

with the quasineutrality equation, i, = f;; or

1+ 1/T)n0 / Bol (“”) R (2.2)

where 7 = T, /T;.

Equations (2.1) and (2.2) describe the 7; instability in both the fluid
(m: > 1) and kinetic (7; ~ 1) regimes. The fluid equations that describe the 7;
instability are reproduced by the velocity moments of Eq. (2.1), in the w/ ky > v;
limit. Close to marginal stability, Landau damping becomes important (w/ky >
v;) and a weak turbulence expansion is applicable (valid in the v < w regime?®).

The latter is the limit examined in the remainder of this chai)ter.
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2.3 Linear Theory

The focus of this chapter is nonlinear dynamics and transport, so what we re-
quire from the linear theory is a simple model that describes the most basic
properties of the frequency, growth rate, and structure of the modes. Several
authors have discussed the linear behaviour of the n; mode near threshold, but
none completely enough for our purposes. Coppi et al'? derived an integral
equation which reduces to a differential equation when k% p? < 1; near thresh-
old, however, the dominant modes have k% p? ~ 1, described by the fully nc;nlocal
integral equation. The physical reason fqr this radially nonlocal interaction is
that the mode is both narrow (A; ~ p;) and slow (w/ws < Ln/Ls < 1).

Thus, correlation across the width of the mode (on an ion transit time scale

- of Ay/v; ~ Q7'), dominates decorrelation over this distance (which occurs,

through shear, on the slower time scale of A;/A (w/ky) > QF'), resulting in
strong nonlocal interaction. However, such integral equations are notoriously
difficult to solve, and so threshold behaviour is generally analyzed with a gy-
rokinetic equa‘.c.ion, Which lends itself to two routes of approximation. First, a,.
local approximation!®?%24 has the advantage of allowing simple élgebraic solu-
tion for w(l—c‘), however it does nothing to resolve the mode structure, which is
important for the nonlinéar theory. The second method is to expand to order
(kzpi)? = p?%, and solve the resulting differential equation either analytically
(directly or With a WKB approximation) or with a shooting code.?> While this

method does resolve the mode structure, for the present case it becomes overly
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complicated when carried out to the order necessary to resolve the weak growth
rate, and furthermore, since it relies on a (k;p;)? expansion for modes which
have width kzp; ~ 1, it is not clear that this complication leads to a more
reliable result than the method described below.

The present analysis calculates for the lowest order mode structure and
frequency (real part only, with |y| < |w|) by an expansion in (k.p;)?, and
ﬁnds the growth rate using local theory. The growth rate of the modes is then
calculated by summing the local growth of the individual parts of the mode,
which corrésponds mathematically to & f[gzzlﬂzdx = f%@g[?dz‘. Associating
the former with the growth rate of the mode, and the latter with the local growth
rate, we obtain the formula:

I Oy |G| e
JZ% 4%

This semi-local mode analysis offers a tractable formulation of the linear dy-

g (2.3)

D)
dz

namics, consistent with the ordering of this regime. The main approximation is
the neglect of detailed nonlocal effects, and it is doubtful that anything short of
solving the full integral equation could account for these properly.

Linearizing Eq. (2.1), Fourier transforming in ¢, solving for 71, and sub-

stituting into Eq. (2.2) produces the following mode equation:
€% (w; + i7E) %E =0, (2.4)

where the linear dielectric function is given by:

w

er (W) =1+1/7 -

o+ 2 (B 1ot 21020, (28)

w e
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Here Z is the plasma dispersion function, and
Czw/\/iv,-k”, v =T;/m;, Pp=e b1, (by), by =k2p? + 0,

b_kyp“ pizﬁ) w:wic'+i7ic'7

I, is a modified Bessel function, and n;! = %+b_1_ (1 - %) is the k&, dependent
critical value'® of n;. It is useful to note here that the ordering in the threshold

regime, which can be verified a posteriori, is
2
wlwe ~ 8%, (~s, n—n.<s,

where s = L,,/L, < 1 is used as a small parameter.
a. Local Analysis

In the local approximation, Eq. (2.4) is solved treating k, algebraicly. |
Assuming that I'y};, < lwgl, we can make the approximation

e (wg +ivg) = ¢ (wp) + i€} (wg) + irgOel/Buwy

(where € = €' 4 i¢’’). With this, and noting that e (wk) comes only from the

resonant part of Z (¢), Eq. (2.4) may be manipulated into the form:

Wyq 2 ReZ
Glg(wﬁ) =P~ 77716 + E;—}I—Z‘ 0, (2.6)

and after some straightforward manipulation,

" R __}_ ‘ p¢ImZ (¢)
eglwy) = ” (7-7: 1 o mCZ) ot CReZ () (2.7)




where p = (14 1/7) /T,.

Expanding Z (¢) for { < 1 (i.e., strong ion resonance), then solving

212 —1
poiky (ni s
wi (k1) = —— (§+n—c 1
Z‘I"ﬁ

?
Wi

Eq. (2.6) yields

w0 (2.8)

where the latter equality comes from the ordering |7; — n.| < s (derived later in

this section from the |y| < |w| requirement) . From the above, it is easy to show

that O¢' /0wy ~ —p/wi and ¢ = v/2pv;iky /niwsi, and then using v = ae';aw we

obtain the local growth rate:

v; |k ; 2 2 vk \ 2
v () = varoilmal [mi 2= )lk”] {_2<p ||>

m: Me niw*z Wy

(2.9)

Equations (2.8) and (2.9) agree well with the numerical solutions of Egs. (2.4)
and (4), treated locally.?® We briefly review their analytical stability criterion,
here exhibited in Eq. (2.9) by the terms in the first set of brackets, which deter-
mine the sign of vz (k). Since the coefficient of k” is positive, then if n; > 7.,
there is a band of k) (centered about k) = 0) for which ~;(kj) > 0. This corre-
sponds nonlocally to an unstable fluctuation centered on the mode rational sur-
face, and stabilized on the edges by Landau damping. If n; < n., then yz(k)) < 0
for all k|, and no instability exists. Figure 2.1 shows n, (b). From this plot, it
is clear that as 7; decreases from the fluid regime, the low k) modes (broader
in z, thus mgre heavily Landau damped) are stabilized. Threshold occurs when

the last mode is stabilized, which occurs for by, ~ 1 and 5. (btn) = 12 =~ 0.95.
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b. Mode Analysis

The most straightforward way to examine the mode structure is to ex-
pand every I', (b1 ) in Eq. (2.5) to order k2 p?, and treat the resulting differential
equation with a WKB approximation. However, this analysis is rather com-
plicated, and defeats the purpose of finding a simple formulation of the linear
theory. A method to circumvent this complication comes from the insight gained
from local theory that the dominant imaginary terms in the mode equation bal-
ance on the average (i.e., the terms which vary as v and as 7— 1, with
all of by, before any expansion). While radial variation of k, leads to some
nonvanishing imaginéry part of the potential function, shooting code analysis
confirms that the effects of this may be neglected to lowest order. Furthermore,
it is not clear that this complication leads to a more reliable result than the
present method, for the k;p; > 1 modes. In the spirit of a semi-local theory, we
shall neglect the imaginary part of the mode equation entirely.

Keeping only the dominant (real) part of Eq. (2.5) with the ordering of
the local theory, taking k| = kyz/L,, and expanding in k. yields:

d2g5~ 1 psiw ~
2 4”0k _psTwsi = :
g 1 — T /T (1 Niwg Pz>¢k (2:10)

where s = L,/ L,, and the argument of T', is b (= kZp?) instead of b, as before.
This is a Weber’s equation, and the general solution is given by the Hermite
functions:

Hi(z/A)exp [-2*/202] (2.11)

-2
>~1
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where A2 = nywr/ps?w,;. Combining this with the dispersion relation, we find:

2 2
wg = w*ip’:. %, (212)
and
2
% = (21 +1) (1 - %) : (2.13)

This we regard as the lowest order structure of the mode, and may be modified
by outward propagation (from €, ignored here) or other effects.
The growth of the I = 0 mode is calculated using Eq. (2.3) with vz (z)

given by Eq. (2.9) (assuming L,/L, < 1), yielding

Lo Ay [ 20 (p—1) (Ln\? A2
")/ic- = \/§U)*ifz'77ipi [‘E - 1 — T _L—: 722:_ . (214)

The stability and growth of the [ > 0 modes is derived in Appendix A. The sta-
bility threshold in the L,/L, — oo (flat density) regime is derived in Appendix
B.

We now discuss ‘the main features of the linear theory. Firsf, it may
seem surprising that A, is independent of L, since k| sets the radial scale.
However, this is also true in the n; 3> 1 fluid limit, where A, is determined by
shielding from the polarization drift, and apparently the present case is simi-
lar. Furthermore, Eq. (2.13) is consistent with the kinetic shooting code results
of Ref. 13, which found that A, depends primarily on I, and not L,/Ly or

ni. Second, the frequency of these modes, given by Eq. (2.12), is just the local

27



frequency evaluated at the mode edge (where kj = k,A;/L,). Third, the insta-
bility threshold of the modes is essentially the same as that of the local theory,
but with a small correction from the last term in the brackets of Eq. (2.14)
(~ (Ln/Ls)?) coming from the fact that modes of finite width cover both unsta-
ble and stable regions at threshold. We shall ignore it for the | = 0 mode, but
for the broader I > 0 modes this correction becomes larger, so that these modes
are not unstable in the 7; & 7. regime considered here (Appendix A). Finally,
in comparison with the 7; > ny and v > w fluid regime, the real part of the
frequency remains on the same order of magnitude in both regimes, w ~ s2w,;
(the frequency in the fluid limit may be checked from the dispersion relation in,
e.g., Ref. 16), while the growth rate changes from v ~ (1 4+ m;)swy; in the fluid
regime o v ~ (n; — 7c)swy; here. That the basic ordering is the same in both
threshold and fluid regimes (except for the 7; dependence) implies that this is
in fact a continuation of the same root.

We have checked the analytical results with a shooting code, which
retains all the imaginary parts of Eqs. (2.4) and (2.5) and expands in k2p? (al-
though this is not necessarily more reliable than the present analysis for the
kzp; >~ 1 regime). Results confirm that the mode is basically gaussian in struc-
ture with width as predicted, albeit a small degree of propagation past the
turning points occurs, typically resulting in A, o (L,/Ln)* with a < 1/4.
In view of this kind of uncertaint'y, in the remainder of the chapter we shall

take 95 ~ 6_22/2A3:, (with A, unspecified and possibly complex), to allow for
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the possibility of unresolved broadening through propagation. (The method
of calculating frequency and growth rate allows for this uncertainty.) When
quantitative estimates require a mode width, Eq. (2.13) will be used.

The exactness of this mode analysis is somewhat uncertain (since we
have relied on an expansion for k2p? < 1), but several qualitative features may

be expected to persist in a more detailed solution. First, the turning points

in Eq. (2.10) would be the same even without expansion in k., since at these

points, k; — 0. The existence of these fixed turning points indicates that even
in a more exact theory there will be a normal mode (as opposed to a convective
mode) whose width is on the order of p; (i.e., the separation of the turning
points). Second,‘the radial quantization (parametrized by [) may be regarded
as a real physical effect, since the modes are radial bound states. Finally, it
is reasonable that only the ! = 0 mode is unstable at the threshold, since the
higher modes are broader, and hence more heavily Landau damped.

The validity of this theory depends on the |y| < |w|

|
assumptions. The former of these gives the strongest restriction. Either by
comparing the 7; and w; of the normal mode, or by requiring in the local
theory'that the region where v (k) > w (ky) (which will always occur at the
mode center, since w k“ while v o k) near the rational surface) occupy a

negligible part of the mode, we obtain the restriction:

1+1/7A; Ly

el < SRy (L4 1/m) R, (215)
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FIGURE 2.1: Stability threshold and weak turbulence regime, where vy < w,

for L,/Ls=0.1, 7 = 1.



This range is plotted in Fig. 2.1. Since L,/L, < 1, Eq. (2.15) means that
the range of 7; covered by this theory is rather narrow. It appears that |w| <
lk”vi| remains true well above this threshold regime, meaning that between the
fluid and threshold regimes there exists a third regime, characterized by v 2 w
(invalidating the present expansion) and |w| < lk”vil (ion resonances). This
regime is discussed further iﬁ Section 2.6.

For a fixed value of n;, Eq. (2.15) limits the range of validity in k, space.
Letting ky = ky crit + 6ky (where ky crir is the marginally stable ky for fixed n;),
then Eq. (2.15) yields:

5 \1/2 1/2
|6k| S \/§1+1/T Lo 2s 0T 2 Ky crit Ln
FO niLs Pi akz ' Ls

In other words, as k, — 0 past ky ci; —6k, the mode becomes strongly stabilized,
so that 7] > |w]| (Fig. 2.1). Hence these low k, modes are not described by our
theory, but they are probably not important in the spectrum energy balance.
This is discussed further in the next section.

Finally, we note that our theory seems to predict instability for the
kypi — oo modes. However, this result is probably unphysical, since at shorter
wavelength, certain stabilizing effects appear which are ignored in this theory,

such as collisional viscosity or electron dissipation.
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2.4 Nonlinear Theory

This section examines the transfer of fluctuation energy from unstable to stable
linear modes, in order to determine the turbulent spectrum. The weak turbu-
lence expansion is used to derive the wave kinetic equation, which is solved to
yield the fluctuation level and spectrum at saturation.

The weak turbulence expansion®® proceeds as follows. Noting that the
linear part of Eq. (2.1) is of order wh, while the nonlinearity is of order ~h
(Eq. (2.21) verifies a posteriori that the saturation amplitude of the fluctuations
is of order ), then for v < w the equation can be solved by perturbing about

the linear solution as follows. For simplicity of notation, we write Eq. (2.1) as

Ll,ihi + L2 Z¢Z = Z C}-;’/,Ell ¢}?Ihi5// (216)

with Ll,E’Lz,E’ and CE',E“ defined from the corresponding terms in Eq. (2.1).

Letting FLE = 71%1) + 71%2) + ..., we have, to lowest order, the linear equation:
L h 4L, 2¢:=0 2.17
Ly ghy” + Ly 595 =0, (2.17)
and to n'* order,

7 (n) _§ : 7. 1(n=1)
Ll,EhE - C]:/,E//¢Elhi;; . (2.18)
e

Equations (2.17) and (2.18) are solved by iteratively substituting ];,%1) into the

nonlinearity of the second order equation, and repeating to n** order. Substi-
tuting fz%‘l) + ;Lg) -+ iz?) into Eq. (2.2) produces
U OIS DR A CRRDUIYS
K k kRN kPR

B4R =F
wl tw!! =w
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222 3 . e -
+ k’—i—k”-{-k’”—-k gl)k// k/;/(w,’ Hl)¢ ¢E”¢E”’ =0 (219)

l+wll+wlll—w

where the symmetrized dielectric functions are given by

JoL,
) (W) =(1+ 1/7) = ik /d%—i =
1,k

J0L2)Eu

T CEI i + (El Ad jl,)

2
6%/)L// (w w”) - /d3 L - = -
’ 1,k k"1, k!

JoL. »

(3) t o __1 3, 2.k

6]}'/’5//,]::/// (w7w y W )_5 d LL L - - L - CEr)E//+E///CE//’E///
l,k 1,k/l+kl’l l,k/II

s (B e B,

where Jo = Jy ( ) Following Ref. 28, Eq. (2.19) may be divided into two
equations. The real part becomes an equation for the frequency and linear

structure of the mode,
e’i; (wp) 7 =0, (2.20)
as examined in Section 2.3. The imaginary part of Eq. (2.19), after some ma-

nipulation, becomes the wave kinetic equation, which describes linear instability

and nonlinear evolution of the spectrum

2
1 EI a '~ 2 ~ |2 2)6'[/ ki (wzl’wk”)( ~ 2. 2
2 awz ot k k/’Ik';::k Sl-k” (wI—C" +wk”)
46 (wk,,wk,,) 2 (wz;, —w};,) L 12 2
+Im B Sl (qb,;,! ‘¢7;‘
;/g‘"f::;: Gg;) (wgn)
w’+w =w
B 112150
— Im Z R —F % w‘%:u%:)%\ (¢z! : (2:21)




where eg) = G’E + ie%’, and wy refers to only the real part of the frequency.
Physically, nonlinear transfer is the result of two processes. First are
three-wave resonances, described by the second and third terms on the righ;c
hand side of Eq. (2.21). This is a transfer of energy between the test mode
E,w and background modes l-c",w' and g",w”, and requires a match of both
wavenumber (l_c' =k + l_c"') and frequency (w = w' 4+ w'"). Although this process

dominates when 7; > 74, (in strong turbulence!®), in the present case it is

much less important. This is because triads of waves which satisfy both &

~and wg matching are rare, since wg, given by Eq. (2.12), is strongly dispersive

( dd]l; ;: # 1), and frequency broadening is negligible for weak turbulence (Aw ~

7 < w). The second nonlinear coupling process is ion Compton scattering

(also known as nonlinear Landau damping), described by the last term on the

right hand side of Eq. (2.21). This is a transfer of energy between two modes

I?,w and &' ,w' which occurs when an ion resonates with their beat wave, i.e.
v = (w—w')/(ky - k). Compton scattering dominates energy transfer in
the threshold regime, accompanying the presence of significant linear wave-ion
resonances. |

Neglecting the three-wave resonance terms, (as well las turbulent shield-

ing, for the same reason) we can write the wave kinetic equation as:

? (2.22)

?

10 c
55 I¢i;|2 = ’)’i: l¢;§|2 + 7z ]¢E

where 'y% is the local linear growth rate, Eq. (2.9), and 7; is the nonlinear
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Compton scattering term:

~ 2
C¢"_‘,
0 =—ImZpl(L X k' )” /d3 vJ2J} (RE' (wz) + Rz_z (wg —w;;,)) T-L
6&);’
(2.23)

where,

k Al
rea(t). e (52)

muy? 3
er, @ wi (14 - 3)
T w = Ky '

Ry (w) =—

In deriving Eq. (2.23), the test mode has been assumed situated at z = 0, so that

'kil > ky — 0. None of the linear theory has been used in deriving Eq. (2.23).

Equation (2.22) suggests that a possible saturation mechanism for the
linear instability is Compton scattering to the lower ky damped modes, which

can dissipate energy. We now discuss several details of this mechanism. First,

the tendency for Compton scattering to transfer energy to lower wavenumbers

will be demonstrated from the form of 7}5 after it has been further refined.
Second, although we speak informally of Compton scattering only in terms of
energy transfer between modes, this is not strictly the case. In the scattering
process, some energy is lost to the scattering ion (in the form of nonlinear
Landau damping), so that the true saturation mechanism is some combination
of scattering and nonlinear damping. However, in either case, the ultimate

sink of wave energy is heating of ions, leading to a net ion thermal diffusion as
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calculated in Section 2.5. Third, Compton scattering is a binary process, and
transfer from k to &' requires that the product &z(:c)q;,-c-,(a:) be nonzero, which in
turn requires finite levels of excitation for both modes (as well as mode overlap).
The finite excitation level for linearly stable modes can be provided by nonlinear
destabilization (i.e., when 7{: +7; > 0), as described by Eq. (2.22). Finally, we
note that that there must be enough modes to cover a given radial interval, i.e.,
> AL > Ar. Estimating the mode width as p;, and noting that the number of
modes between r and r + Ar with poloidal modenumber m is, on the average,
m/q(r) — m/q(r + Ar) (where ¢ is the safety factor and § = dIn g/dlnr), we

find the condition

Mmaz Z vV qr/pz§ ~ 30

(estimated for r ~ 1m, p; ~ Imm, and ¢ ~ § ~ 1).' Typically this condition is
easily met.

Several simplifications render Eq. (2.22) more tractaBle. Firét, we con-
vert the discrete spectral sum (which involves complicated information about the
rational surface of each mode) into an integral over the distribution of modes,
with a density of states. Smoothing the mode distribution in z' (to avoid ra-
tional suﬁace information), and k; (to avoid discrete m information) results
in |

A

Zﬂ% dk;]k’yI/dx’.
K
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Second, it is useful to decompose the spectrum as

=9 (k;) exp(—x'z/Ai,),

where S(ky) is the spectral amplitude and exp(—z'*/A2,) accounts for the linear
mode structure, Eq. (2.11). Finally, by averaging Eq. (2.22) over the width of
the test mode (i.e., in z), the local linear growth rate becomes the modal one
(following the method of the linear theory), and the odd term of (k x Z’ )” in ¢
va;nishes from the antisymmetry of k, (~ z/AZ2 for the I = 0 mode). After some

tedious algebra, this produces

c . [mrd LT * dz' [ i z'? 't
= mriing | o [ Ko az) S (k)
(2.24)

where the kernel of the integral is given by

z 2
- wg —wi) p?
K(ky, ky) =p} (szﬂ +k ]»lz) G (b,b") exp l: (—52—’%_)57}

*7

2
(L GG i (wpmwp) 2 ]
e [<2+G(b,b'> TR g o

+wE——wE1}

The contribution from Ry, in Eq. (2.23) has vanished from symmetry in ky (ie.

Sk'y)=S5 (—k;), following from symmetry of the equations), and
G (b,b) = / d(w})J2 (Vaboo) 72 (V3o ) ek,
0

G (b,b') = -?-G (3 Zi')

ozoz

a=1
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With 7% in the form of Eq. (2.24), the. wave kinetic equation (Eq. (2.22)
with Eq. (2.14) for 711;) becomes an integral equation for S (ky). The integral
operator in 7% closely resembles that in the integral equation that formally
describes the linear 7; instability.’® The primary difference is that the z' integral
in the present case, representing spatial overlap of different modes, is replaced
with a time 1ntegral in the linear case, representing self interaction within one

mode.

In both the linear and nonlinear cases, few methods are available for

direct solution of the full integral equation. One numerical approach to the =

solution might be to let a test spectrum evolve via the wave kinetic equation,

until a steady state spectrum is attained (which avoids the numerical instability

associated with direct inversion of the integral operator). However, numerical

solution ié beyond the scope of the present work. Analytically, we are necessarily
limited to rather approximate methods for ‘ﬁnding S(ky). A simple but often
reliable method (used in a previous version of this theory?® and compared with
the present version as a rough check) 1s to estimate of the integrat;ed .spectral
amplitude in terms of the basic scalings and rms type quantities. An improve-
ment over this method, which we now follow, is to Taylor expand S (k,) about
ky =~ k;, which reduces the integral equation to a more tractable differential

equation for S(k,).
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Letting ky — ky = k], then

05(ky) . ky” 6°S(ky)
Ok, 2 Okz

S(k,) = S(ky) — k!

Since S(k,) in narrower than the kernel in k,-space, then extracting S from the

integration extends the domain over which the kernel is integrated. Therefore,

it s necessary to accompany the extraction of S with a normalization of the

integral, as [ SKdk, — SfASK Kdk ~ S%Ef- = Kdk,, where S and K

represent the spectrum and kernel, respectively, and Agx and A g are the widths

of SK and K in k,-space. While this stép is heuristic, one can demonstrate that

such a normalization factor is present for S gaussian (Appendix C), and the
results produced will be justified a posteriori. Also expanding other functions
of ky as f(k)) ~ f(ky)f k;’@f/a'ky for f = ki ,wy, or G(b,b'), then 77 becomes,

for k, < ky,

. mrd QLFO Asy /°° dz’

oo . 12
c — —_ kIIIr kll . __IK_
& qp1 (1+ 1/7')wk Ag o 2] —co 4 Y ‘ y)ekp< A%)

(2.25)

,08(ky) K" 525(k
X[S(ky)—k; agcyy)-# . alfzy)J
Yy

where

Y ok 252w,

1 G'(b0) i\’ mi vp p? Owr
R, = n k ik : "
x{ DK +G<bb)> J (’”%‘A) 2 Fum o T VT,

2
K(ky) = (2p1k2k2)G (b, b) exp {_ (k,,awk> 1 p,’gJ
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) _3
It is easy to show that A o~ (g—‘;& \/_:w p;) , and we estlmate Agg o~ k3

The integration, first in k, then in z', and using wi K Wyi, produces:

32 18 piGLy wei 4, '(b, 0
7%= (3) q,,z‘“—<ffi¢) EE To(B)G(O, ”)K C;((b :>)> ' 1] alksl

Yy
(2.26)

With S(ky) no longer appearmg under an integral 51gn the wave kinetic equation

has the more tractable form of:

o5 85
— V. S = AL 2.27
e VLVSalky, 7k5’, ( /)

where V., is the coefficient of Fla'k%[ in Eq. (2.26). Equation (2.27) has the form

of a transport equation in ky space, with the linear growth (damping) playing-

the role of a source (sink) term, and the Compton scattering playing the role of
convection. The fact that Vi, is positive definite implies that the transport of

spectral energy scatters to lower &y .

It is a simple matter to solve Eq. (2.27) for the saturated state (0/0t —

0). This yields (for k, > 0, with the other half following from symmetry):

ky

i
T
S(ky) = — A dk;VL
3]

ky 2
4 gpi < > (Az/pi)  wp, (2.28)
= — dk; p; 1 + 1
/‘o i DL, (pik})* (piks)? @i
x 1 1 i — Ne
Lo(0)G(¥,0') [(2+ G'/G)ni = 1] nim,

where kg is the max1mum unstable k, (— oo for n; > 1), and we Lave applied the

boundary condition that k:ﬂ‘m S(ky) = 0. This integral is straightforward but

40




algebraicly tedious. To the accuracy of this theory, a simple estimate suffices.
The most important k, dependence of the integrand comes from 7; —n¢(b), which
determines the sign. The essential features of 7, (asymptotics, threshold, etc.)

are retained by the approximation:

1 1 1
-4 ——==15b b<1
2 <77th 2>

1+(_1__1)1 b>1
Nth b

1 ~S
77c_

where ¢, = 0.95 is the minimum of 7.(b), attained for b ~ 1. Also important is

the ky dependence coming from the terms which vary as ky to a power. Noting.

that for b R 1 it is appropriate to expand for Ty and G asymptotically, so that

we obtain:

(Az/ps)  wg 1 2n(1+1/7) (ﬁ)z (Az)" %

(piky)® (piks)? wei To(B)G(0,8) — 5 L,)

where we have taken k, o k,, To(b) o (27b) /% (Ref. 30), and G(b,b) x b7 is
easily shown. If we use A, as given by Eq. (2.13), then asymptotically we have

A? ~ 1/2b. For all the rest of the ky dependence, substituting (k,p;), . ~ 1

rms

suffices. We now perform the integral in Eq. (2.28), obtaining

S(k,) \/g (%) Q_*%ﬁf (%ﬁ)z (2—1)21@). (2.29)

Here, I(b) is a spectral intensity function, defined as follows. If ni < nep = 0.95,
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0.02

I(b)

0.01+

FIGURE 2.2: Form of wavenumber spectrum in Eq. (2.29) (a) for n; = .98
and (b) for n; = 1.02.
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then I(b) = 0. If n; > 04y (within the limits of validity of the theory), then

r1( 1)(1 1) 1(1 )(1 1) ‘

A== e =+ — -1 = - L b>1

I(b)zJ 1/1 1 1 11 1
f“”g(i‘a)(m“l)*(ﬂ‘axm‘l) o<1

\ 0 FI) <0 )

The parameter b, (i.e., ko) is the maximum unstable b (given the above approx-

imation for 7,)
undefined i < Nin

1- Ntn
1—mn;

o
S
f

M <M < 1

o0 1<

Figure 2.2 shows I(b) for the cases by < co and bo — co. In both cases, the
spectrum is concentrated about the région b~1. .

The first thing to notice about the spectrum is that the amplitude,
S~ é—%f—;— (i. e., the coefficient of I(b) in Eq. (2.29), less the to-roidal mode
density terms 481}, is extremely low in comparison to the saturation level in
the fluid regime!® (where § ~ %’ig), even when the diminished linear growth
rate due to the threshold is taken into consideration. Thus, Compton scattering
seems to be much more effective than triéd resonances at transferring energy
away from unstable modes, thereby holding the turbulent fluctuations to a much

lower level. However, as 7: rises from the threshold level to the fluid level, ~

“becomes greater than w, and the resonant part of Z(() becomes zero.3! Thus,

in the fluid regime Compton scattering vanishes, allowing triad resonances to

become the saturation mechanism, and S(k,) rises to the level of Ref. 16.
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It is useful to devise a rule of thumb for estimating saturation levels
from Compton scattering, although nothing as simple and broadly applicable as
the mixing length estimate seems possible. From inspection of Eq. (2.23), it is
easy to see that the the Compton scattering rate may be estimated by

¢ Q? . 4 Wxi 6‘5 ’
7 ~ - (pikL) Fro; <?) :

for the present ordering. Balancing 05 with the linear growth gives the estimate

~ 2
L A:z: i g
Y Or) 2w Bali ol (2.30)
T wi;, (kipi)* LyL, .

E
Using v and w from Egs. (2.12) and (2.14), and A; ~ k]! ~ p;, then Eq. (2.30)
recovers the spectral amplitude of Eq. (2.29). This estimate is limited to the
present ordering, although one might hope to derive a more general form from
balancing the € and €®) terms in Eq. (2.21).

- Considering the approximations leading up to Eq. (2.29), it is essential
to justify the main features of our nonlinear theory on physical grounds. First,
the amplitude of the spectrum is roughly the same as given by scaling-type
estimates® based on Egs. (2.22) and (2.23), with (kyp:)ms =~ 1, as above.
Thus, it- appears that the approximations after this equation did not lead to
any miscalculation in the basic amplitude of . Second, the result that energy
scatters to lower k, is the usual result for ion Compton scattering, e.g. as in the
case of drift wave turbulence.?®:3? Furthermore, it is reasonable to expect that

retaining nonlocal interaction in ky space (neglected when S(k;) is expanded)
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would only further enhance this flow from the high &, source to the low ky sink.
Third, our theory suggests that the spectral energy sink occurs for the kypi ~ 1,
weakly stable (7] < w|) modes. One might ask if the strongly stable k,p; < 1
modes might provide a more effective energy sink, and do not appear in our
spectrum only as an artifact of neglecting long range interaction in k,-space. To
answer this point, we note that Compton scattering requires that both S(ky)
and S(k,) be nonzero for transfer from k to ', while at the same time the
strongly stable modes cannot be sufficiently destabilized by nonlinear coupling
with weakly unstable modes. Thus, one expects that the weakly stablized modes
(which can be nonlinearly destabilized to finite amplitude) should provide the
dominant energy sink, as this theory shows. Finally, the nonlinear calculation
indicates» a spectrum that decays as 1/ kz as ky, — oo, although the linear theory
suggests instability in this limit. This may be due to the fact that Compton
scattering produces nonlinear stability at low amplitudes in this limit, but in
any event, consideration of ion collisions or electron dissipation would stabilize

the high k£, modes, and so a vanishing spectrum is physically correct.
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2.5 Transport

Having obtained the saturated spectrum, we next apply this knowledge to finding
the saturation level Of. ion thermal conductivity, x;, due to turbulent Ex B
convection. Other transport éoefﬁcients are of secondary interest here, since it
is the balance of heating and y; that determines n;, and thus the relevance of
this threshold regime to experiments. Turbulent transport is described by the

guiding center Vlasov equation averaged over fast fluctuations:

6(F) C o ~ ~
5 + non — turbulent terms = B <E X b- Vf> , (2.31)

where F' = (F) + f is the phase space distribution function, and (...) represents
an average over fast fluctuations. The right hand side of this equation can be

written as the divergence of a “flux”, —V,I';(7), where

To(8) = 2 3 =ikyJo <’”5”) (Bsh_).
E 1

Treating I'; () similarly to the nonlinearity in the gyrokinetic equation yields,

after some work,

(1) 2#(k2/)k//(v)6£2%/ —fr |~ |12~ 2
Fz(v)=I7nZky{ (V) qﬁk‘ Z O : ’qﬁ,;, }¢EII)
£ | s T
g, D L2 2
) Z ) D |¢'?' ‘“’5'?]
K4k =k k"
w! tw! =w

- > L@ ’ég,}r ‘45,;‘2 } (2.32)

k'R =k
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2.5 Transport

Having obtained the saturated spectrum, we next apply this knowledge to finding
the saturation level of_ ion thermal conductivity, x;, due to turbulent Ex B
convection. Other transport éoefﬁcients are of secondary interest here, since it
is the balance of heating and x; that determines n;, and thus the relevance of
this threshold regime to experiments. Turbulent transport is described by the

guiding center Vlasov equation averaged over fast fluctuations:

0 (F) S
—(—%—V—I— non — turbulent terms = 3 <E X b- Vf> ; (2.31)

where F = (F) + f is the phase space distribution function, and (...) represents
an average over fast fluctuations. The righﬁ hand side of this equation can be

written as the divergence of a “fux”, —V,I';(?), where

Treating I';(v) similarly to the nonlinearity in the gyrokinetic equation yields,

after some work,

(2) (,5') 2)

g 1 LI k" '—L" ~ 2. 2
r.(5) = ImZk{ W06 5]+ Z o [ e
4 k“(‘l?) )k’ ~ 1271, 12
+ > N ¢k" ‘¢El
E’+E”=E k”
w! fw! =w
CB) 21412
_ Z AR O ’¢;l }, (2.32)
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where the 4(™ (%) are equal to the corresponding (™ without the velocity space
integration, and the redundant arguments w have been omitted from both of
these. The similarity of the Eq. (2.32) and the right hand side of Eq. (2.21) is
obvious. The ¢-moments of I',;(¥) give the fluxes of the fluid quantities. The
particle flux, [ d®vI';(?¥), is proportional to the right hand side of the wave
kinetic equation, which vanishes at saturation. A phase shift between 7i, and q;

(here, adiabatic) would be needed to model particle lux. The ion thermal flux,

gi = [ d®v m':;’zI‘I({)'), is a more involved calculation. For the same reasons as in
the wave kinetic equation, we retain only the quasilinear and Compton pieces
of T'z(v) (the first and last terms in Eq. (2.32), respectively), and obtain (after

extensive calculation)

ré L

i = — 2v/moineTi(1+1/7)— ==

q VringTy( /)qpiLs
(2.33)

x /oo dhypik? A2 1 — 95 + b7 4 bl —-bzr—%)S(k )
o Y Y zw}}’ 1-\0 I\% ¥/,

where we have neglected terms of order /w or less. Inserting the spectrum from

Eq. (2.29) and expanding I'(b) for b R 1, we find the ion thermal conductivity:

L dTy
Xi=—4qi [/ No dz

1+1/7)° Lp 2p?vz~

where Ny, is the ky integrated spectrum, and contains the cutoff of y; at thresh-
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FIGURE 2.3: Integrated spectrum appearing in x;, Eq. (2.33) (N¢, depends
only on 7;).
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old:

o -
Nip = /0 dbI(b)
1 1 1 1 1 1 1
- (“a) (1‘;)?) T3tm-1 (1‘35/‘2> (m*a) vaI),

(2.35)

where by and I(1) are defined in Section 2.4. The integrated spectrum, Ny is

a function of n; only, and is plotted in Figure 2.3. A simple calculation shows

that Ny, o< (m; — n4s)? just above threshold, so that the onset of turbulence is

gradual as 7; increases above its threshold.

This calculation is valid in the regime ny, = 0.95 < n; < nyp + (1+
1/7)Ln/Ls, and L, /L, < 1. When 7; rises above this regime, v < w no longer
holds, and Compton scattering decreases, and is replaced by mode coupling,
enhanced by frequency broadening effects. Accompanying this transition is a
rise in the saturated level of fluctuation, and y; increases to the level predicfed
by the strong turbulence theory of Ref. 16 (valid when n; > ).

It is useful to note that the usual x; ~ 4'A? estimate predicts a Xi
that is too high by a factor of about (L,/L,)?, and therefore doesn’t apply to
the present weak turbulence case. A more appropriate estimate, based on the

quasilinear piece of Eq. (2.32), is

~\ 2
Xi ~ Lrk, A20; — 1(%) ,

i = Mtp W
where the term 7; — ny, cancels the corresponding term in + (reflecting the fact

that x; comes from the v? moment of u(%), and not the v° moment, as does 7)
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Using the estimate of e¢/T; from Eq. (2.30), we get

i L L _Pig
bWl (ki) Ly Y

This estimate follows from the orderings of the n; ~ M case, and hence is not

as broadly applicable as the v/k? estimate from strong turbulence.

2.6 Discussion

This chapter has explored the behaviour of the sheared slab n; mode near the
threshold of instability, applicable to the regime n;; < n S N+ (1+1/7)L,/ L.
Linear stability is determined by the balance of the ion temperature gradient
drive and ion Landau damping. The unstable modes have k, p; ~ 1 and v <w
when 7; is in this regime. Thus, a weak turbulence expansion is applicable.
Nonlinearly, the saturation amplitude is determined by the balance of linear
growth and ion Compton scattering. This results in a spectrum peaked about
kip; ~ 1 and with an amplitude that is of order (Ln/Ls)? relative to naive
extrapolation from the fluid regime. The resulting ion thermal conductivity, x;,
is at a similarly low level. In experimental situations, this low level of X; near
threshold is probably obscured by competing mechanisms such as neoclassical
transport.

The significance of this work is that it gives insight into the regime of n;
turbulence that is applicable to experiments. Since y; in the threshold regime,
is extremely low, we expect that the strong heatiné in modern tokamaks should

easily drive 7; beyond this. For n; 3> n;3, fluid theory predicts extremely large
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Xi, driving n; down toward the threshold, even in the presence of strong ion
heating.?? Thus, it appears that the balance of ion heating and ion thermal
conductivity results in an 7; in between these two extremes. The linear theory
of tl}is study indicates that there is an intermediate regime that differs from
either extreme. The linear modes of this middle regime are characterized by a
fluid-like interior, ion Landau damping at the edges, and v 2 w (prohibiting a
weak turbulence expansion). Modes with [ > 0 become progressively destabilized
in this regime, with their growth rate quickly surpassing that of the I = 0 mode.
With these kinds of complications, developing a satisfactory analytical theory
of this intermediate regime is quite a challenge. Short of such an analysis, one
might assume on physical grounds that so long as linear ion resonances are
important, then nonlinear ion resonances are also present, and the associated
nonlinear Landau damping will maintain fluctuations at the low level indicated
by this study. In this case, then large x; will occur only in the fluid regime,
where resonances are negligible. Thus, the fluid predictions should determine
the n; transport relevant to experiments.

Of experimental interest, these results suggest that a steeper ion tem-
perature profile will accompany effects that increase the weak /strong turbulence
transition point, gy =~ ng+(1+7;/T.)Lyn/Ls. This might explain the improved
confinement with increased T}/T, as observed on TFTR,*® and with increased
current (o 1 /Ls) on many tokamaks.?* Also, the Abroadening of the weak tur-

bulence regime with increased L, might be connected with the observation that

51




flat density profiles (L, — o0) do not seem to worsen H mode confinement (even
though a purely fluid 7;-mode theory indicates degraded x;, as shown in Chap-
ter IVof this thesis). Of course, a reliable estimate of whether these effects are
strong enough to influence observations would require use of a transport code
that models x; in both the strong and weak turbulence regimes.

The results of this chapter suggest several possible directions for further
study. Numerical solution of the integral equations (both linear and nonlinear)
would be useful as a check of the analytical theory. Additional effects such as
toroidal coupling® or trapped particles35. could greatly alter the characteristics
of the threshold regime, perhaps leading to more significant transport. Also,
exploration of the regime that exists between the threshold and fluid regimes is
clearly interesting. Finally, a weak turbulence analysis for flat density profiles
would resolve whether the effects found in this chapter can account n; transport

during H modes.
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CHAPTER III

MOMENTUM AND THERMAL TRANSPORT IN

NEUTRAL-BEAM-HEATED TOKAMAKS

3.1 Introduction

For tokamaks to attain ignition, auxiliary heating is probably necessary. The
most common means of auxiliary heating is by the tangential injection of an
energetic beam of neutrals (NBI heating). Unfortunately, NBI heating gener-
ally resu}ts in the degradation of enefgy confinement time (7z) which decreases
with increasing power so that the heating becomes less efficient the more it is
applied.’® Conventional wisdom explains the heat loss in terms of enhanced elec-
tron thermal conduction, but experimental results from D-III indicate that ion
losses are of comparable importance.! Neoclassical predictions of ion conductiv-
ity (x:) are too low by about an order of magnitude. A good understanding of
the ion loss mechanism is at present still developing.

Experimental clues to the nature of the ion conductivity are sparse, since
direct ion temperature profile measurements have become possible only recently,
with charge exchange spectroscopy. One commonly observed feature is that
the confinement times of ion temperature (7;) and of the toroidal rotation rate
(7,) tend to behave alike, with similar scalings. This suggests that momentum

transport arises from the same cause as the anomalous y;, and so a unified
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description of the two processes is desirable. Further incentive for the study
of momentum confinement comes from its inherent ability to isolate ion from
electron dynamics less ambiguously than thermal studies, since momentum is
carried almost exclusively by the ions.

Attempts to explain momentum loss rates by classical or neoclassical
mechanisms appear insufficient to provide a complete description of experimen-
tal observations. Classical predictions (75! ~ Qi,ip,? /a?) are far too slow to
agree with observed dissipation rates. The gyroviscous theory of Stacey and

36,37 assumes a plasma rotation aligned with the magnetic field, and

Sigmar
then argues that the subsequent deviation from solid body motion is damped
at a rate governed by the classical gyroviscosity (751 ~ 3, /Q;R?), which is
more consistent with experimental observations. However, it has been noted by
Connor et al.®® that the strong parallel damping provided by the gyroviscosity
leaves the plasma with a predominantly toroidal (rigid rotator) flow. Connor
et al. then demonstrate that, excluding up-down asymmetries, etc., collisional
damping of this flow is classical, again too slow to agree with experiment. Ex-
perimental departure from all nonlocal theory predictions has been observed in
recent experiments on TFTR,*? which demonstrate inward diffusion of momen-
tum deposited on the tokamak edge. A supplementary description of momentum
transport, which accounts for this diffusive anomalous behaviour, is desirable.

The present work examines the possibility that ion temperature gra-

dient driven turbulence (hereafter “n;-turbulence”) plays a substantial role in
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determining both momentum and thermal transport in NBI plasmas. This mode
is destabilized in plasmas with steep ion temperature profiles and relatively flat
density profiles, such that n; = dlnT; / dlnng > me >~ 1.5 Tilis theory has
several distinct advantages. First, we should expect the value of 7; to be greatly
affected by the NBI process, since the beam applies heat directly to the ions in
a localized region of the plasma. Second, since the mode is essentially a parallel
ion sc;und wave, with fluctuations in ion pressure (heat) and ion parallel velo;:ity
(momentum), it offers a good chance to explain a causal connection between the
transport of these two quantities. Third, being a localized microinstability, the
nature of the resulting turbulent momentum transport is inherently diffusive in

nature. Fourth, its dependence on the temperature profile offers an immediate

" explanation for the observed decrease of momentum transport in TFTR when

the heated region is changed from the plasma core to the edge.?®
All of these suggest that n;-turbulence is a good candidate for the cause
of the anomalous transport in NBI plasmas. However, current theories of the

ni-instability do not include the effects of a radially sheared toroidal rotation,

'dVio/dr # 0, as introduced by the neutral beam. We find that it has two

important effects. First, the sheared velocity field naturally facilitates prediction
of the turbulent viscosity required to explain anomalous momentum transport.
Second, it acts as an additional free energy source that enhances the existing
lon-temperature-gradient turbulence level. Hence, one of our goals here is to

improve the current theory of n;-turbulence by incorporating these two aspects
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of toroidal shear flow.

We shall assume the following about present-day NBI regimes. First, the
incoming beam of neutrals is rapidly thermalized so that a one-fluid description
of the ions is adeqﬁate. Second, the value of n; should be sufficiently above

"Nic that a fluid theory applies.?® Finally, we assume that the rotation rate of
the plasmas is below the sound speed (Vo / cs < 1), so that a shock wave is not
excited.

In this chapter we examine the effects of a parallel velocity shear on
ni-turbulence, generalizing the results of Ref. 16. The principal results are the

following:

1. The turbulent shear viscosity, calculated from y, =

— (Dp0r) (dVS,/dr)_l, is given by:

L+n:  (Ln dVio 2
T 2¢s dr

2
(kyP8> 2

L3 p8c37

Xe = 3.3

for n; > nic ~ 1. Here (k,) is the rms spectrum-
averaged poloidal wavenumber, and (kyp;) =~ 0.4 may
be taken from the non-shear-flow case!® for the purpose
of a rough estimate.

2. The ion thermal conductivity, x;, is found to equal the
value of X given above, which is suggestive of experi-
mental observation. This agrees with the basic scaling

of Lee and Diamond!® (Xi ~ [(1 + ;) /7]2 (ky) /Ls).
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The factor <-2[-’§; %/-;2)2 (similar to the hydrodynamical
Richardson number?) represents the role of the shear
flow as a free energy source.

. For dissipative trapped electron dynamics, a simple es-
timate shows that the electron heat conductivity due
to n;-turbulence is enhanced by the velocity shear:

1-4;m+<ﬁdVio>2

2¢, dr

3
2,2
PsCs

veL?’

Xe & 10€%/2

where € is the inverse aspect ratio.

. We demonstrate that the calculation of saturated tur-
bulent diffusivity as an eigenvalue of the renormalized
equations, as opposed to the more standard mixing-
length method, takes far better account of the structure
of the eigenmodes. Specifically, it is the only available
method for accurately determining the saturation levels
in the presence of multiple free energy sources, as here.
Also, this technique allows resolution of purely numer-
ical factors, like the coefficient of 8.3 above. Further-
more, it allows a prediction of the nonlinear frequency
shift, which comes from the imaginary component of

the diffusion eigenvalue.

The current theory is relevant in the regime n; > n;e =~ 1, % / cs < 1,
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and 48 < g (14)°/%, |
The remainder of the chapter is organized as follows. In Sec. II, the

basic model is reviewed, and modifications due to the sheared flow are discussed.

In Sec. III, the modified linear theory is presented. In Sec. IV, the one-point

renormalization is performed, with subsequent solution for saturated turbulence .

levels. Section V contains calculations of transport coefficients. Section VI

contains the summary and comparisons with various experiments.

3.2 Basic Model

To describe the nonlinear ion dynamics of a beam-heated tokamak, we shall

58

adopt a simple one-fluid ion model.* In this model, we assume fuid ions and
adiabatic electrons, and thereby the phase veiocity regime vy, S (w / k”) <
Vth,. Also, we consider a sheared slab configuration, with all inhomogeneities in
the radial (£)-direction, which necessitates the macroscopic gradient ordering of
n; > 1 for consistency of a fluid treatment. Furthermore, for simplicity we shall
take L, < Ly (i.e. n; < Ly/Lr,), although it is possible to construct a similar
fluid slab theory with L, 2 L,.

In sheared slab geometry, the magnetic field is B= By (2* + (x / LS) g}),
and so the parallel wavenumber is given by kj = (z — z,) k, /L, in the neigh-
borhood of a mode rational surface z,, where kB =0. Since the background

plasma is inhomogeneous in the z-direction only, perturbations have the form

f(z) exp [~iwt + ikyy + ik, 2].




Here, the primary modification to previous such models is the inclusion
of a radially-dependent toroidal ion veiocity, Vio(z) (alternately referred to as
rotation velocity, toroidal momentum, and shear flow). We assume that the
rotation velocity is subsonic (V,, / ¢s < 1), apparently consistent with regimes of
current experimental interest,*! but make no assumption yet as to the degree of
velocity shear, (Lv)_1 = dInV,, /dr, except that it be consistent with the fluid

model, as verified a posteriori.

In the sheared slab model of a tokamak, the toroidal direction is given
by ¢ = cosaz + sinaf, where a = tan"l(EO/qo) (i.e., the angle between ¢ and

b=FE /|B| at z,), and € and g are the safety factor and the ratio of minor
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to major radius, each evaluated at the rational surface. Since ¢ / go < 1 then
@, %, and b are approximately parallel. The slight deviation between b and @
is crucial to the gyroviscous theory, but in the present case the distinction is
much less important, since the primary mechanism of viscosity is temperature
gradient driven fluctuations, and is insensitive to this small difference. The

difference between the toroidal and parallel components of the velocity is small,
2
since Vjjp = VB, /1/B% + B ~ V, (1 ~3 (_2%) )
In this fluid model, the ion dynamics are described by the ion density,
n; = (no) + n;(Z,t), the ion parallel velocity, V)i = <V||0> + jji(Z,t), and the
ion pressure., P; = (Py) + pi(Z,t), where ( ) denotes an ensemble average.

These quantities evolve according to the ion continuity equation, the parallel



momentum equation, and the equation of adiabatic pressure evolution

671;

5 + V. (’nit—fJ_i) + V” (niv”i) =0 (3.1)
6'0 : - -
ming <—a%‘ 4 ('UE + ’U”i) . Vv”i) = —6niV”(I> - V”P,' + Hllvﬁvlli (3.2)
or; ..
_OT + (’UE + v”z-) -VP; + PP,‘V"’U”_,‘ =0, (3.3)

where @ is the electrostatic potential, T' is the ratio of specific heats, and K|
is the parallel viscosity (due to either Landau damping or collisional viscosity)
required for saturation of the turbulence. (One might notice that neither V
nor the gyroviscosity appear in the viscous term of Eq. (3.2), as a result of the
gyroviscous cancellation on drift wave time scales.*? As a result, the viscous term
will not in itself be the result of much momentum transport, as noted in the
introduction.) The perpendicular ion dynamics are due to B x B , diamagnetic
and, in next order, polarization drifts, where respectively,
UE = —;—Z; x VP

— . ¢ 2

Vpi = eBnibXVPi
5, =S (2 5. v ve
vr = eB? \ ot ' ¥

Electron dynamics are assumed adiabatic, and the equations are closed

with the quasineutrality condition
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where ® = (®(z)) + &(z,t). The background radial electric field, generally
present in beam-heated tokamaks,*® is the by-product of a flow which deviates
from the direction of B , and obeys the radial force balance equation. In a slab
model, a transformation to the toroidally co-moving frame (below), applied to
the electromagnetic field, eliminates E, from the equations.

To simplify Eqgs. (3.1)—(3.3), we eliminate 7; and ¥, and make the as-
sumption that the radial width of the fluctuations is much less than the scale

length of any of the macroscopic gradients. To simplify notation, we rescale time

and distance to units of ;' and p, (: Cs / Qi) respectively, and undimensional-,

ize the remaining fields as ¢ = eé/Te, o) = f)”i/ca, and p = [j)’i/ <Pi0')] (T,-/Te).

This yields the following three equations in ¢, vy, and p

a — ~ 1 7 7
(5+7%9) a=vD)é+u 1+ () vi] v,3
- ?) X V% -V (Vi%) + V||’5” =0 (3.4)
0 =~ - Vo i v e N ~ 2~
s TV V)0 oV x Ve Vi ==V = Vi + uVid
(3.5)
6 — . 1 7 rd 7 e ~ ~
<E+%-V)p+vp< tn>\7y¢+bxv¢-Vp+TV”v” =0, (36)
where
_dlnT; __dany) _ (daW)\T
= dnn YD = dz V= dz
_ _ K|\ Wei _ r _ Te
Vo—(VLP)/cs U= e T_; T T
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and we have retained only the ExB nonlinearities, since others are of relative
order ky [k, (< 1).

The shear flow Vj has two effects on the 7; equations. First, it introduces
a toroidal Doppler shift in all time derivatives, which we eliminate by performing
a Galilean transformation in the ¢ direction to the co-moving frame. More
importantly, the radial E x B convection of ionl momentum, represented by the
second term in Eq. (3.5), determines radial momentum transport. The fact that
E x B motion also determines ion thermal transport, represented by the second
term in Eq. (3.6), is the underlying reason for the eventual result that Xi = Xe-

Finally, we note that the inclusion of toroidal ion momentum does not
modify the nonlinear structure of Ref. 16, and so the energetics, renormalization,
etc., are all quife similar. However, the fact that the shear flow provides an
additional free energy source underlies our result that the inclusion of dVj / dz

effects enhances transport.



3.3 Linear Theory

The linear theory of the n;-instability has been addressed by many authors, and
we do not repeat all the basic details here. However, no one has considered the
effects of a sheared tori;)dal ion flow on the }7i-mode, so we find it necessary to
modify the basic linear theory to include this effect. Also, we shall consider the
possibility that the sheared velocity field, acting as the dominant free energy
source, might drive a pure shear-flow instability, as described in Ref. 44.
Linearizing Egs. (3.4)—(3.6), Fourier transforming in the y and z di-
rections, neglecting T (which gives corrections of order (k” / ky)4), and taking

kj = kyz /L, we obtain the following eigenmode equation

£+ Q(z, Q)5 =0, (3.7)

where the “potential” function is given by

1-0 Ji/2 s2z2
— 4 _12 — i
Qz,0) = { YteTR omrtt w } ) (3.8)
and we have used the notation
w L, 1+ n; VoL, \?
Q = =T —— = = .
Frop’ s L. <1, K — and J ( I, )

As will become apparent, K and J serve to parameterize the free energy con-
tent of the ion temperature gradient and the ion shear flow, respectively. The
parameter J is analogous to the Richardson number, used to describe shear

flows in classical fluid dynamics, here inverted for convenience. The difference is
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that the bouyancy terms due to the gravitational effect on the density gradient
(g / Ln) are replaced by drift frequency terms (kzv%), and adjusted to fit into
the present scheme of parameter de-dimensionalization. |

Equation (3.7) is a simple Weber’s equation, and the lowest mode is

given by

&ﬂ@=¢wq{—%@—w@q, (3.9)

where

J7z 0

T Ak (3:10)

with the dispersion relation:

1+ )+ [Kk2+is—1 Q-H'SK=~£
Y K)

T (3.11)

The left-hand side of Eq. (3.11) is the standard dispersion relation for the slab

. 6,10
n;-mode,

and the right-hand side represents the modification due to shear
flow. This equation describes three modes: the usual Pearlstein-Berk électron
drift mode, the shear-flow modified 7;-mode, and also a shear-flow-driven insta-
bility. The drift mode is stable everywhere for adiabatic electrons; however, the
last two of these are potentially more important, and hence are the focus of the
rest of this section.

We first consider the n;-instability. For the regime where the present

fluid theory is applicable (discussed below) it suffices to solve for by iteration,
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assuming that the right-hand side of Eq. (3.11) is small. Neglecting the drift-

wave root, a first order iteration gives the unstable n;-root as

sk AR :
Qm = -1——_—'],—/4? ~1Ss (I\. + Z) (312)

in the low-k, regime (ie., k2 < 1/K).

From this simple analysis, we see that the shear flow has two effects
on the m;-mode. First, it enhances the growth rate at low ky, with leading
correction of order J ~ (V;/ Lv)2. This enhancement is without regard to the
sign of either Vp or Ly. Second, we see from Egs. (3.9)-(3.10) that the shear
flow shifts the center of the mode away from the z = 0 rational surface. While
this latter effect is not too important for regimes of current interest, it underlies
a third effect that is not described by our simple fluid equations.

This third effect, which is apparent in the kinetic analogue of Eq. (3.7),
is a cross term combining effects of shear flow and magnetic shear damping, and
varies as J'/2z% (see Appendix D). This effect is not represented in the fuid
mode equation, Eq. (3.7), although it sets an upper limit on J for the model to
be valid. We find that the best way to describe this limit involves a gyrokinetic
analysis. Since this analysis is not germane to our central purpose, it is outlined
in Appendix D. The upshot of this analysis is that in order for the cross-term
t; be unimportant, we must require

QR+ K)

J? <«
35T max
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Using Q ~ isK and zgag ~ zp ~ K1/2 (the WKB turning point), we find that

J1? & 3 ¥3/2, Beyond this limit, the simple quadratic well structure embodied

by the fluid approximation is no longer valid, due to the disappearance of one

of the WKB turning points. While the mode may still be locally unstable, the
eigenfunction characteristics are drastically altered and require a more detailed
description than that given here. Shooting code comparisons of Egs. (3.7) and
(D4) verify this result. Comparison of the above limit with the measurements of

Isler et al.,*!

reveals that this restriction does not exclude present-day parameter
regimes, where typically J <1 and K ~ 3 — 5.

We next consider the question of whether or not there is a pure shear-
flow-driven instability described by our equations. This is the mode which per-
sists in the limit where the 7; driving force is turned off in Eq. (3.11). This
mode is somewhat different from the classical Kelvin-Helmholtz instability, even
though the free energy source is the same. The latter is essentially a two-
dimensional mode and is restricted by the Rayleigh inflection point theorem to
be localized about radii where d?V/dr? = 0.#° The present case has two signifi-
cant differences. First, the line bending term, V| J||; is present, which tends to
stabilize the mode except at the outer edge of the torus. Second, parallel sound
wave coupling (with magnetic slw;ear) is retained, thereby localizing the mode
and allowing it to be unstable on any rational surface. In this form, the shear-

flow-driven instability is a more plausible explanation of microturbulence than

the classical Kelvin-Helmholtz instability, since the former modes, if unstable,
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are able to span the entire radial profile with small scale fluctuations without
relying on the existence of inflection points.

A similar type of mode has been studied previously by Catto, Rosen-
bluth, and Liu,** who used the term “Kelvin—Helmholtz”, although their analysis
differs from the classical case in the same sense mentioned above. In their work
unstable modes were found, which in various limits (7; — 0, 7> 1, L, — 0. . 2
seem to agree with the solution of Eq. (3.11). However, their study only ad-
dresses the limits L; — oo and then L, — oo individually, so that in both cases
the potential is approximated as a simple quadratic in z. The more realistic case
of a shear damped mode with moderate Richardson number is never addressed.
Since a consistent treatment of this situation involves solution of a. Schrodinger-
like equation with a relatively complicated cubic potential (coming from the
same effect that limits the validity of the n; mode above), a11élytical results are
difficult to obtain; however, it is possible to examine the situation numerically
using a shooting code with the full kiﬁetic potential, Eq. (D4). Our prelim-
inary studies indicate no regime where the unstable shear-fow-driven modes
predicted by the fluid theory persist in the more detailed kinetic analysis. The
reason appears to be that if the Richardson number is above the threshold of in-
stability predicted by the fluid theory (J > 1), the subsequent shift of the mode
center is so large that the poteptial is drastically altered by terms of order z2
and higher. However, we must stress that the above only implies that the pure

shear-flow-driven instability is not well described by the fluid equations and the
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particular geometry of the present simplified model. It is possible that toroidal
effects, FLR effects, and so forth are present in a more realistic situation to give

a strong shear flow instability.

3.4 Nonlinear Theory

Approximation of the one-point nonlinear n; equations has been performed in
Ref. 16, using DIA renormalization of the nonlinearities. Then, an augmented
mixing-length scheme was used to estimate the saturated turbulence levels. In
the following, we adopt a similar approach, but differ in two significant ways.
First, the vorticity nonlinearity in the continuity equation is renormalized so as
to include qualitatively the effects of the nonlinearly driven potential fluctua-
tions, which are generally neglected. Second and more importantly, we improve
upon the arguments used in Ref. 16 by following a method whereby the renormal-
ized diffusivity is treated as an eigenvalue necessary for turbulent saturation.46

The following calculations are also valid in the zero-flow limit (J — 0)

and hence supercede the one-point results of Ref. 16.
a. Renormalization
Fourier transforming Eqgs. (3.4)—(3).6 in y and z yields

0 2N T, , s ~ ~
77 (1= V1) 8¢ +iwne (14 KVE) b+ ibyye = =g (4,V24) (3.13)

o Voo . o -
3101 ~ T, Ry r + iRy O + ikyBi + pkiyp = Ny (¢, v”) (3.14)

0 . crr 7 . - ~
Epi”: + ZI&w*eqﬁE + Zk”T’UE = ]\775. (¢,p) , (3.15)
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where the symmetrized nonlinear convolutions have the form

o~ o e aqs_k, ) .
Np (6.7) = {5 | 20 (=iky) g Fr | — b Z wi—{Fed},
P
(3.16)
where l?, k', and k" denote the “test,” “background,” and “driven” modes,

respectively, such that & + &' = k", Using the standard weak coupling closure

approximation to renormalize the nonlinearities, we iteratively substitute the

oo~ (2
‘nonlinearly driven fields ¢(2) (Vﬁ_qﬁg,,) 5 , and pk,) for the corresponding

k1 ”k”

modal (l_c"’ ) fluctuations. The superscript (2) denotes the “driven” fluctuation

resulting from the direct beating of test and background modes. Hence,

B, (1~ VA) 32 it (14 KVA) 62 + k{52, = -5 (v2.6)

k! ”k“
(3.17)
g 5@, = Likr 5D 4 ikt 3D 4 ikrs® — () (3.18
Fnv ”L” L i ey ¢ ] ”]:Iu - v . )
Awg, ) + iKWl 32 +iki 15D = S(),  (3.19)

where the nonlinear sources are given by

. - 9
S(f) = {z’k;qﬁg,% ET1 ya¢];fk +Zky¢ka ,f Zk' ¢kf1u} (3.20)

which will yield phase coherent terms when substituted into the nonlinearities.
Here, Aw,;,, may be regarded as the rate of decorrelation for three wave reso-

narnce.
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At this point, we depart slightly from the previous renormalization of
the 7; equations.'®#% The standard procedure is to neglect the driven potential,
d) i completely, based on its smoothness relative to the other driven fields,
and the fact that its direct inclusion renders the equations intractable. While
this is probably adequate for the v)| and p equations, the convective quantity of
the continuity equation, Vﬁ_qz, has a simple and direct (linear) relation to the
fleld that convects it, qg Therefore, it is not clear that the convection and the
subsequent back-reaction of the convecting velocity are independent effects, as
in the other equations.

Due to the mathematical difficulty of explicitly including the driven
potential, J)%’,), it is better to express it in terms of <Vﬁ_q~5,~c,,>(2), which may be
done via an “integration by parts” in the vorticity nonlinearity (i.e., Eq. (3.16)
with f — Vi%) with respect to z. This latter operation is performed by noting

that near the mode rational surface of k k” ~ k”, and hence
g k' 3}
oz’ k” dz'"’

which allows us to rewrite the vorticity nonlinearity as

k 2ky k!
N (8.729) = [ ZHM i,,z”sé #Vidn

| B+ 2k, g,
_zkyz < y kllg y) o ﬁé*"J'
&

However, since the n;-mode has, to lowest order, incompressible mass flow

(3.21)

(V- (n%) ~0), this amended renormalization of the vorticity nonlinearity will

have only secondary importance relative to the final results.



. ~ ~ \@)
Now that N <q5, Vié) can be expressed in terms of (Vi ¢E“> alone,
we can neglect eg%%,) in the remaining two nonlinearities, as usual. Furthermore,

we neglect the terms in Eqs. (3.17)~(3.19) which vary as k;. Hence

5 @ 5(Vi9)
(vm;,,) N (3.22)
kll
. S (@)
Oy = Ko, (3.23)
. S(5
P8 ALE—Z}. (3.24)
kll

Substituting these for the fg,, in the nonlinearities yields

A B I .8 9. _
N (B50) = st - B VL g e i
(3.25)
- 8 .. 0. i
Ny (¢’”“> = 508 5200k — B DF i (3.26)
1~ 9 zz 9 . ~
N(¢.5) = 5-DF" 55z — ¥, D¢, (3.27)

where the various diffusion coefficients are given by

.12 -
Ezzz LZ Ly'qskl’
k = (kg)z Awy,
1. /
W= k§2‘3¢k'/ax
R N
) 12 [t 7 2
kz ky LQSE"

Iz = Z
ko (ﬂ//)2 Awy,,

Y
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by kﬂZJVl@%/@x"
AT

v
Dz* =
k = Awz,
857,/8:1:"
vy — ' k
DE _%: Awg,,

We propose the following physical interpretations for the above renor-
malized nonlinearities. First, D%” and D%y, which appear in both the momen-
tum and pressure equations, act as non-Markovian turbulent diffusivities that
scatter the 0 and p fluctuations radially, away from the rational surface. This
is directly reflects the property that :the unrenormalized nonlinearities couple
incoming fluctuation energy from the low-k; modes (bouhdA and growing) to
high k, (which couple to radially outgoiﬁg waves), so that fluctuation energy is
transported away from the mode rational surfaces in a diffusive manner (Ap-
pendix E).

In a similar way, pE and /J%y serve as nonlinear eddy diffusivities acting
on the vorticity, V2 @, while BZ® and ,B%y act as a turbulent back-reaction to pu£*
and ,u%y,.maintaining the property that ¢ (~ #) not be convected by the E x B
motion. The fact that u and B vanish as ky — 0 may be readily demonstrated
from the unrenormalized equation. This does not pose a problem for determining
the low-k, mode saturation level however, since energy cascading may proceed

by linear coupling of q~5 to ¥y, which can then cascade via the mode coupling




represented by Dy.
Finally, it is useful to estimate the relative magnitude of the various

diffusivities in the k;‘; & (k;) limit as
rms

zT A, kz Dz®
Y/rms
k2 1
L D= (3.29)

F ), B,

with similar relations for u%y and ﬂ%y. Here,

~ 12 ~ 2

AR > (94z/02)
) =E .4 R i
= ek D

Thus, while x4 and 3 are small relative to D, and have little influence on thermal
and momentum transport, we retain them because of their physical significance
for the model used here. The rms quantities must remain as free parameters,
since their evaluation requires a two-point, spectrum theory. However, for the

purpose of estimation, we can use the result from Ref. 16 that (kyps) me ~ 0.4.
b. Solution at Saturated Turbulence

The renormalized equations may now be regarded as analagous to the
linear equations, and the renormalized nonlinearities play the role of i;dependent
free parameters that account for transport of energy to and from various parts of
g—space. A oine—point “closure” calculation may now be completed by considering

only the lowest k, part of the spectrum, which is almost purely growing, and
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asking how large the renormalization quantities D, x, and B must be in order to
couple energy to smaller scales as fast as it is fed in by the instability mechanism.
'The standard method for calculating saturation is the “mixing-length”
scheme. While this method is useful for obtaining the correct scalings with cer-
tain key parameters, it is deficient in several regards. First, the condition forb
saturation is derived from “asymptotic balance” of certain parameters, while
ignoring others. 'Such a procedure is inherently insensitive to the detailed phase
and amplitude structure of the various modes at different E, which may be im-
portant. Specifically, while some basic parameter scalings are determined, others
are ignored completely. It is difficult or impossible to devise a more elaborate
mixing-length scheme to incorporate the more subtle scalings. For example, in
the present case of a system driven by two free energy sources (gradients), it is
not clear how to use asymptotic balance of source and sink for an accurate deter-
mination of the relative contributions of n; and the shear flow to the turbulent
excitation. Second, the differential operators are approximated asymptotically
using the turbulent mixing length, Ay, and the subsequent approximation of
a differential equation as an algebraic equation leaves potentially large numer-
ical factors unresolved. Finally, a consistent picture of turbulent saturation,
one based on steady-state energeticé, is never established. Using the current
approach, such a picture is outlined in Appendix E. All of these deficiencies
are corrected in the following “diffusion as eigenvalue” calculation. This tech-

nique makes no further assumption on the dynamics of the system, and applies
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everywhere the fluid equations are valid.

Considering only the low-k, portion of the spectrum (dominantly grow-
ing), we set 0/0t to zero in Eqs. (3.13)~(3.15). In this regime, we can also neglect
k2Dyy kypk , kzﬂyy k2 ij#, and Tky, and let V3 =~ 8% /822, Then, Fourier trans-
forming Egs. (3.13)—(3.15) (with Egs. (3.25)~(3.27) as the N;) in « and solving

for qg i yields

1901 0¢+D”?L3J1/2__1_ ) )
k2 Ok, k2 Ok, ky K k20k, \ 14:iD%%k2/Kuw,,

(D=)* L2 1 (1= (K —if*® Jw,e) k2 — ip"k? [w,e
K ¥

TR 1+ iD* k2 Koo,

where for convenience we have defined
% = (1-iKw,./D*k2) ¢r.

We can reduce the number of parameters, and extract the basic mixing-
length scalings of diffusion and mode width by defining N = (L, [K?%k,) Dz,

M = (L./K*ky) p2*, B = (L,/Kky) 2%, w = VEk,. This yields

10120 N1 08
=+ N (= —r
u? Ou u? du K u2 Ou \1 = isNu?
1—(1+4isB)u® +isMu*
1—12sNu?

(3.31)
+ N?

Y =0.
Cast in this form, it is clear that the resulting dispersion relation for N, M,
and B will depend only on s = L, / Ly and J/I{, so the mixing-length results

somewhat succeed in resolving basic scalings.
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Equation (3.31) may be manipulated into “Schrodinger form” as

52
3.2¢ +Q(z;N,M,B)p =0 (3.32)
with
N2 |1—(1+isB)|z[*/3 + isM|z|*/?
o= 1—(1+1s )|z| + isM|z| __Z7 1 I, (333)
9 1—1sN|z|?/3 4K (1 - isN|z[2/3)
where

z =’ = exp NJ z Y
=t YESPISE \I-eNpR )| Y

and we have noted that small mode width (Az S 1, shown a posteriori) implies

that

Y G VO S
0z \1—1isN|z|?/3 ) 7 1 —iNs|z|?/3 8z
This approximation is only applied to the term which is dependent on J, so this
“Schrodinger approximation” is exact in the limit of no shear flow, J — 0.
The dispersion relation for Eq. (3.33) may be obtained by a WKB ap-
proximation, with the zp '\_J.l turning pbint (since AZ 5 1 implies a potential

smooth relative to the mode). Using s < 1 as an ordering parameter, we find

to order s
/zT Q(z; N, M, B2 dz = N (1 2 ‘z 1+ 5V +5M—6B)] =~
g DT °= ik) 877 1 )
| (3.34)
That is,

5M 6B 16
2, - N—— = 0. .
st<1+ - N>+4 =7 = (3.35)
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If we assume that M/N and B/N are independent of N, as with Eqgs. (3.28)
and (3.29), then we can solve Eq. (3.35) as a quadratic equation in N. The root

that is dominantly real is, to order s,

N=(IT4/4K)—2-[1—Z'3 (1'+%]\\r—4—%§->]. (3.36)

Restoring the parameter scalings and using the estimates in Eqs. (3.28) and

(3.29) yields, for J/4K < 1,

TT __ s J ? k‘y . kg

This is the principal result of this nonlinear analysis.

The first thing to notice is that D%”’ is dominantly real, the imaginary
component being of order s. In the J — 0 limit, the scaling agrees with the
results of Ref. 16 (i.e., D ~ K%k, / L,) and importantly, we find that this result
is enhanced by a numerical factor of 4 in this more accurate calculation. The
shear flow, represented by J, further enhances the diffusion rate.

The imaginary part of D** is a nonlinearly induced frequency shift,
and does not affect overall transport. It is interesting because it lends itself
to a simple physical interpretation, as follows. From inspection of Eq. (3.37),
one can see that this shift comes from two physical processes. First, nonlinear
coupling to modes of different frequency produces the portion of Im (D*®) that
is independent of x4 and f3, i.e., which remains in the kg < <k§)rms limit. Second,
there is a part induced by nonzero eddy diffusivity, which contributes only to the

imaginary part of D®®. This is because transport of vorticity, which represents

~JI

~J




momentum fluctuation with no net momentum content, will only affect the
fluctuation frequency of the momentum, not its overall rate of diffusion. The
latter is a good example of a process that may only be resolved by an eigenvalue
solution for the turbulent diffusivity, in which the details of the linear energy
exchange processes are accounted for.

Numerical analysis of Eq. (3.32) (shooting code) qualitatively confirm
the WKB solution. Quantitatively, they show a factor of 3.3 in place of 4, which
is constant for s < 0.2.

Finally, we should note that in Ref. 16 it was shown that cQ11sidera—
tion of spectrum broadening reveals that Dl-’j_.z is enhanced by a factor of about

({fln(Re))g, where R, is the n;-turbulence analogue of the Reynolds number.

We expect that a spectrum analysis applied to the present case would show a

similar enhancement. However, since this requires a two-point theory, we shall

not address this issue here.




3.5 Transport

Having obtained the saturation level of turbulent diffusivity at long wavelength,
where most of the turbulent transpoft takes place, we next apply this knowledge
to finding the levels of turbulent viscosity x., the particle convection velocity,
Vr, and the ion and electron thermal conductivities, x; and y.. This we do
by replacing the nonlinear convection, b x Vé - V in Eqgs. (3.5)=(3).6, with the
nonlinear decorrelation rate, Awg,,, taking 9/0t — 0 and solving. Neglecting T,

which gives contributions of order s (where s = L,/ L), we obtain:

. Vo o Wy ) 1wy, s ~

E = we | 1 — : r .
Yk Lyvp Awg,, i ( Awg,, ) Awg;/J 7 (3:38)
~ W -7 .
Pig = —Aw;,, K¢y, (3.39)

which allow various turbulent correlations to be placed in terms of D Pt
The turbulent viscosity is calculated from the appropriate Reynolds

stress:

dV, . t 7
Xo drso = — (0,0,) ~ — Z <—zk;¢;c,v||_5,> , (3.40)
kl
where the departure of 9, from &) is of order (¢/q)®. Substituting Eq. (3.38)

we note that the terms which vary as z average to terms proportional to the
radial mode shift in Egs. (3.9)-(3.10). Since the real part of this varies as s,
these terms give a total contribution of relative order s and we neglect them,

obtaining:
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and hence the turbulent viscosity is

IV (R |
Yo =4 <A + Z) yL : (3.42)

where we have neglected Im (D*?), which does not contribute to transport.
Redimensionalizing Eq. (3.42), using the numerical coefficient of 3.3 from the
shooting code analysis, and taking (kyps), . =~ 0.4 from Ref. 16, we find

2
_ 1+ i chLn 2 chs
Xp =13 [ — + (2cva T (3.43)

The above value of the rms wavenumber was derived in the V,, — 0 limit, and
is probably slightly modified by the shear flow. Although calculation of this
effect is beyond the scope of the present study, we expect that, as in Ref. 16,
the dependence on the free energy strength will be weak.

For particle flux in the central region, the necessary phase shift be-
tween g, and 7. (here adiabatic) is provided by dissipative trapped electron
dynamics.'® In this case, the perturbed trapped electron distribution is given

by:47

cp eFue [z w—wie [14+ 7. (B/T. — 3)] =
fe B Te <@ Ww—wpe + iVeﬂ',e ®) (344)

where E = %—mvz, Wpe is the bounce average of the electron curvature drift
frequency, vege = ve/e is the effective electron collision frequency, and @ is
the bounce average of the fluctuating potential. For the purpose of a simple

estimate, we shall ignore the bounce average in the following. The particle lux
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1s then given by:

14 2n, - |2
IT = (6,7) ~ nge®/? % Z<k,§{¢k'> (3.45)
€ ]\,-:’

in the high-collisionality limit of the banana regime where vef o 3> w,Wp.. Using
.2
the approximation )z, &'2 IQSE,‘ ~ (yzDg) ~ 3.3 (I + %)3 (k2p?) /L%, and

redimensionalizing, we find that the particle convection velocity is given by:

3
e3/2 3 14n; VLn \?
Vo =TT /ng 05—— (1 + 577e> ( T” + <2chv> p2ct.  (3.46)

The reader is cautioned that the approximations in this paragraph make the

scalings and numerical coefficients for particle transport, as well as the electron

thermal transport below, somewhat less quantitatively reliable than the X and’

xi calculations. For example, a full resolution of the ¢ dependence in Eq. (3.46)

would require a theory that includes a treatment of toroidal effects on the ;-

turbulence level, which is not presented here. For low collisionality plasmas, the

collisionless trapped electron response should be used in place of Eq. (3.44).
The radial flux of toriodal momentun;. is given by:

9o = m; (Dr (77'0690 + ﬁV@))

v,

(3.47)
= M;Ng (—X@ e + VTV¢> ,

where X, and V; are given by Eqgs. (3.42) and (46). The ratio of the viscous to

. . v .
convective terms is of order =222 (> 1), so we expect V... not V,, to determine
e/ 2., ’ w ’

the momentum flux.
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The ion thermal flux is calculated similarly to the viscosity?®, and using

Eq. (3.39) we obtain:

. (2
k"2 ¢_,|
~ o~ Y|k
g = (0rps) = — (14 m) E <T> (3.48)
T w]:.'//
with resulting ion thermal conductivity
T\ (k)
i =4 K+ — Yirms _ o .
X ( ¢+ 4> T = X (3.49)

and the redimensionalized form is given' by Eq. (3.43).
The result that x; = x, is an important property of n;-turbulence in

the presence of a shear flow, and suggests a plausible explanation of experimen-

tal observations on TFTR?3?, ISX-B%!, PDX*8, D-III*°, and other beam-heated -

tokamaks.

Following Ref. 16, we can crudely estimate the electron thermal conduc-
tivity (x.) associated with the trapped electron response to the turbulent po-
tential fluctuations.*’ In the dissipative trapped electron regime (wye < Veff e ),

we may estimate y. as:

1 - T 3 g P22
Xe = <—m1)2 [fgi}Er:i> ~ 15\/563/2£Zk13

2 Ve *=
kl

~ 12
equ

T (3.50)

The notation (.. .)T represents the velocity space average over trapped electrons.
In the second part of Eq. (3.50), in addition to using the same approximations
that led to Eq. (3.45), we have retained only the diffusive portion of the flux.

Applying the same approximations that led to Eq. (3.46), we find:

3
/2 |1+ i VoLln 2 2 o
Xe = 10 2 [ — + <263Lv> P5Css (3.51)
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and thus x. is also enhanced by the sheared toroidal flow. The same caveats

mentioned after Eq. (3.46) apply to the y. calculation.

3.6 Discussion

In this work, the effects of a subsonic, radially sheared toroidal ion flow on
ni-turbulence have been examined, in an effort to assess its role in neutral-
beam-heated tokamaks. We have shown that the levels of fAuctuation and
turbulent transport increase with (an analogue of) the Richardson number,
J = (%’L %)2. We have demonstrated that there is significant diffusive mo-
mentum transport (viscosity) in the presence of n;-turbulence, and that the
momentum diffusivity and ion thermal diﬁ’us\ivity are the same, thereby pro-
Aviding a plausible explanation for the observation that momentum and thermal
transport tend to behave similarly.

There is a striking correlation in the experimental literature, albeit
mostly qualitative, between the application of stimuli which alter 7; and/or
J, and the concomitant observation of a like change in momentum and/or ther-
mal diffusivity. The well known degradation of x; with increasing beam power!?
1s one example. As a possible explanation for this, it has been proposed®%:51
the;t the beam injection increases 7;, thus degrading x g via the anomalous Y;,
as well as the increased x. due to the dissipative trapped electron response to

the enhanced potential fluctuations. As a second example, recent experiments

on TFTR? compare beam center-heating with edge-heating (which reduces n;).
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During edge-heating, both x, and the energy diffusivity are reduced by a factor
of about 2. As a third example, a substantial decrease of X, following beam
turn-off is observed in TFTR,%® PDX,*” and ISX-B.4! This might be explicable
as the result of T;(r) and V,(r) flattening (thereby reducing n; and J ) as the
direct ion heating and shear flow excitation are terminated. Finally, the decrease
of xi in TFTR “supershots”®? accompanying balanced injection may possibly
be connected with the concomitantly observed peaked density profiles, as well
as the V, — 0 turnoff of the Richardson number enhancement. However, care is
required in interpreting supershot results, since the large density of high energy
in this regime makes the applicability of our one-fluid ion model questionable.
The results of this chapter have indicated that shear flow enhanced
ni-turbulence is quite possibly an important factor in beam-heated tokarhaks.
However, the present model is a crude one, and there are several possible direc-
tions for further study. Among these are consideration of the effects of toroidic-
ity, neoclassical damping of ion flows, the effects of an unthermalized beam, and
further investigation into the possibility of the shear flow dominating the temper-
ature gradient drive, and hence destabilizing a predominantly shear-low-driven

rather than n; mode.
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CHAPTER IV

ION TEMPERATURE GRADIENT DRIVEN TURBULENCE

IN TOKAMAKS WITH FLAT DENSITY PROFILES

4.1 Introduction

One observation that seems to contradict the theory of ion temperature gradient
driven turbulence (“n;-turbulence” for short) as currently invoked is that D-III
shows improved energy confinement (“H-modes”) accompanying (among other
changes) density profiles that are flat at the center of the tokamalk, while the
temperature profile apparently remains peaked.?* Naive application of the usual
fluid 7; model'® (for which the ion thermal diffusivity, x;, is proportional to
L, = (%%2) _1), shows a trend toward worse confinement as the density profile
is flattened (although the model is restricted to the regime L, < /L,L7).
Thus, there arises the question of why 7; mode transport doesn’t destroy H-
mode energy confinement for flat density plasmas.

A recent study'® shows that when L, — oo the critical temperature
scale length (proportional to L, for peaked density profiles) becomes fixed at
Lt = aR, where R is the major radius and o ~ 0.1 — 0.4. (We note that this
is not a feature unique to the toroidal branch, and also occurs in the slab limit

with L, replacing R.) Qualitatively, this allows nonzero Tj gradients for flat

density profiles, indicating that ITGDT might not be excited for these plasmas.
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However, while it is not impossible that complefe stabilization is the reason why
the energy confinement doesn’t degrade, it is not clear that the temperature
scale length for these plasmas is on the order of the major radius, as required by
the threshold. Therefore, it is desirable to know y; for the excited flat density
gradient mode.

This study examines the strong turbulence and transport that comes
from ITGDT in the flat density limit. For simplicity, we consider the slab
limit, valid for a tokamak when §/¢ > 1, where q is the tokamak safety factor
and § = dlng/dIlnr. In the slab limit, the mode is basically a parallel ion
sound wave, and for L, < v/I,L7 radial convection along the density gradient
balances sound wave compression (so that the the dynamics are characterized by
incompressible mass flow to lowest order, i.e., V- (n%) =~ 0). When the density
profile becomes flat, m:ass compressibility becomes important as w rises above
wxe. This study addresses the changes in the nonlinear dynamics that result

from this effect.
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4.2 Basic Model and Linear Theory

The renormalized nonlinear equations below, Eqgs. (4.1)-(4.3), are taken
directly from Chapter III. They represent the ion continuity, ion parallel velocity,

and ion pressure evolution equations:

on;
ot

+ V- (i) + V(i) = 0

v | n | o
. (6—3 + (V5 + %)) - Vvllz') = —en; V)@ = V P+ Vioy;

OP;

5 T (Ve +0)i) - VPi+ TP, Vjvy; = 0,

where @ is the electrostatic potential, and I' is the ratio of specific heats. Elec-

trons are assumed adiabatic, 7, = noﬂ’- and the quasineutrality condition, n; =
) T.? ’

ne, is assumed. The perpendicular dynamics are due to ExB , lon diamagnetic,
and polarization drifts. Temporal and spatial scales are normalized to units of
Q! (inverse gyrofrequency) and p; = ¢,/§;, where c, is the sound speed. A
sheared slab model of the magnetic field is used, with B = B, (2+ (z/Ls)9), so
that the parallel wave number is given by kj = (z — z,) k,/L, in the neighbor-
hood of a rational surface, z,. The dominant nonlinearities are E x B convection
of parallel velocity, and pressure fluctuations, and are given in renormalized form
on the right hand side of Eqgs. (4.2)-(4.3), respectively. The vorticity nonlinear-
ity in the continuity equation is small (of order &2/ <k§>) for the low k, regime
considered here, as a result of a slight variation in the usual DIA renormaliza-

tion proceduré in which the back reaction of q; to E x B vorticity diffusion is




included. A derivation of these equations may be found in Chapter III, and the

renormalization procedure is detailed in Ref. 46.
0 7 7 L+n; 7 "
5 (1-V2%)é+vpVyé+up (Tn> ViVyé+ Vi =0,

8 8 d
=0 + V¢ + Vi — uViiy = 5-DE*

ot 9z k dz Bz — ky DD

%>

0 14+ n; T 0 xza .
p-i—vp( T”)V q5+ V”v" E DE a k2Dypr,

where ¢~S = eé/Te,.ﬁ = p;/7 Py, and

d(InT;) d(lnng) ey
i = 57—~ VD = — K==23
d(Inng) dz c

The turbulent diffusion coefficients are given by

~ 2
kr2 ¢I-c"
DF=Y
k > —in,, -|—sz;,,’
~ 2
3¢E,/8m'

DY = E , .
k i:’ —Zwi:ll + szll

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

The linear beat frequency, wy,,, has been written explicitly in Eqs. (4.4) and (4.5)

because in the flat density regime the real part of the frequency is comparable

to the growth rate, as shown below.
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There is only one change in all the above for the flat density limit, which
is the vanishing of the drift term, vDVygg, in Eq. (4.1). This term represents
E x B convection along the density gradient, and is impértant in the lowest order
dynamics of the (finite L,) n;-mode sincé it allows V|7 to be nonzero while
maintaining incompressible mass flow (i. e., V - (nv)) ~ 0). Without the density
gradient, 072/0t assumes this role, mass incompressibility no longer holds, and
the theory must be reformulated.

Linearizing Eqs. (4.1)-(4.3), Fourier transforming in vy, z, and ¢, with
k| = kyz/Ls, taking the drift term in Eq. (4.1) to zero, and solving for ¢, we
obtain thevfollowing mode equation:

&2é- -
=+ Qz,w)d; =0, (4.6)

dz

where the “potential” function is given by

Qz,w) = { —k2 — —2 i 47
(2:,&) - y w+wz+L§ (wz_zkii_’:i> ’ ( . )
where wl = —k, /7 L7 (in dimensionless units).

Neglecting the term that varies as T’ (which gives corrections of order
V' Lr/L,), then Eq. (4.6) is the usual Weber’s equation, with solution given by

the Hermite functions, and yields the following dispersion relation:

/

2
2 w 2 7L w . 7Ly
(1+%) (F) + (Ly+z(2l+1) I ) <Jf> +3(20+1) I

=0, (48)

* *
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where [ is a positive integer. For the regime k2 S 7Lr/L, (< 1) and [ <

L,/7 Ly, the roots are, approximately,

w ek (1\/_;) 21+ 1)} (T—fi> : W, (4.9)

of which one root is unstable. It is important to notice that here Re(w) =~

Im (w), whereas for the finite density gradient case, a purely growing portion of
the spectrum exists at low ky, where w ~ i%—f:}—"';ﬁw*e. Physically this difference
is due to the introduction of mass compression into the basic dynamics, an
effect also present in the turbulent regime, which influences construction of the
nonlinear theory.

The width of the mode may be found by taking the 22 moment of the

Hermite functions, and is, in the low [ and low k,-regime,

: /2
2 142 3/2 L, '
o~ 2 . .
(8o) =22 (21 +1) (TLT> (4.10)

Despite the imaginary component of Az, the mode remains a bound state since
Im(Az) < Re(Axz).

We have numerically compared the above fluid results with the more
complete kinetic theory by using a shooting code with a potential derived from
the ion gyrokinetic equation, similar to that used in Appendix D. This analysis
is tedious, and not presented here, but the basic result is that fluid and kinetic
theory agree at least as well in the flat density limit as in the usual finite L,

regime. The neglect of ion resonances requires that

k“'Uz' LT 1/4
~ (204 1) (L > < 1,

38
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or %’? > 2141, which may be interpreted to mean that the temperature gradient
must be well above threshold for a fluid theory to apply.

In Ref. 15 it was demonstrated that compression of the ion diamagnetic
drift (where V- 9p ~ [bx (b- V)B] - kip o~ kyp/R, in undimensional units, where
R is the major radius), which is neglected here, can have a stabilizing effect on
the mode. However, this study also neglected the parallel sound wave dynamics,
which is clearly the destabilization mechanism in the slab limit. A comparison

of these terms in the present ordering shows:

Vi-ip _ (Ls)% ~
V9 R

Thus, perpendicular compression is important in the weak shear limit where

0> |

q/8 > 1 (i.e., the toroidal limit), whereas for strong shear (the slab limit) it is
replaced by parallel compression.

A mixing length estimate of the turbulent diffusion rate produces:
T

D2 ~ 4z (Az)} o (20 + 1) “’7 (4.11)

The absence of L, in this estimate is a result of the dual role of the shear,
which both destabilizes the mode (which enhances D**), and localizes it (which

decreases D*%), with net cancellation.
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4.3 Nonlinear Theory

In this section, we seek to improve upon the mixing length estimate given above
by use of a technique of solving for the renormalized diffusions as an eigenvalue
of the system of differential equations, as explained in Chapter III. This has
the advantage of being a fully analytical method, capable in principle of taking
account of the full dynamics of the system. By comparison, the usual mixing
length scheme, which employs such heuristic concepts as “asymptotic balance”
to estimate scalings with various key terms, is inherently limited in its ability to
resolve the more subtle details. The basic scheme here is to set the linear growth
rate, Im(w), to zero at saturation, and solve in its place an eigenvalue problem
for D (henceforth D will denote DZ*). This yields the level of turbulent energy
diffusion (which in k, space is a cascade) necessary to shut off the growth. In
this study, we use this technique to analyze whether the renormalized nonlinear
dynamics produce any modification over the mixing length estimate, as can
.occur in other cases.®

This approach was carried out successfully for the case of finite density
gradient n;-turbulence. In that work, it was possible to drop all of the time
derivative at saturation, since in the low ky regime considered it represents
growth only. However, in the flat density case Re(w) assumes the important role
of balancing parallel compression in the continuity equation. This compression

(which vanishes as k,) will persist in the saturated state, and cannot be balanced

by any of the nonlinearities in Eq. (4.1) (which vanish as Lg or faster, which is
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also a property of the unrenormalized E x B vorticity nonlinearity), in the
ky — 0 limit. Thus, for large wavelength (the limit of interest in this one-point,
transport theory), it is essential to retain Re(w) to balance compression in the
continuity equation.

Thus, the analytical method proceeds as follows: restricting considera-
tion to the low k, portion of the spectrum (which is responsible both for energy
feed and for transport), we solve Eqs. (4.1)-(4.3) for ¢ retaining both w and the
renormalized diffusivities. The resulting differential equation is then manipu-
lated into “Schrodinger” form, and a WKB approximation produces a complex
dispersion relation for D. The other “eigenvalue” Re(w), remains at its linear
value, since any nonlinear frequency modifications are contained in Im (D). .

| Proceeding along these lines, we Fourier transform Eqgs. (4.1)-(4.3) in ¢,
Y, 2, and z and solve fdr qg, neglecting terms which vary as k: and higher. This

results in the following second order differential equation:

1 9 2¢ L2w+ (Wl +w) k2
w +1Dk2 Ok,

ol +wribR ¥ =0 (412)

where,

_wi tw+iDk} -

¥ w+ 1 Dk?2

Applying the WKB phase quantization approximation to this equation produces:

, 1Ly (¥ w4+ iDk?
Z(W?‘f‘w)zk/ w + ‘:c .
y J~kr (WT +w +1Dk2)?

(k% — k2)* dk, = Z@i+1), (413)

where,
w

R
T wl +w
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The choice of kr as the turning point recovers all the characteristics of the linear

mode in the D — 0 limit, which demonstrates that this branch is the nonlinear

extension of the linear theory. Expanding the denominator of the integrand to -

order k2 and integrating, yields the following dispersion relation:

. D 1 w ky (wl+w 2
—1 (wf+W)+Z<1—§m> :(2l+1)i'<—-(:—> . (414)

In the saturated state, the growth is shut off, so only the real part of w

remains, which is given by Eq. (4.9). Solution of Eq. (4.14) then yields:

1y 3 |
1—'517 ; 1
D:8w3<——l)— (1—%1 %>, (4.15)
— 8

where s; = (I+1/2) TLLaT, and %ﬁ & 1. The basic scaling, D ~ wI, agrees

with the mixing length estimate, Eq. (4.11). However, there is a discrepancy of
(20 + 1)*, missing in Eq. (4.15). Possibly, this is a consequence of Eq. (4.15) be-
ing calculated in k, space (which leads to Deig ~ Awy, / (Akx)Q), while the linear
estimate uses a mode width calculated in z-space (so that Dy, ~ Awg, (A:c)2).
Whﬂ(; it is true that Az o~ 1/Ak;, for the | = 0 mode, one can easily show that for
the higher | Hermite functions this must be generalized to Ak ~ (I +1/2) /Az.
This could account for the discrepancy between Eq. (4.11) and Eq. (4.15). Phys-
ically, one might expect that it is the mode width in z-space that determines the
step length in the random walk, and hence the radial diffusion. On this basis,
one would expect the mixing length estimate of Eq. (4.11) to yield the correct [

scaling. However, in light of the ambiguity, we shall consider only the diffusivity
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of the I = 0 mode, using this for rough comparison with the transport of the

finite L, case as described in Ref. 16 (which also considers only the [ = 0 case).

4.4 Transport

Having obtained the saturation level of turbulent diffusivity at long wavelength,
where most of the turbulent transport takes place, we next apply this knowledge
to finding the saturation levels of ion and electron thermal conductivities, y;
and x., and the particle convection velocity, V;. This is best done using the
unrenormalized equations, and the basic technique and formulas are given in
Ref. 16 and Chapter III. Since these formulas do not change in the L, — oo
limit, here we only apply, and do not rederive, them.

The ion thermal flux is calculated from the correlation between ion

pressure fluctuations and radial velocity fluctuations, which yields:

T;

gi = “E<DE>>

with resulting ion thermal conductivity:

(k ps)rms
X:i = <DE> ~ 2-—%?p363. (416)

Evaluation of (kyps),,, would require solving a two-point spectrum equation,
which is beyond the scope of the present study.
The electron thermal conductivity (x.) is derived from the trapped elec-

tron response to the turbulent potential fluctuations in the dissipative trapped

96




97

electron regime?” (wy, < Veff,e). Here, x. is estimated as:
2>

4;&_‘ <A“"E/DE'> o~ <D%,/Ax%,>, we find:

edr,

Yo = 15/2¢3/2 pict Z <k'2
e Yy Te

Ve =
k!

Using the approximation )z, k'2

53/2 TLT % Ps
Xe =~ 85 ( I, ) (<7‘Ly )>2P§ 3’ (4'17)

where € is the inverse aspect ratio and v, is the electron collisionality.

For particle flux in the central region, the necessary phasé shift between

vg, and 7. (here adiabatic) is also provided by dissipative trapped electron
dynamics.*” In the flat density limit, the flux is:
3 noed/?

l 2
Ty = (5,7) = 3205 3 <k,§ >
e EI

in the high-collisionality limit of the banana regime where Veff,e > W,Wpe. Red-

6¢E,
T,

imensionalizing, and applying the same approximation that led to Eq. (4.17),

we find that the particle convection velocity is given by:

: 3/2 % L
V, =T\/no ~ 6= (TLT> (kyri) Spacl. (4.18))
Ve L, LTC (TLT‘)

This represents a purely outward particle flux, although for different collisional-

ity regimes the flux can be inward.53




4.5 Discussion

This chapter has examined the behaviour of ion temperature gradient driven
turbulence in the presence of a flat density profile. This has entailed the de-
velopment of a renormalized one-point turbulence theory applicable to the case
where v ~ w,. The turbulence level and subsequent transport reach a plateau for
L, > \/LtL;, and roughly speaking, the present results may be obtained from
the finite density gradient results by replacing L, with /L,L7. The thermal
transport of this regime is larger than that for finite density gradients (which
is already large enough to yield greatly degraded confinement), and hence we
conclude that straightforward application of the usual fluid n; transport does
not explain why the energy confinement of H-modes on D-III is not degraded.
The threshold effects invoked in Ref. 15 show that the critical temperature scale
length is comparable to the major radius, but it is not clear that the degree of
temperature flatness necesary for full stabilization is actually obtained.

| A possible alternative explanation for H-mode behaviour might be based
on two results from the examination in Chapter II of the weak turbulence regime
which exists near the threshold. First, in the regime n; <y +(1+7T3/T.) L,/ L,
then v < w, and the instability saturates at a weak turbulence level. Second,
X: in this regime is greatly reduced from a naive extrapolation of the strong
turBulence level. Thus, the limit of large L, can extend the regime of weak
turbulence, and one might expect an increased distance between the allowable

temperature gradient and the threshold value. However, this weak turbulence
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work is restricted to the regime L, < L, so that the broadening of the weak
turbulence regime with L, is only a trend. A study of weak turbulence in the

flat density limit will be undertaken in the future.
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CHAPTER V

CONCLUSIONS

In this section, I will summarize the impact of this work in a broader
sense than in the preceding chapters, and give my own thoughts on directions for
future study. Many of the comments made in this section are quite speculative,

and reflect the opinions of myself alone.

5.1 Summary

This thesis has been a compilation of three studies of ion temperature gradient
driven turbulence (“n;-turbulence” for short) in limits not considered previously,
and as a result have furthered understanding of anomalous transport in plas-
mas. Further than this, however, some of the techniques employed in this paper
have been rather innovative, and I hope that this work has helped advance the
understanding of plasma turbulence theory in general.

The direct relevance of this thesis to magnetic fusion experiments may -
be summarize(i as followé. First, Chapter III has shown that the ion thermal
confinement and momentum transport due to n; turbulence are the same. This
fact lends itself to a number of useful inferences. For example, recent divertor ex-
periments on D-IIT have indicated that the momentum confinement time equals
the total energy confinement time;® this implies that electron thermal losses are

small in those discharges. Second, Chapter II has shown that the transport
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threshold (i.e., where y; becomes relevant to experiments) is the point where
wave-ion resonances become negligible, which is not the same as the linear insta-
bility threshold. This validates the applicability of fluid-like 7;-mode theory!®
to experiments (by allowing the ion temperature profile to steepen into the fluid
regime). Furthermore, one might expect a steeper ion temperature gradient ac-
companying effects that broaden the weak turbulence zone, which may appear as
an enhanced energy confinement time. The boundary between weak and strong
turbulence occurs for n; &~ ny + (1 4+ T3/ Te)f:—:, which could possibly account
for the observations of improved confinement in the cases of increasing T; /7,5
flatter densities®* and higher current®® (which decreases L,). As it happens,
none of these effects are explained by the usual theory that considers only the
! = 0 radial eigenmodes in the fluid limit.!®

The main theoretical contributions to knowledge of n; turbulence are
as follows. Chapter II is the first analytical study of the linear and nonlinear
behaviour of the instability near threshold. Here, the most important insight is
that nonlinear Landau damping becomes the dominant saturation mechanism
in this limit, and holds the turbulence level and transport to low levels. Chap-
ter III has shown that the temperature gradient can “combine” with a toroidal
momentum gradient, each contributing free energy to the instability, and trans-
porting both quantities at the same rate. Chapter IV has shown that a fluid
theory will predict large transport when the density becomes flattened. It has

also explored the effects of compressibility on the saturated turbulent state, and
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demonstrated the proper way of accounting for this eﬁ'evct.

Several techniques developed in this thesis may be useful beyond their
application to 7; modes. The most significant of these has been the develop-
ment of the eigenvalue technique of calculating one-point diffusion coefficients
for strong turbulence (in the nonlinear theory sections of Chapters III and IV).
Although this technique was originally introduced by Carreras et al.*® in order
to resolve numerical coefficients, in this work we have clearly demonstrated that
it has uses beyond this. It is clearly superior to the other available analytical
methods, which are asymptotic balance”'¢ (which are inherently unable to con-
sider more than the grossest details of the dynamics) and dimensional analysis
techniques®®*":58 (which are limited to simple situations, and also do nothing
to resolve dynamics). The diffusion-as-eigenvalue calculations in this work have
prov}i'ded several results that could not have been resolved by either of these.
First, when there are two free energy sources feeding the instability, as in Chap-
ter III, the eigenvelue calculation is the only way to take both of them into
account properly. Second, this method can be applied when there are multiple
renormalized turbulent diffusivities appearing (although these must be reduced
in approximate fashion to only one diffusivity), as in the case of u, §, and D
used in the calculation of Chapter III. Finally, this method can yield an expres-
sion for the nonlinear frequency shift, (appearing as the imaginary part of D),
which can bAe quite important in the basic dynamics of the saturated state, as

in Chapter IV. Certainly, there are further uses for this diffusion-as-eigenvalue
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technique, which in principle is capable of accounting for any effect described
by the renormalized one-point equations.

Other techniques introduced here may also be useful beyond this study.
Section 4.3 introduced a technique of incorporating the real part of the frequency,
wr, into the nonlinearly saturated dynamics. (Previous theories, generally ap-
plied to cases where w, < v, neglect all of w, + iy for the saturated state.)
Finally, Section 2.3 has introduced a method of calculating the linear growth
rate locally and averaging over a normal mode to find the growth of the mode.
This can lend great simplification to calculating the linear growth rate, and

applies to cases where v < w;.

5.2 Further Directions

As is the éase when any progress is made, this work has produced as many
questions as it has answers, and here I will list some problems that I feel would
make useful future study.

The results of the threshold study in Chapter II suggest that the true
“threshold” for transport is the point where nonlinear Landau damping becomes
negligible. However, there is no good way to estimate wh‘ere this point is, beyond
a loose connection with the vanishing of linear Landau damping when n; > 1.
What is needed for better resolution of this is a kinetic strong turbulence theory
(i.e., one that can describe resonances). Short of this, it may be possible to use

existing particle codes, which give good agreement with the fluid regime results
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for n; > 1.%° By tracing n; downward toward the threshold, one could find where
there is significant departure from the strong turbulence mixing length estimate,
and nonlinear wave-ion resonances become important. This point could be taken
as the value of ; where the transport threshold occurs.

There is still no definitive explanation as to why tokamaks show im-
proved energy confinement with increased current. The basic slab model, which
retains only the [ = 0 radial eigenmode, shows x; o< L; !, which apparently con-
tradicts this experimental result. Several schemes have been proposed to remedy
this, including global transport models, finite-8 effects on electron thermal con-
ductivity, g(a) dependence of Lt;,%" and effects due to higher ! eigenmodes.!® Of
these, all but the last call into question the prémise that anomalous 7; transport

comes from enhanced x; over some “confinement zone” by invoking secondary

effects such as nonlocality of transport, interdependence of plasma parameters, -

or an energy confinement that depends on x; for some scalings and y. for others.
Although it may turn out that these kinds of secondary effects are inevitable,
they greatly diminish the predictive power of any theoretical transport model
which relies on them, since such arguments can lead ambiguously in a number
of directions. (Indeed, if the presence of such effects means that one is not to
believe the L, scaling of x;, how much faith can one have in the Ly or L,7)
Before invoking a more ambiguous model, one should exhaust the possibility
of finding a local transport movdelb with the correct current scaling for x;, and

several indications make it seem too early to preclude this. First, the work of
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Ref. 13 indicates that simply considering the I > 0 modes could produce the cor-
rect current scaling. These results are promising, but more work is required for
a complete model. Among the important effects that need to be considered are
Landau damping (which gives a maximally unstable ! differing markedly from
the fluid prediction, as noted in Ref. 13 and described analytically in Appendix
A here) and nonlinear coupling of the radial eigenmodes. Second, the weak
turbulence theory indicates that with higher current (ie., decreased L,), the
steady state T; profile (from the balance of heating and transport) can steepen
further above the threshold level. I feel it is possible to construct a theory that
accounts both for this effect and for Landau damping of the [ > 0 modes, which
are closely related. Although these are rather difficult to handle analytically in
an exact way, simpliﬁcatioh could be gained from yA?2 estimates that ﬁse the
sta,bile rédius derived from local kinetic theory?® for the mixing length (since this
width will be closely related to the maximally instable {), or from a continuous
[ approximation (similar td the continuous m and n approximations of Section
2.4). Finally, a valuable experimental clue could be gleaned from measuring
the current scaling of the frequency of the broadband turbulence observed in
infrared scattering experiments® This measurement, combined with y; ~ yA2
and the crude estimate that v has L, dependence similar to w,, would indicate
how much of the disparity of current scaling comes from frequency effects and

how much cémes from mode width effects.

The question remains of what is happening with 7; turbulence during
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H-modes on D-III-D with flat density profiles. It is becoming clear that the
improved confinement has more to do with edge effects than n; modes®®:6! but
the question remains of why the n; confinement doesn’t degrade enormously
for flat density profiles. One possible solution worthy of investigation is the
broadening of the weak turbulence zone accompanying increased L,. This trend
is observed for the L, < L, regime examined in Chapter II, but a detailed
analysis of the linear and weak turbulence behaviour of the flat density regime
1S necessary.

At present, there is no clearcut way to distinguish experimentally be-
tween the toroidal and slab limits of the instability. Theoretically, the former
transforms into the latter for higher shear,!! so that either limit is possible
on any given tokamak, but the magnetic shear profile is not known accurately
enough to determine which regime is appropriate. One appl;oach is to look for
predictive differences arising from the fact that the toroidal limit has a balloon-
ing mode structure, while the slab limit is a sound wave. One such possibility
is the momentum/energy confinement similarity shown for the slab branch in
Chapter III here. Since this results from the correlation of momentum and heat
fluctuations inherent to sourid waves, then one might expect this property to
be altered in the toroidal limit, where sonic character vanishes. A theoretical
analysis of momentum transport for the toroidal branch would be useful.

Further experimental verification that momentum is transported by the

ni mode could be provided by combining tangential beam heating with some
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non-directional ion heating source, such as ICRH. An experimental correlation

between rotation velocity and nondirectional power level would strengthen the
case for temperature profiles being the cause of momentum transport.

I believe that it is possible to devise a more complete derivation of
the eigenvalue calculation, based on the transport and nonlinear fluctuation
equations. As it stands, the calculation is based on the intuitive physical notion
that the ultimate sink of the turbulence energy is related to transport. That the
various nonlinear diffusions are combined as one term is justifiable by noting that
they all have the same net effect of carrying energy from the linear source to the
sink at a different radius, and that the details of the intermediate processes are
not important so long as the rate determiniﬁg step is the linear instability; that
is, the level of turbulent diffusion will adjust itself so that it carries away energy
as fast as it is supplied. A consistently ordered formulation of this intuitive
argument would lend it better credence.

In astrophysical accretion disks the question of turbulent angular mo-
mentum transport is central to understanding disk luminosity, and the approach
of Chapter III has shown promise®? One possible scenario is that unstable verti-
cal convection instability couples to the angular momentum gradient, prov';ding
symmetry breaking and transport similar to that of 7; modes. Preliminary find-
ings from local theory indicate that the convection instability can couple with
the shear flow, modifying the growth rate so as to favor waves with positive

angular momentum content relative to the disk. This gives turbulent spectrum
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with a favored sense of angular momentum, and thus providing transport and

an effective turbulent viscosity. Further investigation of the linear modes and

the nonlinear coupling mechanism is needed before the viscosity can be resolved.
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APPENDICES

Appendix A: Stability of Higher Radial Eigenmodes

In Section 2.3, we obtained the growth rate of the | = 0 mode by averaging the
local growth rate over the normal mode. Here, we apply this technique to the
I > 0 modes. These are broader, and experience more Landau damping away
from the rational surface; this underlies the result that the stability threshold
increases sharply with [.

Averaging the local growth rate in Eq. (2.9), with ky = kyz/L,, over
the modes given by Eq. (2.11), and using the mode width given by Eq. (2.13),

we find

A=0
Viyn =V2wii8(20+ 1) —=

1

) =0\ 2 —_
y [11[3/2]_1_. (ﬂ _ 1) _ _i_Il[5/2](21+ 1)2 (Ax‘ ) p(p _ 1)32 (A1)
i Ne 2 1 UH
where
g VAR E(=L -+ ) _1+1/r
! 2UT(=1+7) ’ Iy
AZ% = (1—T1/To) 2 p;, s = &1‘» T = "I (b),

F'is a hypergoemetric function, and I is the gamma function (not to be confused
with I',). The first several II[T] are listed in Table 1. In deriving Eq. (A1), we

have assumed that 2/ + 1 < n;/s, so that the exponential in vz (k) may be
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neglected relative to the exponential in Eq. (2.11). For [ = 0, Eq. (A1) reduces

to Eq. (2.14).

Setting i, 1 to zero and solving for the n; > 0 branch yields the stability

threshold for the higher radial eigenmodes

77(13 = MNe

- (P — 1/2
%Jr(% + 0, =T1/To)nl 1)32> J (42)

Ne

where C = %(21_4— l)gjl[s/z]/ftg3/2]' The basic threshold, 7., is modified by the
term which varies as €. The modification is of order s? < 1, and is extremely
small for the [ = 0 mode; however, the coefficient is a rapidly increasing function
of [, which raises the threshold significantly for [ > 0 (see Table 1 and Fig. A1).
This higher threshold agrees with the shooting code results of Ref. 13. They
are also consistent with the kinetic shooting code result!® that for weaker shear

(i.e., smaller s) a larger number of eigenmodes are unstable.

Once 7; rises above the threshold for the higher I modes, the growth rate
increases rapidly, so that above the threshold regime these modes dominate the
transport.'® However, it should be noted that 7; must be significantly greater
than 1 for a large number of the higher ! modes to be in the fluid regime. This
is unlikely in light of the strong thermal transport they cause. Thus, we can
expect that at most, only the first few radial eigenmodes are relevant to tokamalk

regimes.
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FIGURE A1: Stability threshold for higher radial eigenmodes, with L,/Ls =
0.05 and 7 = 1.




z i iR C
0 1 2/3 1
1 2 8/3 18
2 5/2 17/3 85
3 3 28/3 228.7
4 27/8 163/12 489
5 15/4 55/3 887.3
6 65/16 565/24 1469

Table 1: Functions used in Eqs. (Al) and (A2).

Appendix B: Stability of Flat Density Modes

Here, we use the technique of Section 2.3 to calculate stability in the limit
1<« L,/Ls — oo (formerly assumed small). This may be considered either as
the limit of flat density, or as stabilization coming from increased shear. In this

limit, the dielectric function of Eq. (2.5) becomes

wT

wl 1 w
@)= 1+1r—r 4 2 (L -y STz, (8D

Me ¥

where w? = &, p?Q;/Lr.. Treated locally using the v = =€ approximation
* yPi ; ) T = @eajeay 2Pl

as before, with &, this yields

Lp|z] | 1 L\ /z\? Ly z\?
() = V2wl 22 | = — 2p(p — e — p |2 —— )
Ti(z) = V27w, I, o LC p(p ~ 1) < L3> ) | I, o
(B2)

Arguing as after Eq. (2.9) gives the result that only for (Ls/L71)* — 0 is v(z)
stable for all z. Thus, locally there is instability for all values of L. However,

from our quasi-local point of view, y(z) must be positive over a wide enough




region to give a net positive energy input to the mode. The normal modes in this
regime are described, as in the L,, /L, < 1 theory, by Eqgs. (2.11)-(2.13) (the first
three terms of Eqs. (2.5) and (B1) are the same, and the rest are subdominant

in both threshold regimes). Averaging v(z) over the [ = 0 mode produces

N Ag [1 2p(p — 1) L%
- =

____w* >
L, (1012 + (AxPLT/L8)2>1/2 Tle AE/P?

This shows that the threshold for VT; is given by

ne(p—1)
For b = 0, then (Ls/L7). is about \/2(1 + 7)/72, and increases rapidly with b,

as show in Figure A2. Thus, it appears that modes with & < 1 are the most

relevant to the flat density regime.
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FIGURE A2: Stability threshold for flat density profiles, with 7 =1




Appendix C: Normalization of the Expanded Spectrum

This Appendix demonstrates that the step of expanding S(ky) under the in-
tegral (as in going from Eq. (2.24) to Eq. (2.25)) must be accompanied by a
normalization of the integral. Here, we show this when S (ky) is a gaussian, and
assume on intuitive grounds that this holds for more general shapes of S.
Letting S(k') = e~¥*/2% and K(k") = k"e~k"* /0% (which is the form

of the kernel in Eq. (2.25)), then it is easy to show that the exact integral is

/ S(KNIC(K"YdE' = ( AAQ A% Vrkexp [k /(A% + A%)] . (C1)

Now, if S(&') is Taylor expanded about k, where k = &' + k", then the integral

is

oo as k"’ d2s| .,
/ [sqk) B deJI(k’)dk'— [~£2/A%) . (C2)

—c0
In the limit where Ax <« Ag, for which such an expansion is fully consistent,
then Egs. (C1) and (C2) are the same. However, in our case, Ax > Ag, so that
Eq. (C2) must be multiplied by (Ag/Af)® exp [—kz (-AK"rA‘}f-)] to agree with
the correct answer. The exponential part of this normalization is of order 1 for
modes in the spectrum (i.e., those for which & S Ag), as well as an artifact of
the gaussian shape of S, éo we ignore it. (In comparing this derivation with the

normalization used in Section 2.4, one should keep in mind that the width of

k'K varies as A}, and the width of SK varies as A%.)
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Appendix D: Kinetic Limit of the Linear Fluid Equations

Here, we explore the limit of validity of the fluid equations by examining the ion
gyrokinetic theory?* for geometry and gradients similar to the preceding fluid
model. A Maxwellian velocity distribution shifted by Vio(z) in the ¢-direction

is assumed. This yields the following perturbed phase space ion distribution:

) {1_ JZ (kivy /)

X |w=kLVie =k Vo

}

(D1)

filksvi,v)) = Fm (U~VHOb w—ki1Vio— kv

2
_ Wae {1 L (vi + (v — Vi)~ _ 3> o LnVio (v = Vio)

5 2
T 2 v? Lyv;

where Fyy is the Maxwellian, Jy is the zeroth Bessel function, and v? = T} / m;.
Integrating away the v~dependence and undimensionalizing time and distance
to Q7 and p,, we find that

~

where

a5

G(R) = -

1, 27\ i
1+ ﬁZP(C)FO <<T> ¢— '772,‘ '>

(D3)
+ 5450 ( (a $o- 7-) To + 23k (Do = m) }

2T T

where Z, and Z;, are the plasma dispersion function and its derivative, { =

\/T/2 (Q'ky/Lnk”), Q= (w - I_/;,, . Z) /w*e, and I, = I, (Lﬁ_/'r) exp (—ki/'r),

where I, is a modified Bessel function. Applying the quasineutrality eqﬁation




with adiabatic electrons, 7; = e / T., expanding in k2 to first order, and then
taking k2 = —8%/02? and ky = kyz/L,, we obtain the following differential

equation in x:

0% ¢ .
Q) =0, (D4)
where
1/7 — G (k2
Qs = LT C 1) (D)

G (%)
This equation reduces to the fluid eigenmode equation, Eq. (3.7), when expanded
to order z? and kz in the limit |¢| > 1 and k; < 1. As with the fluid version, the
potential is even in z except for the terms induced by V; through the Richardson
number, J. The terms which vary as z shift the fluid potential, but do not alter
the quadratic structure; however this is not true of the odd terms which vary as
23 or higher, which tend to destroy the quadratic structure at large . Physically,
these terms represent the effects of higher shear damping when the velocity shear
causes the mode to stray too far from the mode rational surface. Analytically,
we can derive a crude but adequate estimate of the regime of fluid validity by
requiring that the term cubic in z which is not in the fluid theory, be less than

the quadratic term, which is in the fluid theory. Upon expanding, we find

T+ K)

J1? «
33$max

(D6)

This is the principal result of this appendix.
The shooting code analysis of Eq. (D4) may also be used to find the

effect of % on the instability threshold, 7;., in the spirit of Ref. 7. Although
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we have not done a detailed analysis, preliminary studies show that ;. is lowered
as % is increased, but not by more than about 15% before the limiting effects
mentioned in the above paragraphs become important. This result is interesting
in light of recent results from transport simulations by Goldston et al.,?5 which
indicate that n; tends to maintain itself at marginal stability, even when strong
central ion heating is applied. If this is the case, then in the presence of a shear

flow the allowable ion temperature gradient is even lower.

Appendix E: Energy Saturation

Here, we propose a criterion for turbulent saturation based on the ensemble-
averaged turbulence energies, and then translate this criterion into a mathemat-
ical method for accurately solving for the diffusion in the low-k, regime of the
spectrum, which is responsible for most of the transport.

We may define the following energy-like integrals,® which represent the

degree of turbulence excited in the various fields:
~12 ~12

EW = %/d% (lqs] + (vm‘ ) (E1)

xk_ 1 3. |12 .
E" = §/d x |v”l (E2)

11

S T B S ,

E _Q,I_/dm[p[. (E3)

Energy evolution equations are obtained by integrating Eqs. ((3.4))—(()3.6), with

the conservative property of convective nonlinearities, [ PzA <V$ X 13) VA=0
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for any A. This yields

3 7 ~ ~
-a—tEM = —/d3$¢V||'U|| ’ (E4)
9 x 3. |5 1= Vo . 1 2

=B == [ & |5 Vé + 5 Vip + 5V + | Vv (E5)
ot Ly

0 — 1 /14+mn —

EEEI — —-—/d33; l:pV”’U" + f ( - > ’UDpVy(ﬁ:l . (EG)

Hence, the total energy of the system evolves by

%) 1 /14 — Vo /. ~ 2
%E = —/d3$ !'f <T77) Up <])Vy¢> + -I—l-%— <v”Vy¢> + !\7||U|I| :’ .

(E7)

This energy evolution equations state that turbulence energy so defined
enters the spectrum at low &, through the n; and dVj / dr free energy sources, and
leaves the spectrum at high &, through viscous (Landau or collisional) damping,.
In order for the energy to move from low to high k,, nonlinear mode coupling
must occur, here modelled as triad resonance coupling of k and k' modes to k"
over a time of (Awg,,)_l |

In E—space, this transfer of energy must go in the direction of source
(low ky) to sink (high k,). Meanwhile, back in configuration space, the transfer
to higher ky translates to energy going out away from the mode rational surface,
where turbulent fluctuations can damp through the higher kj.

For the renormalized equations, which replace the nonlinear equations

by linear equations with energy sink Dy, saturation occurs when Dy has become
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large enough that all the energy fed into the system by instability are carried
off to higher k,, thus turning off the growth of all parts of the spectrum.
Analytically, Dy may be treated as an eigenvalue of the renormalized
equations that regulates energy transfer between various parts of the spectrum.
By restricting ourselves to the low-k, part of the spectrum, where most of the
radial transport occurs, all diffusivities except D%’: are of small relative impor-

tance in Egs. (3.25)—(3.27), and hence we may neglect them.
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