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Abstract: An algorithm for Newton's method is presented to find
periodic orbits for N degree-of-freedom Lagrangian mappings. The
computation time of the method is proportional to n, the period of the
orbit, and the required storage space is reduced to o{n). The
construction of the algorithm is based upon block-diagonalization of
the Hessian matrix of the action function. The index of the action
function, which is closely related to orbital stability, is obtained
during execution of the algorithm.




§1. Introduction

A Lagrangian system is one whose dynamics is described by a
Lagrangian function L(q,q,t) through a variational principle. Many
systems are Lagrangian including magnetic field lines, geodesic
flows, geometric optics, hydrodynamics of ideal fluids, etc. A state
of the system is represented by a point q in an N-dimensional
configuration manifold a4 together with a velocity in the tangent
space Ta.

The Lagrangian formulation can be converted into a Hamiltonian
one by Legendre transformation, introducing canonical momenta,
p=0L(q,q.t)/3q. The dynamics is given by flow of the one parameter
group of diffeomorphisms in the phase space (p,q). Its behavior can
be equivalently viewed by looking at successive intersections on a
sectional surface in the phase space which is transverse to the flow

(Poincare surface of section).! For conservative systems with a
compact energy surface the existence of such a section is guaranteed

by Poincare’s recurrence theorem.? The induced map on the surface of
section is symplectic since a Hamiltonian phase flow preserves
symplectic structure. A formal conversion of a continuous time
system to a discrete one by introducing a map is possible for
autonomous systems and periodically time dependent systems. The
corresponding domain of the map in the Lagrangian formulation is ax
M.

Much of the analysis of dynamical systems relies on periodic
orbits and the behavior of flows in their neighborhood. For example,
quasiperiodic orbits can be obtained by interpolating nearby periodic
orbits, the frequencies of which constitute the sequence of

approximants to the frequency of the quasiperiodic orbit.3*

Finding an orbit of a map T for given period and parameters is
equivalent to solving a system of nonlinear simultaneous equations.
By definition, an orbit of period n is obtained by finding a point z,
such that its n-th iterate returns to itself: zo=(po,q0) for symplectic
maps or Z,=(q1.qo0) for a map of configuration space. Namely, the
system to be solved is f(z,) = T"zo - Zo = 0. This requires a 2N-
dimensional root finder for 2N-dimensional mappings. Note that the
evaluation of the f(z,) involves iterating the map n times, the period



of the orbit. When the desired orbit is unstable, an initial numerical
error grows exponentially upon iteration of the map: | §z¢| = exp(ct)
|525| where ¢ > 0 is the Lyapunov exponent. Thus the desired
precision on z is lost along the orbit. For moderate periods the
numerical error | Szt-l can easily become of order one; therefore, any
scheme based on iteration becomes impractical for long enough,
highly unstable, periodic orbits.

Alternatively, one can search for stationary configurations of
the action function according to the variational principle for periodic
orbits presented in §2. This scheme is suitable for finding unstable
orbits since numerical errors-on the orbit do not evolve under direct
mappings. In this case the set of equations to be solved is
d(qo.q1....9n-1) = VWp = 0, where Wp, is the action function of the
orbit and g is a Nxn dimensional vector function. The number of
equations to be simultaneously solved increases linearly with n, the
period of an orbit. Accordingly, the main disadvantage of this method
is that the computation time grows rapidly as n is increased. With
straightforward Newton or quasi-Newton methods, the computation

time grows as o(n®).’

In this paper we present a scheme employing Newton's method
to find periodic orbits of Lagrangian systems whose configuration
space is N-dimensional. As a preliminary, the Lagrangian dynamical
system is introduced in §2 with a derivation of a map as
discretization of a continuous time flow. Section 3 presents the
linear algorithm for Newton's method. It is shown that the
computation time of the resulting algorithm is proportional to n, the
period of the orbit. It is also shown that the algorithm occupies
storage space of size o(n). Section 4 includes discussions on the
problems of obtaining a good initial guess and numerical overflow
stemming from the determinant of the Jacobian matrix becoming
small. The relation of the index of the action function to orbital
stability is also discussed. We illustrate the method for the case
N=2.



§2. Lagrangian dynamical systems

. Consider a dynamical system represented by a Lagrangian
L(q.q,t). Here q is a point in some N-dimensional configuration
manifold #. The action of a path q(t), tg <t < t, is defined as

t

WIq(t)] f 1(q.4.t) dt (1)

Extremal paths, determined by setting the first variation §W to zero
for q(to) and q(t,) fixed, satisfy the Euler-Lagrange equations of
motion. | |
Conversion to a discrete time mapping can be done formally for
autonomous and periodically time dependent systems. To this end,
introduce a partition of time interval, [to, tq, -, tpl; each step
corresponds to successive return of a flow to the Poincare surface of
section for autonomous systems, or the strobing period for
periodically time dependent systems. The discrete Lagrangian can be
defined by integrating L along an extremal orbit segment, q(t), which
begins at the point q; at t=t;, and ends at gi, at t=ti,

thot ‘ _
F(qi,qm)'sf L(q,q,t) dt (2)
t
q(t) extlremal
The action of an orbit segment from t=t; to t=t; can now be written
j-1

\/\/(q1 ’qi+1 ,q]) = ZF(qt ,Clt+1)
t=i (3)

Variation of W with respect to the intermediate points yields the
mapping equations

0
3q, F(qy 4.9y + F(qt,qm)J =0 (4)



This equation locally defines a unique mapping, T, from (qt_1, qt) to

(qt, qt.1) providing det(d2F/3q3q’) is never zero. We make a stronger
assumption, the twist condition: the mixed partial derivative matrix
is assumed to be uniformly negative definite, i.e. there exists a B>0
such that for any &q, q, q'

5q'b(q.q')'8q >B|sq|?2

b(q.q9") = - 32F(q.q’)/3qdq’ (5)

It can be seen that this globally implies the existence of T.% The
twist condition is the analogue of the Legendre condition in
continuous time.

An orbit is a doubly infinite sequence of configurations
..qt,qt.1, Qt.2,... such that every finite segment {qt.qt.1....qs} is a
stationary point of the action W(qt,qt.1....qs) for given qt and qs.
An orbit is periodic with period n if

Qt.n= qt ' (8)

such that n is the least integer satisfying Eq. (6). The action for a
periodic orbit is

Wn(q0.91....9n-1) = W(q0.94....qn-1.9n=q0) (7)

Equation (7) gives a variational principle for periodic orbits: a
periodic orbit of period nis a critical point of Wy where all points
do0.91....n_71 are varied freely. This is true because criticality of Wp
implies Eq. (4) for O<t<n, and variation with respect to q, implies.
F1(dq.91) + F2(qn-1.9¢) = 0, which implies (8) when (5) is satisfied.
The linear stability of the orbit is determined by considering

the tangent map for the orbit, which is obtained by linearizing Eq. (4):

-bt.1 8Q¢,1 + at 8q¢ - bt 8qt.1 = 0
by=-Fo(q¢ .9y

ay= Fiq(qq.qq,¢) + Foolqy_1.0¢) (8)



giving a linear second difference equation. Here "~ * designates
transpose of a matrix. The multipliers of a period n orbit are
determined by the eigenvalue problem

8qt,.n= A 8q¢ (9)

which closes the recurrence relation (8).




§3. Linear algorithm for Newton's method

The algorithm for Newton's method can be written briefly as
follows.

problem : Solve g(x*) = 0 where g: ®"-» g
‘Definition : Qx=0(Xk), Sk=Xk-Xk.1 and J is Ja.cobian of gk
Input : Xo
Do while ] sk] > given tolerance
.evaluate Jx . (step 1)

solve Jk Sk.1 = -Gk (step 2)

The vector sg is the correction to the approximate solution Xy.

Newton's method is well known for its rapid quadratic
convergence.’ That is,

where C is a bounded constant and {Xx} is a converging sequence to a
solution X*. One of its disadvantages is that it usually requires o(n?)
function evaluations to calculate the Jacobian matrix J in the step 1
above. Furthermore, in step 2, one has to solve a linear system
requiring o(n®) arithmetic operations at each stage of the iteration;
this can be reduced to o(rn?) for the case that J is a sparse matrix
with band width r.®

We want to employ Newton’'s method to solve g(q) =
VWn(4¢.91....9n-1) = 0. The NnxNn Jacobian matrix, J = VVWp, is
given by Eq. (8) with the periodicity condition Eq. (8):



~

ag -b1 0 . 0 -bo

- -bq aq -bo 0 . 0
J = VVWn = ~ _
0 -bn3 ap.3 -bp2” O
0 . 0 —bn_2 an_2 -bn-1
= (10)
-bo 0 . 0 -bp.1 ap_q

In the following we present an analytic inversion of J. The
explicit form of J- is used to calculate s. Namely, instead of
solving the linear system J s = -g, one obtains s directly by
calculating s = - J™'g. The resulting algorithm requires o(n)
computation time at each iterative stage while retaining the

quadratic convergence of Newton's method.
The presentation of this method is divided into two parts; (A)

inversion of J via block-diagonalization and (B) calculation of s.
Below, we will denote the components of Nxn dimensional vectors by
X = ( Xo, X1, ..., X1 ) such that each Xi is N dimensional.
Similarly, each entry of an NnxNn matrix is denoted by an NxN

- submatrix, as in (10). The index k denoting k-th stage of iterative

Newton algorithm is dropped to avoid confusion with subscripts for
vectorial components. Uppercase characters are used for matrices
with the exception of the given matrices aj and bj.

(A) Inversion of J ‘

The primary goal of this part i{s to obtain a decomposition of J
into a product of easily invertible matrices (see Eq.(15)). We first
show that J can be block-diagonalized using a non-orthogonal
transformation U, which is upper-triangular with unit diagonal
entries. Inversion of a triangular matrix is straightforward. Finally
J-! is obtained as a product of the inverses of the decomposing
matrices (Eq.(18)). '

First, consider the quadratic form XJX where X is an arbitrary
vector. Successively completing the squares yields

X Jx= (Xo-A61b1x1-Bé1xn-1) Ao (Xo-A61b1X1-BEJ1Xn-1)

o {%1-ATTD2%5-B 7 %01) At (X1-AT'D2%-B7 "%, 1)



-1 -1 -1 : -1
+ (xn-2‘An-2bn—1xn-1“Bn-2xn-1) An—2 (Xn-2'An-2bn-1xn-1"Bn-2xn-1)

A + ’in_‘]An_] Xn_1 (11)

where the Aj and B; are defined recursively by

Ad: dp
A = a; - S[Aﬂ‘]bl 1 <i<n-1
- 1 - (12a)
An 1z an1 - bnotAplobnot - Do - Dpoy
B.=1
Bi =Biibj Aj 0<i<n-T
(12b)
Bn_‘]: I
and we have introduced matrices Di defined by .
Dn-1 = En-1|3r_11_2
o~ 1 (12¢)
Di =Dj,.1 +« By AiBy n-1>i>0 :
- Note that Aj and Di{-Dn.1 are symmetric.
Thus Eq. (11) can be re-expressed as
XJx=0Duy | (13)

where D is a block-diagonal matrix with the submatrices A; along
the diagonal. The vector y is obtained from X by a non-orthogonal
transformation, y = Ux, where U is the upper triangular matrix
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I -Asbi 0 .. e -Bp'
0 I -Aiby 0 H
U -
0 I -A rﬂsbn_g B3
0 I ~Anlabn_1-Bnlz
0 0 I (14)

Since X is arbitrary in Eq. (13), we obtain the desired decomposition
of J;

J-UduU (15)
The inverse of U is obtained by solving for X;j in terms of Yj;
Xn-1 = Yn-1 (16a)
-1
X;=Y;+A; b, X;,;+B, U, n-2=i=0 (16b)

1 1
i by (gm + Ambuz {2 * 51 Y. 1) + By

1
«

+

>

-1 =1 -1
Y+ Ai bi+1gi+1 + Ai b A1+1b1+2g1+2 T A b An 3P nYn2

i1 1+1 1+2 n-1

-1 -1 -1 -1 -1
+ (B1 + Ai bi+1Bi+1 Tt a A b A b. -An-2bn-TB )gn_I

Each coefficient of yj corresponds to (U'1)ij . That is, after
straightforward matrix manipulations by using (12),
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(U“)ll = b{1§i_1§}11bj O0<i<j<n-2
(U-")n.1 = b;"Bi. 1D 0<is<n-
(U"T)ij = 0 > ] (17)

-1
Now J is obtained from the inverses of D and U:

JT-uTp 10! e,

(J—1)ij = E -1 A (0—1)11'- (18)

1:max(i,j)

Inserting Eq.(1 7)_]'[nto Eq.(18) and using Eq.(12), we obtain the final
expression for J

R ~ ~_1
(J-1)ij - b'Bi_ ( Dmax(i.j) - Dn-1 + DiAn1_1Dj Bj_1b; (19)

Thus J~' has been obtained in analytic form. It is explicitly
symmetric. The matrices Ai, B; and D; are obtain_e1d recursively as
shown in Eq.(12). However, we do not evaluate J because this
would require o(n?) arithmetic operations and o(n?) storage space for
entries of the J-'. ‘»

-1
(B) Calculationof s = -J g
By virtue of Eq.(19), the analytic form of s can be directly
obtained.

s =0Ty g
~ ~_1 L~ ~ n-1
= Qi X, Bj_1bj g; + bi'Bi_1 2Q;g; + PiA;l; 2 Pig; (20)
j<i JZI ' _]:O

where the matrices Pi, Q; are defined as follows:
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Pn_‘] :I
Pi = Pi.,1 Ei.,_]AE‘] + 51—1 n-2=120
Qi = Pj - Dp_1Bi_<b}’ Nn-1>i20 (21)

Equation (20) can be further simplified by introducing two vectors u;
and di ; ’

Upg = dno1 = O
~_1
u; = U Bi_abi_1@;i_ 1<ign-1.
i i-1 + Bi-2Di-1Gi_1 (22)
di = di.1 + Qig; n-2=1=0

so that the recursive relations determine uj upwardly from ug and d;
downwardly from d,_1. The final expression for s is

~ ~ ~ el
-Si = Qi U + bi—1Bi—1 di + Pi I:AF]I‘]EP] g]:l (23)
j:o ’

Once the i-independent term inside the bracket of Eq.(23) is
obtained, the evaluation of each component s; involves only two
additions and four multiplications of N dimensional vectors and/or
NxN matrices. As shown in Eq.(12), (21) and (22), all matrices and
vectors are obtained recursively. To obtain D;i from Di,; for example,
one addition and two multiplications of matrices are required. Thus
3n-2 matrix operations are required to obtain D; for all i. Therefore,
the total number of arithmetic operations involved in calculating s at
each stage of Newton method is proportional to n, which is the period
of the orbit, neglecting the factor involving N. The function
evaluations are involved only in calculating a; and b; as well as g;.
Furthermore, the number of NxN matrices and N-dimensional vectors
‘which need to be stored is proportional to n. Consequently, the size
of storage space for this algorithm, which could have been o(n?), is
reduced to o(n). ‘
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§4. Discussion

The method presented in this paper is suitable for finding
strongly unstable periodic orbits for a wide range of Lagrangian
systems. When N=1 (i.e., for area preserving maps ), the method is
equivalent in its efficiency to the Green function method proposed by
B. Mestel and I.C. Percival.’ To the same extent as theirs, however,
it is critical to choose a good initial trial solution. Even though
there have been various techniques devised to supply a good initial
trial, such as an extrapolation from solutions of lower parameters
etc.,? this is still a difficult problem.

In fact, there are many methods in the literature for iterative
solution of a set of nonlinear simultaneous equations.® In general,
however, for such numerical algorithms there is no sufficient test for
the existence of solutions. Convergence of an algorithm to a solution
s guaranteed only when the solution exists and the initial trial
solution is within the basin of attraction for the desired solution.
This basin typically has a very complicated structure. That is, the
system of equations to be solved is so complicated that it is often
hopeless to analyze the behavior of the function in the neighborhood
of a solution. Thus one should always try several methods to find the
one most suitable to any particular problem.

Beside the linear dependence on the period of the orbit, another
benefit of the present method is that the Ai’s give information on the
index of the action function of the orbit : the index'® of a function is
defined as the number of convex directions at its extremum. The
index has been shown to be closely related to the orbital stability
even though it is not a sufficient test for stability for general N1
That is,

N Hdet A,

1 t=0
TR, = ( z) PR (24)
1= I1det b, '

t=0

where R; is the residue associated with the corresponding reciprocal
pair of multipliers, i.e., Rj = 1/4 (2 - XA - 1/Xi ). Since the bi's



have been assumed to be positive definite (Eq. (5)), Eq (24) implies
that an action minimizing orbit is hgperbollc for N=1."

Implementation of Newton’'s method can be confronted with an
overflow problem when J is nearly singular. That is, det(J) can
become extremely small, which could result in overflow when
computing J-', even though s = - J-'g is finite. Indeed this is the
situation when the action is near an inflection point: as can be seen
from Eq. (24), one of residues is very close to zero. A typical
example is when an orbit is about to undergo tangent bifurcation
where it has a pair of multipliers at +1. Another case is when the
perturbation is so small that orbits are very close to the
configurations of uniform rotation.

This problem cannot be resolved without loss of efficiency.
However, its effect seems to be greatly lessened in our method by
using det(A;) instead of det(J). Namely, each det(A;) can be finite
even when det(J) would underflow. In examples we observe that
det(Aj) indeed tends to be finite with the exception of det(A,_1)
which becomes very small for the nearly integrable case. However,
An_1 is not involved in determining the other matrices so that the
algorithm less often encounters such a problem. Thus our method
works for the orbits whose residues are fa1rlg close to zero as well
as for strongly unstable orbits.

We illustrate the present method with an N=2 example for which

the generating function is!

F(9.9") == (q'-q)-b-(q'-q) - V(q) (25)

1
-2

where V(q1.,q9) = -1)2 (k1 cos(211q7)+k2 cos(27tq,) +h cos[27T(qy +qp)] )
27t

and b = I. The system represented by the Lagrangian (25) is periodic,

that is, F(q+1,9'+1)=F(q,q’), where | is an arbitrary integer vector. In
such a case, the rotation frequency of an orbit, if it exists, can be
defined as :

® = lim q(t) - q(t’)
ttse =T
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And the periodicity condition for a periodic orbit, Eq.(8), can be
generalized to

Qt.n= qQt + M m is an integer vector.

Therefore, every periodic orbit has a frequency & = m/n.

The resulting map for the system (25) is equivalent to two
coupled standard maps. Since the system is periodic in q, the orbits
can be depicted on a torus. The figure presented shows the
symmetric'" orbit of frequency w = (12,16)/21 with qo=(1/2,0) along
the path in parameter space: k=€, ko=.6€, h=.4€ and € varies from O
to 8.0 with a step size Ae=.16. For €=0 the configuration
corresponds to a uniform rotation, qj= ®-*j + qo. The multipliers of
the orbit at €=8.0 are A1=10'® and A,=-10"2. The orbit at € is used
as the initial trial to find the orbit at €+A€. The required number of
iterations of the Newton routine for each € ranges from 3 to 5. As
can be noticed from the figure, the points on the orbit tend to cluster
together as € becomes larger. Analogous clustering occurs for the

area preserving case and leads to the formation of cantori.
The construction of our method relies only on the band structure

of J. The particular structure of J with band width r=3N in Eq.(10)
originates from the nature of the second difference equation (8) or
the equation of motion (4), for general Lagrangian systems introduced
in §2. Therefore the method presented here is expected to be
applicable to a wide range of dynamical systems.
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Figure caption

Evolution of the points on a periodic orbit for the mapping Eq.
(25). The box represents (q1,q2,€) space which is 72x®, The parameter
€ varies from O to 8.0 in the vertical direction. The unperturbed orbit
at the bottom of the box has a point at each intersection of the tilted
grid lines whose slopes are determined from the frequency
w=(12,16)/21.






