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I. Introduction

associated with low frequency drift modes is well recognized as apn important mechanism for

- the anomalous transport in plasmas.! In addition to producing anomalous transport, the

nonlinear motions of the electrons changes the stability of the drift modes by modifying the
electron charge density résponse function at finite wave amplitudes.2'3'.4 Recent studies56 of
the nonlinear ExB motion of the particles in drift wave fields obtain results for the diffusion
and resonance broadening when the perpendicular E><B motion decouples from the parallel
motion. This decoupling approximation is adequate for describing the nonlinear rnoti.v(‘m of

.

ions® 8 but fajls for the electron motion considered here.

The electron motion in drift waves is influenced both by the parallel acceleration,
eEy /me, produced by the wave’s electric field and the nonlinear E x B motion. In the

presence of magnetic shear, Hirshman and Molvig* recognize that even the linear free-

- streaming electron motion directly couples to the nonlinear E x B motion. They show that

with the approximation of constant parallel velocity, the‘ nonlinear E'x B motion reduces
tq the time-dependent pendulum Hamiltonian, with the canonical momentum equal to the
radial coordinate and the canonical coordinate equal to the wave-particle phase variable. In
this constant Y| approximation, the onset of stochasticity and the diffusion approximation

are well known from the results of 13D Hamiltonian (pendula) theory.”® The constant,

the order of the trapping velocity vy = (e¢/me)1/ 2 the approximation fails qualitatively,

due to the strong coupling between the parallel and cross-field nonlinear motions.




In the present study, we analyze the drift motion of electrons in two electrostatic
waves in the presence of magnetic shear. Collisions are ignored, and we assume glven
fields without attempting a self-consistent treatment. The problem of particle response
to several drift modes associated with nearby rational surfaces of tokamak provides the

pr1nc1ple motivation for undertaking the study of this model. Our mode] ; is however, quite

-~ self-contained and does not rely especmlly upon the origin of the modes. The model could

equally well apply to electrostatic modes other than grad1ent driven ones and parameter
regimes vastly different from those relevent to tokamak physics. The only requirement is

that the sca.les be such that the guiding-center description is valid.

In Sec. II., we show that the motion is governed by a 2D autonomous Hamilfonian
system. The guiding-center equations of motion are presented in both non-canonical and

canonical coordinates, We determine relevent scales for the coordinates and recast the

equations of motion in terms of dimensionless variables. This simplifies the problem by

greatly reducing the number of free parameters.

space is derived as a function of two dimensionless parameters. The single wave electron

orbits are too complex to be expressed in terms of elliptic functions,

Electrons in the low parallel kinetic energy regime diéplay anomalous radia] ex-

cursions over a scale determined by the geometric mean of the shear length L, and the

electron gyroradius calculated with the parallel trapping velocity, po = vg/wce, with vy

given above. This radial scale-length thus displays ¢1/4 dependence, as compared with the

/2 dependence of the pendulum regime considered by Hirshman and Molvig.




Particles located at the null-points of the electric field (ie. k- -x—wt = nr)
experience no parallel acceleration or cross-field drifts. If furthermore, the radJal coordinate
and parallel velocity are such that the Landau resonance condition w = v”b(w) k =
vikyz/L, is satisfied, then such partlcles Wlll remain at the null-points of the electric field.

- These orblts are the stable and unstable ﬁxed points of the phase space. The values of x
~and v at the fixed pomts stand in an inverse relatlonshlp to one another. The constant
V)| approximation of earlier work focuses on the pendulum-like islands associated with the
fixed points that occur for v) large and z small. Little attention has been paid to the

opposite case of islands occuring for small v) and large z.

We find that for canonical momenta exceeding a certain value, the chain of‘ellip-:

tic and hyperbolic fixed points occuring in the pendulum approximation bifurcates into

three chains of fixed points separated in radius about the rational surface. Depending on
parameter values, these chains of fixed points may be inter&onnected In a variety of ways.-
We have paid particular attentién to a lattice-like homoclinic orbit with energy equal to
| e¢ which ties all thr_ee chains together. This orbit displays the maximum radial excursion

for the single wave problem.

In the presence of a perturbing second wave, the complex pattern of homoclinic
orbits joining the fixed pomts of the single wave problem become a, stochastlc web for small
values of the perturbing wave amplitude. Orhits with energy equal to e¢ are observed to
be extremely fragile to the onset of chaos, Applying the overlapping resonance ideas? 8+
to our 2D system, ip Sec. IV., we estimate the value of .the wave ampli_tudes for global
stochasticity from' two neighboring drift waves. For amp]ifﬁdes exceeding this critical
value, computer experiments show radial diffusion of the electrons. From the dimensionless

variables appropriate for this system, we are able to establish the scaling of the diffusion
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coefficient D, . In Sec. V., we give the summary and conclusions.

II. The Equations of Motion
We investigate the motion of an electron in a magnetic field with shear in the
presence of two electrostatic plane waves. We assume magnetic and electric fields of the

form

PO - ~ T .
BéBo [eysmL—s +ezcosL—J,_ (1)
E=-V3, (2)

where & = ¢, cos(ky - r— wit) + ¢y cos(ky - r — wot). (3)

The wave-vectors k; and ks are taken to be non-parallel and to both lie in the y-z plane,
The above choice of electrostatic potential neglects mode-coupling effects’® and the radial

structure (i.e. the z-dependence) of the modes®®. The field of Eq. (1) is produced by

a current j = 4‘75?3 [&: cos(z/Ly) + ¢, sin(azv/Ls')]. 'Our choice of B-field for the present
model was motivatea by the fact that it has the nice feature of a constant magnitude. The
detailed form of the sheared B-field is, however, not especially important, since we are
interested in values of z small gompared with the shear length L.

We make a Galilean transformation to a reference frameAmoving with velocity
w with respect to the lab frame. Denoting the transformed cobrdinafes with primes,
r' =r — wt. wis chosen so as to simultaneously solve w; = k; - w and wy = ky - w;
namely, we take w, = 0, wy = (kg w1 — k1.ws3)/d, and w, = (1, wo — k2,w1)/d, where

d = ki ko, — ky, ko,. With this choice, one finds that k; - r — wit-= k; - r' for s = 1,2.

. Hence, the fields are time-independent in the transformed reference frame. Note that the

transformation is not possible when k; and k; are parallel, since, in this case, d = 0.

For non-relativistic w, the fields in the wave-frame are given by E' = E 4 ¢ 'w x B




and B' = B — ¢~ 'w x E. We ignore the induced magnetic field, taking B' = B since

| E |< By. The importance of the wave frame for two E x B wave problem is pomted out

by Hirshman.!!

The guiding-center equations of motion for electron orbits are then given, in terms

of the wave frame coordinates, by

P _epm (@)
dt Me ’

! w X B
? ’U”b + — Bz [E + - J X B7 (5) .

where e is the magnitude of the electron charge, m. is the electron mass, b is the unit
vector in the difection of the magnetic field, and UI’I =b.dr /dt is the parallel velocity: -
The guiding-center equations thus constitute a two;degree-of—freedom,. au-
tonomous, dynamical system with phase space coordinates (v”, z',y',z'). We note that
adding a third wave having wave-vector ks in the y-z plane would, in general, preclude
the possibthy of finding a wave-frame where the fields é.re‘ time—indepéndent, since the
additional condition wz = k3 - w results in an overdetermined set of equations. Only
in the special case where w; = aw; -+ Bwy and ks = ak; + Bk, can one still boost to
a time-independent wave-frame. Hence, the extension of the present problem to three or

more co-planer waves is, in general, fundamentally different in character from the two-wave

problem investigated in this work. The additional “half degree” of freedom, not removable

“through coordinate transformation, opens up the possibility of Arnold diffusion?3, not

generally present in two-degree-of-freedom, autonomous systems.
Upon substituting the expressions for the fields, given by Egs. (1)~(3), into Egs. (4)

and (5), one obtains the following equations of motion for the guiding-center orbits:

d;’” = 37 gk (w) sin(k; - ) (6)

€ i=1,2




dz c .

i = B Z ¢ik;, (z)sin(k; - r) (7)
' 1=1,2 :

d; . ~ z :

d_,i/ = v s1n 7.~ 1(z)cos T : (8)
d

;Z—t% = v|| cos Li +w,(z) si;l Li’ (9)

where

w, (z) = w, cos — .— w, sin —
YU L UL

T R

ki, (z) = kg, COSE;—]% smL—s
z z

k; (z) = k; sin — + k;_ cos —.
Z”( ) Ty LS 1= Ls

For notational convenience, we have dropped the primes denoting wave-frame quantities.
Here, and in the remainder of the discussion, the phase space coordinates are understood
to refer to wave-frame quantities. In comparing these equations with earlier investigations
of motion in one wave, one should bear in mind th#t other a.ﬁthors“ have expressed the
motion in terms of a parallel velocity relative to the lab frame and a phase coordinate,
6 =k -r — wt, relative to the wave frame; a sort of mixed repreéentation. Our coordinates
are the particle’s physical position and velocity as seen by an observer in an inertial frame
moving with the waves.

The helical syﬁnnetry of the B field specified in Eq. (1) permits one, without loss
of génerdhty, to take k;, = 0. One may choose the y-axis of the coordinate system to
be parallel to k;. Then one speciﬁes.the origin of the z-axis as the point at which B is
orthogonal to k; to recover the expression for B given in Eq. (1).

One may verify, by differentiation, that the energy function,

H mevﬁ —ed'(z,y, 2), (10)

in
DO | =

7
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is conserved under the motion specified by Egs. (6)—(9). Here, ®', the electrostatic potential

in the wave-frame, is given by

' = Z ¢;cosk; -r — 1w - A(x), (11)
c

1=1.2

where A is a vector potential consistent with B = V x A. For the magnetic field of Eq. (1),
A may be taken as
A =ByL, {éy sin —;—s + &, cos fm; . (12)

A. The Hamiltonian Equations: Non-Canonical and Canonical Coordinates

The equations of motion (4)-(5) have the Virtue'éf clearly displaying the principle |
phsfsics of the present problem: namely, that the electric ﬁéld produces acceleration-along.
the field lines and E x B drifts across the field lines. This reduced set of equations,
however, suffers the drawback of not retaining the underiying Hamiltonian strucfure of |
the complete Newton-Lorentz equations of motion. Littlejohn .15' corrects this deficiency of
the simple drift equations by systematically constructing the guiding-center equations, to
arbitrary order in the magnetic moment. Following his phase space Lagrangian formulation
of guiding-center motion ', the equations of motion, to lowest order in the magnetic
moment, may be obtained by applying Hamilton’s principal to the Lagrangian

. dr -~ € ) '
L('U”,_:I:,y,z) = (—i-t- . [mev”b - -c-A} —H, ) (13)

where the Hamiltonian function, H, and the vector-potential, A, are defined by Egs. (10)-
(12). One is to regard the four phase space coordinates, V||, T, Y, and 2, as the generalized

coordinates.
Defining the 4-component vectors z = (v),r) and P(z) = (O,mev”f) — (e/c)A),
and using the Einstein summation convention, the Lagrangian (13) may be rewritten as
L(2,3) = #P(2) - H(2). (14
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The only non-vanishing components of P are

Py(vy,z) = me(v) —.wceLs) sin —I:)E_ (15)
P, (v, z) = me(v) — wceLS') cos Li _ (16)

S

Independent variation of the z* leads to the Euler-Lagrange equations w;;29 = 8H /82,
where the symplectic tensor w is defined as w;; = 8P; /82 — OP;/027. The equations of

motion, for the non-canonical coordinates z*, are then given by

dz? . OH
— gu 2
dt - 8z1”

(17)

where the cosymplectic tensor j is defined to be the inverse of w. j may be written in terms

of the bloék matrix M and its transpose M7 as
. 0 M
J= _MT 0 )

: z T
— Sin I. COSs I.

where
1
Me

M

T 1 : z
— =z — 2 gin ==
Weefs cos L Weef n L

Here, the function 3, derived by Littlejohn, is defined as
MeCU i

=14 g, L— 1
B+ Lb Vxb=1 51

and arises from the twisting of the magnetic field lines due to the sheared B(z). The term
%ﬂ- in [ equals %ﬂ'—, where py, is the Larmor radius. Assuming v; o~ vy and py < L,
this term is small, and § ~ 1. With § approximated by unity, Eq. (17) becomes identical
to Egs. (6)—(9).

The conservation of energy is readily apparent in the Hamiltonian formulation.

The total time-derivative of H may be written dH/dt = (9H/0z*)J% (8H/827). From the

9
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antisymmetry of J, one immediately sees that H is a constant of the motion. If, addition-

ally, ¢, is taken to be zero, the Lagrangian (14) becomes cyclic in the coordinate z. Thus,

- with only one wave, the z-component of the gyro-phase-averaged canonical momentﬁm,_

P,, is a conserved quantity.
~From the definition of w;;, one finds that the Jacobi tensor, S, whose covariant
components are defined by

S _ Owim Owmn Own,
Imn = "5 n - Ozt 8zm’

is identically zero. According to Darboux’s theorem, any antisymmetric, non-singular j
with VanishingJ acobi tensor, may be brought into canonical form by a suitable coordinate
transformation. (We note that setting 0 = 1 in j yields a Jacobi tensor, S; Whiéh éeases fo
va‘n:ish,kthus demonstrating that Egs. (6)—(9) are non-Hamiltonian.) Darboﬁx’é'theorenl
offers no clue for finding such a transformation. However, an‘ appropriate‘ transformation

- for the present system is obvious from the form of the Lagrangian:
L= QPy('U”, :I:) -+ éPz(v”,m) - H(v”,m,y, z).

Using P, and P, as generalized'coordinates, in lieu of v and z, the Lagrangian becomes
L =yP,+2P,—H(Py,P,,y,z). The Euler-Lagrange equations which result by considering

P, Pz:, y and z as independent coordinates have the form of Hamilton’s equations *5:

. _ 9H . oH
Y= p, =22
aPy Yy ay (18)
. _OH .
z= P, P, = —0Hordz.

The Hamiltonian (10) must be rewritten in terms of Py, P,, y and z by inverting Egs. (15)~

16) to express v and z in terms of P, and P,. One obtains
I Y

Ha g [Bole o [ryr| 4o B R P) 5y i),

' 2me C c /P5+Pz2 12
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where o = #+1. Thé Hamltonian has two branches, specified by o, since 'v”' and z are
multi-valued functions of P, and P,. Dérboux’s theorem is local. It doesn’t guaréﬁtee a
- global set of canonical coordinates. It is, however, likely that orbits of interest vﬁll not
. cross from one branch to the other. To do. so requires that Pj + P2 go to zero. From
" Egs. (15) and (16), one finds that this, in turn, requires v)| to go through L,v, /pr, which

is a large number.

B. Dimensionless Units
The particle motion, given by either Egs. (6)—(9), Eq. (17), or Egs. (18), depends
upon a fairly large set of dimensioned parameters: -

' {e7me7c7 ¢)17 ¢2'7 kly’ k2y7k2:7B07L37w17w2}'

By exploiting dynamical similarity, one can reduce the number of free parameters from

12 to 5. This is accomplished by expressing the equations of motion in terms of a set

of dimensionless variables. We now Qutlihe the approach we have taken in arriving at a
suitable parametrization. |

We first establish a relevent scaie—length for the z-coordinate. Consider the sim-
plified problem of motion in one wave, in the limit w — 0 (i.e., the wave is stationary in
the lab frame). Furthermore, assume that excursions in z away from the rational surface
(z = 0) remain small compared with the shear length, L;. The two conserved quantities,
P, = meu) + “’—ff—’“%o and H = %mevﬁ — ey cos(ky,y), may be combined to express the
projection of the orbits upon the z-y plane. We discuss the forrﬁ of these orbits in more

detail in Sec. III. For the present, we use the result that the motion remains bounded

- in the z-direction, and that the maximum excursion in the z-direction is attained by a

homoclinic orbit parametrized by H = e¢y, P, = 2m,vo, where

vo = v/ ed1/me

11
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is the familiar trapping velocity. This orbit, which is pictured in Fig. la, has turning
~ points at # = £4/8L,wo/w. . This maximal excursion distance suggests defining the

dimensionless coordinate

Z

el,’

2
il

where

Vo

€

wCELS

Substituting this into the expression for the canonical momentum, one obtains m}: =

| v /vo + Z2/2 = P,. We therefore define the rescaled parallel velocity

For z < L, and ¢, = 0, Eq. (7) becomes dz/dt = ki,voesin(ky - r). We therefore define

the dimensionless time

It is convenient to replace the coordinates y and z with the two phase coodinates
@bizki-r, i:1,2.

Using the 3 = 1 approximation, Egs. (6)~(9), we obtain the following equations of motion:

du 1

i —E{sin(e:i) sinpy + ¢k sin(e + 6) sina} (20)
‘% = cos(eF) sinthy + bk cos(ed -+ ) sinths (21)
| %—é—l =~ {u sin(c) — [y cos(cE) — tsin(cF)] cos(e)} (22)
%’% _ %{u Sin(e? + 0) — [y cos(ed) — t,sin(e)] cos(ez + 0)}, | (23)

wherek =|ka | / | k1 |, = ¢2/d1, W = W/vy, and 8 is the angle between the wave-vectors.

12
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We assume that the separation, Az = 6L, between the mode-rational surfaces
associated with the two waves is small compared with the shear length L,. We also
assume that the radial excursion, z = eL&, of the particle away from the first wave’s
rational surface remains small compared with the shear length. We therefore make the

approximations €z < 1 and § < 1 and Egs. (20)—(23) become

2 =[5 sings + k(3 + 0/ c)sins] (24)
% = sint; + ¢k sini, : - (25)
_. % = u + 1,3 — % | ) (26)
- dips .6 L L Wy ' .
= —.k[u <m+€>—|—wzm— e}' (27)

Thus, a set of 5 paraméters, {wy /e, ¢, k,8/ é, W, }, is required to specify the two-wave
system. We note that the system of equations (24)-(27) is Hamiltonian. We have found
that they can be written in the form ' = J¥8H /827, where J is an antisymmetric, non-
singular tensor, with vanishing Jacobi tensor 5. The Hamiltonian structure which was lost
ill. making the f =1 approximafion was apparently regained fortuitously upon making the

further approximations ez < 1, § < 1.

C. The Constant Parallel Velocity Approximation

If the magnitude of v is large, one sees, from the invariance of the Hamiltonian,
Eq. (10), that the relative varia,tionlin v becomes small. Thus, in the limit of large
energy, u may be treated as a constant. Eqs. (26) and (27) may then be combined to
give %(kt/)l — th2) = —ukf/e. Solving for 1, one finds ¥y = kipy + uk6(t — %) /e, where
ty is determined by initial conditions. Substituting this into Eq. (25), one finds that

Egs. (25)-(26) assume the form of a non-autonomous, canonical system, generated by the

13




Hamiltonian

| | L, 4
(b1, ,7) = %(wwz) [i— ;(—ﬁyT)] + costhy + deosfkipy +ukd(f —To)/e]  (28)

‘in which 4); and & fill the role of canonical coordinate and momentum, respg:c'tively. We
emphasize that the Hamiltonian 7(v1,%,1), valid only for large v||, is distinct from the
geﬁerally applicable Hamiltonian treatment presented in Sec. ITa. of this work. Combining

Eqgs. (25) and (26), one obtains the following second order equation for 9 :

% = (u+ w,) [sinwl + ¢k sin (k;Zq + ukf(t — Zo)/e)] . (29)

In the limit of large parallel velocity (v > 1), the problem thus reduces to the familiar
perturbed pendulum, which has been‘studie'd extensively in the l'ite'rature'.s‘l6

To motivate our consideration of the regime where the constant v approximation

ceases to be valid, consider a particle with u = 0. The parallel velocity in Jn.:he lab-frame is

then v”l;b = w - b. If the particle is located at a value of = where b is parallel to w, then

k; - B”leab =k, -bw=k;,-w= w;, for 2 = 1,2. Hence, such a particle is simultaneously

Landau resonant with both waves. The s‘imultane.oﬁs resonancé of electrons with two

plane waves leads to the anomalously large nonlinear Vlasov-Poisson mode-coupling matrix

elements, analyzed by Choi and Horton *® from third order perturbation theory. Here,

these orbits are calculated exactly.

. D. Poincaré Surfaces of Sectibn

The conservation of H confines a given orbit to a 3-dimensional manifold in phase
space. When only one wave is present, a second conserved integral, P,, exists and the
motion is constrained to lie on a 2-dimensional manifold. We treat ¢, the ratio of wave
amplitudes, as a perturbation parameter. For ¢ # 0, a second isolating integral of motion

may cease to exist in some regions of phase space, leading to the stochastic instability.
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Each constant-H surface is of the same generic variety as the magnetic field line
problem in fusion confinement devices with toroidal geometry. It may therefore be of some
~ help in visualizing the nature of this éystem to recast it in the language of tokamak physics.
To make the correspondence concrete, consider Eqgs. (24)-(27). The conserved infegral for

these equations is

H =u?/2 — cospy — dpcosthy + b, & /e — 0,2 /2. (30)

Let us define the strictly positive quantity p = exp(u + #2/2). The time-derivative of p is
p=—dkbe1p éin 7;/)2. One can invert pand H to express '¢.vl and ;[)2 as functions of H, p, ¥
and %, (and branch parameters). Thus a.dopting.the‘ coordinates (p,11,%2), with H ﬁx.ed,
one sees that p is analogous to the minor radius .of the tokamak, and +; and %5 correépond
to the poloidal and toroidal angles, as illustrated in Fig. 2. When‘qb =0, p = 0 and the
orbits are coﬁfmed to nested toroidal surfaces of circular cross-section. For ¢ # 0, one

sees the emergence of islands, as shown in the figure, and, for large enough perturbations,

the destruction of “good” two-dimensional surfaces. Unlike the tokamak field problem, we -

must contend Wifh a continuous class of such toroidal systemé; one “tokarﬁak” for each
value of H.

We use the method of Poincaré surfaces of section to observe, in numerical experi-
ments, the destruction of the second isolating integral. For a given value of H, we integrate
a-number of orbits, plotting a point in the (¥;mod 27, Z)-plane each time the trajectory
passes through the surface ¢z = 0 mod 27. (Since u is a double-valued function of H, z,
1 and 15, only those orbits crossing the surface of section with a given. sign of u should
be plotted, so as to avoid a “double-exposure” effect.) Orbits for which a second isolating
integral is preserved produce points in the Poincaré map which fall on one-dimensional

curves. Orbits for which the second integral is destroyed yield a haphazard scatter of
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points, filling an area. Examples of Poincaré surfaces of section are given in Figs. 3-5
which we discuss below.

-The Poincaré map defined above is a measure-preserving map of the (¢4, i)-plane
onto itself. One can show that the quantity

; oy ) ¢ ~Bzz
5A2b—§ exp [-—/ dtazi]

Bu

remains invariant under the above defined Poincaré map, Whe;'e.c?A is an infinitesimal area
element in fhe surface of section, and 8z;/9z; is the divergence of the flow velocity. For
Eqgs. (20)-(23), the divergence of the flow velocity is 8% /8% = e?du/di, hence 5A¢.ze_€2“/u
is invariant under the Poincaré map. For Egs. (24)~(27), the flow in the 4-dimensional

phase space is inc'ompressible; and 6A’$2 /u is invariant under the Poincaré map.

IIT. Motion in One Wave — The Unperturbed Problem

Before discussing the two-wave problem, we give the properties of the unperturbed

problem. With ¢ = 0 (one wave), the equations of motion (24)—(26) reduce to the one

parameter family of trajectories

%= —Zsin (31)
T = sm’z,bi (32)
b=, (33)

where A = 0, /e. The parameter 1, has been absorbed into the parallel velocity by defining
a “shifted” velocity % = w + w,. The motion is completely specified, within a similarity
transformation, by the initial coordinate values and the single parameter ).

One can verify that the quantities # = 42/2 — cost; + Az and P, = @ + £2/2 are
invariants of the motion. H and P, are related to the small z /L, limit versions of Eqs. (10)

16

T T T T T




.and (16) by b, = P, /(mevo) and H = (H + w,P,)/(mv3). The system of equations
(31)—(33) is integrable, in the sense that expressions for the motion may be reduced to
qqadra.ture. However, the prospect of obtaining general solutions for the motion in terms
 of well-known analytic functions seems doubtful. The two constants of the motion may be

combined with Eq. (31) to give

df = ¢ ‘ , (34)
—01024/2[P, — «a]\/ - {aZ/z — H + Xoq4/2[B, — a]}
where o, and oy are branch parameters equal to +1. Even for the case A = 0, the

expression under the radical is a quintic polynomiai in @. This apparently precludes the
possibility of integrating Eq. (34) in terms of elliptic integfals, except for special values of
H and P, where singular points in the expression for d¢/dt degenerate into simple: poles
(i-e. homoclinic orhits). |

| We now undertake a classiﬁca;tion of the various orbits which are possiblé in one
Wé\_@. Using the two integrals H and P, of the motion, the projectioﬁé of the orbits upon
the (41, Z)-plane are given by

1

H=
2

272 . :
{PZ — iﬂ;} —costy + AT - (85)
Fach orbit in the (¢, Z)-plane is specified by the ;\{alues of H and P,. For the purpose of
graphically illustrating the various kinds of orbits which may occur, we fix the value of P,
and plot a number of orbits in the (21, Z)-plane fér several values of H. One’s first instinct
might be to take the opposite tack and fix the value of H, constructing a plot of séveral
orbits haviﬁg various values of P,. Plotting orbits on the constant-H surface seems the
preferable approach, since H remains a good constant of the motion when we go to the

two-wave problem; whereas P, does not. However, since % is a double-valued function of

17
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H, it is possible for two distinct trajectories to cross in the constant-H projection. This
complication does not arise if we consider orbits plotted in the constant-P, projection; we
have taken this approach in order to render a comprehensive orbit classification tractable.
Elilpjnating % in favor of P,, Eqs. (32)—(33) become
z= sinty 7,51 = [Pz - %2} z— A\ : : (36)
Treating 11 and # as canonical coordinates, Eq. (35) is the Hamiltonian which generates
the equations of motion (36).
The phase portraits in the (¢4, %)-plane, produéed by Egs. (36), fall into twelve
distinct categories, depending upon the values of P, and ). Figs. 1a-11 afe representa-
tive of the possible classes. Figs. 1b—1f are all topologically equivalent to the pendulum.

._Fig. 6 gives an atlas showing which of the classes a through [ occurs for each value of the

parameter pair P, and \. For example, each pair of parameters (A, P,) falling within the

two-dimensional domain labeled g in Fig. 6 will give rise to a phase portrait which is topo-

logically similar to the orbits of Fig. 2g. The classes ¢, d, h, ¢ and [ are one-dimensional
sets in the (/\,ﬁz)-plane, while the classes a, e and fare zero—diménsiqnal sets. In order to

construct such an atlas, we carry out a.singular point analysis of Egs. (36).

: A. Orbit Classes for A # 0

Let us first consider the case A # 0. One 1i1ay assume, without loss of generality,
that A is positive, since the one-wave equations of motion (31)—(33) remain invariant under
the transformation (&,%1,A) — (=&, —%1,—A). Looking for the fixed points of Egs. (36),
defined by ¥; = 7 = 0, one finds that the fixed points occur for ¥; = nm, n an integer,

and & = A/3¢, where ( is a root of the cubic equation

b=(¢*+2¢7")/3 (37)
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and b is defined by the equation -

P = g,\'z/sb. B (38)

Eq. (37).is plotted in Fig. 7, showing b as a function of (. Looking at this plot, one sees
that, for b < 1, only one real root, which we call (3, exists. It is always negative. For

b > 1, three real roots to Eq. (37) exist. One can express these roots as

1= 2\/1; cos | — arccos (—b_3/2)} | (39)

—
[N

) .

(o = 2v/b cos [—;—r + % arccos 3/2>} : (40)
20 1

(3= 2\/500 [—3— + 3 arccos —b3/2 J (b>1) (41)

=—y/1- \/1—b3 V1+v/1-8%, (b<1)

where (; > 1,0<({; < 1, and (3 < 0.

A stability analysis of Eqgs. (36) indicates that the point (1/)1, %) = (nm, AY3¢) is a
stable fixed point if (—1)"[¢ fl —(?] < 0, and unstable otherwise. From this relation, one
can determine the stability of the fixed points corresponding to the three roots for ¢ and
even a1'1d odd values of n. These results are summarized in Tablé L

In Fig. 6, the bottom curve is the function P, = %AQ/ 8 V\ThiCh; according to
Eq. (38), corresponds to b = 1.  This curve thus divides the (2, P, )-plane into the 1-
root and 3-root regions. Below this curve, the plots are all topologically similar to the
pendulum, e.g. Fig. 1b.

When b = 1, the topology is also that of the pendulum. However, the coalescence
of the two roots (1 and (s results in the appearence of cusp singularities at z = A\1/8,
When A> (16/ 27)3/ %, the cusps corresponding to both n odd and n even fall outside the

separatrix, as illustrated in Fig. lc. For A < (16/27)3/4, one set of cusps falls inside the
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separatrix, as illustrated in Fig. 1d. For A = (16/ 27)3/ 4, one set of cusps occur on the
separatrix (Fig. le).
For b > 1 and A # 0, five classes are possible. These are illustrated in Figs. 1g-1k.

Writing Eq. (35) in terms of b and ¢,
A3 = é 36— ¢%]* — A3 costpy + (. | (42)

For the class of orbits illustrated in Fig. 1h, the X-points at (, A/8¢,) and (O, A1/3¢2).fall
on the same trajectory. Hence, they share a common value of H. Using Eq. (42), one finds

that the j)lots of class e must obey the relation

-3/ (43)

A=8[¢— ¢ —6b(¢F — ) +8(C — ()]

Eqgs. (43) and (38), along with the definitions of (3, (2, and (s given in Egs. (39)—(41)‘,.
constitute a parametric representation of a curve in the (/\, P, )-plane, where the parameter
b is allowed to range from 1 to co. This yields the curve labeled h in Fig. 6.

Similarly, the class of orbits illustrated in Fig. 1i, where the X-points at (0, A¥/3(,)

and (m, A/ 3¢3) fall on the same trajectory, occur for values of P, and X obeying the

parametric relationship given by Eq. (38) and
. ‘ ' —3/4
A =8¢~ ¢ —6b(¢E — D) +8(ea— )] . (49)

This curve is labeled 7 in Fig. 6. After finding the above classes of zero measure in the
(A,Pz)-plane, as well as those discussed in Sec. IIIb., it is a straightforward matter to
assign the remaining classes of non-zero measure, g, j and k, to the appropriate regions of

the atlas.
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‘B. Orbit Classes for A =0

We now discuss the orbits for the case where the wave is stationary in the lab
frame. This regime is represented by the P,-axis in Fig. 6. For \ = 0, the fixed points are
given by ¥ = n and Z equal to 0, as well as :I:\/E when P, is poéitive. For P, < 0, the
plots are topologically similar to those of the pendulum, belonging to the class b discussed
for the A # 0 case. However, for A = 0, the orbits are symmetric about the 1; axis. When
P, =0, the friply degenerate root for & leads to a separatrix which is parabolic-shaped,
rather than linear, at the unstable singularities, and motion near the stable fixed points

which is an harmonic. This case is illustrated in Fig. 1f.

|  As P, becomes pésitive, the fixed points bifurcate into a triplet of fixed points. -
Since, for A\ = 0, H is an even function of &, the fixed points at (11, Z) 2-(7?,71', :i:\/2?z), n
odd, all have the same value of H; namely H = 1. For 0 < P, < 2, these X-poinfs all fall
on the same trajectory. This class of orbits is illustrated in Fig. ,11' As P, is increased to
2, one sees, from Eq. (35) that the figure-eight separatrix of Fig. 11 also attains a value of
H equal to 1. All of the sepafatrices merge into one web for P, = 2, A\ = 0, resulting in

the orbits shown in Fig. la.

As P, is made greater than 2, a reconnection of the separatrices occurs, producing
the topology of Fig. 1k. As with class b, the class k occurs for both A # 0 and X = 0.
Again, in the latter case, the orbits differ from those of Fig. 1k in that they are symmetric
about the t; axis. A set of 3 pendulum-like “islands” emerge. The upper and lower
islands wander off to 0o as P, is made large. The stable fixed points at the centers of
these islands simply represent particles with zero parallel velocity, sitting at the bottom of
the electrostatic potential well. Such particles feel a stable restoring force along the field

lines for any value of Z # 0.




Setting A = 0 in Eq. (35) and using our knowledge of where the X-points occur,
we can find a set of relatons between P, and H which hold on the separatrices: ‘For the
separatrix labeled « in Fig. 1b, one finds H= 1332 /2+ 1. For the separatrices labeled & and
~ in Figs. 1k and 11, H =. Pzz /2 — 1. All of the separatrices u, £, ~ and § have a constant

value of H = 1. These relations are plotted in Fig. 8. The curves in Fig. 8 thus constitute

a locus of the separatrices for the A = 0 case. Each point in the (ﬁz,ﬂ )-plane of Fig. 8

‘repl_'esehts an orbit, and due to the constancy of P, and H for one wave, a point Temains
stationary with time in this projection. This plot suppresses the phase information. Those

points falling on one of the plotted curves are orbits of infinite period.

IV. Motion in Two Waves

We now consider the perturbed problem. For ¢ # 0, one sees the emergence of
resonance “islands,” as shown in Fig. 2. These islands are located near the tori of the
unperturbed problem with rational winding numbers. As the pertﬁrbation strength ¢ is
increased, the islands grow in size. One sees a transition to stochastic behavior as islands
associated with neighboring, low-order rational surfaces appfoach each other. In subsection
A, we calculate island overlap criteria by‘. approximating the locations and widths of the
lowest order resonance islands, ﬁsing perturbation theory. In subsection B, we obtain
global stochasticity criteria by investigating the conditions for strong interaction of the

primary trapping regions associated with each of the two waves.

In these analyses we confine fhe discussion to the case w = 0. We have fo?:used
our a,ttentioﬁ upon this limiting case, in an attempt to simplify the problem. We should,
however, point out that some qualitative changes in the problem 'occur for ﬁﬁte values
of w. One striking difference is the emergence of a broken symmetry due to the electric

current in the z-direction, which is responsible for the shear in the magnetic field. The
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sign of j, fixes a “preferred” direction. The mobility of the electrons in the z-direction
depends upon whether the z-component of the wave-frame’s velocity is parallel or anti-
parallel to this current. Tile potential energy, as seen in the wave-frame, has an extremum
with respect to the z-coordinate at.& = w,/(ew,). This extremum is either a'maximum
or a minimum, depending on whether 1, is positive or negative.

For w, > 0, the conserved Hamiltonian H = 1;2/2 — cosyy — pcosthy + WyF/e —
W,%%/2 imposes no constraint upon the value of Z which can be achieved. H can be
conserved as & grows large by virtue of u? becoming large. On the other hand, fOI‘.'L'l}z <0,
the particle sees a potential well with respect to z, and the motion in the z-direction must

remain bounded, regardless of the level of stochasticity.

A. Perturbation Treatment of Resonance Islands

We first establish the location of the resonance islands; that is to say, the values of
H and P, for which the perturbing wave couples resonantly with the unperturbed orbits.
For ¢ = 0, P, is a constant of the motion. For small va.lués of ¢ # 0, we attempt to
construct a new constant of the motion, p, “close” to P,, as an assymptotic series in @.
We define p = P, + ép1 + ¢2p2 + ..., and assume that p is identically 0. The first order

correction p;, the only term we shall consider, then obeys the equaton

: . . : o . -
‘ O=Pz(¢2)+¢ g_le; (HOaPz)'le)_{"é_fZ—: (H07Pza¢1)

The terms t;, given by Egs. (26) and (27), are to be expressed as functions of 3y, P,
and the unperturbed energy Ho = u?/2 + Z[, /€ — W,% /2] — cos ;. This is accomplished
by inverting the expressions for P, and Hy to express & and v as functions of P, and

Ho. To simplify the discussion, we consider the case W = 0. Adopting the notation

Q; = vi(Ho, P,, 1), we have w; = u and w, = ku(Z+6/¢), where u = o1+/2(Hg + cos 1)
and 7 = 021/2([:2 —u), 0; = +1. We replace the coordinates v, and v, with the new
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coordinates (; = = Hl ) f ¥ dip1§2 /1 and (2 = )2, where the winding number g is given
0=

by ¢(Ho, PZ) = o= § dipiwa/wy. The integrals are taken along the unperturbed orbits, and
¢ denotes the integral over a complete period of the unperturbed motion. Eq. (45) then

becomes
1 9p +'3p1 _
q(Ho, P,) 08¢~ 0¢;

Q(H07pz7<17<‘2)7

where Q = —]:52/(¢w2) = kfe 'w; ! sin(,. Defining ¢; to be 0 when ; = 0, Q may be
written as the Fourier series Q@ = > _ Qm(Ho, ]E'z)[sin(mgi +(2) —sin(m(; — (2)], whence

the solution for p; may be written

cos(m(y+(2) cos(m{y — (2)

== mﬂapz '
P1 mEZ:OQ(o )[ 1+ m/g —f—. g

For m > 1, Qm(Ho,Pz) = :2—11-7- % 027r d¢y cos(m(y)/Q2(Ho, ﬁz, C1)- The perturbation treat-
ment breaks down in the vicinity of the resonances, where m + qgn = 0, n = +£1.

To approximate the island Widths, we make the‘usual assumption that each island
‘is well isolated from all other islands and, in the vicinity of a particular (m,n) resonance, we
can replace the expression ]5 2z = — P81, Q with the single-harmonic approximation A]zf‘z =
—n2 Q| g sin(m(y 4+ n(z), where m = 0,1,2,... and n = £1. Q,,|r denotes the value
of Qm(HO,IBZ) at the resonant values of Pz and Hd, and A]E’z is the deviation of b,
away from resonance. Terms which can be demonstrated to be of order ¢3/2 have been
dropped. Defining ¢ = m(; + n(z, the time-derivative of ¢ is given, to lowest order in ¢,
by f = —AP, [8g/ 8?2] rS22/m. Combining this with the expression for Aﬁz, one obtains
(dAP, 6P, = dédmsin€[Qn/ (8q/8P,)]r, which may be integrated to give the familiar

pendulum description of the islands:

AP?

z

5 + A,.n cosé = const.,




where

A= {——%m} .
n |24
8P.dp

Taking the separatrix, whose half-width is given by AP, = 2 |Am.n|, as an indication of

the extent of an island, we define the overlap criterion for a pair of resonances (m,n) and

(m!,n') as .
g = 2 [\/IAm,nI + \/IAm’,n’l]
B sz,n - sz/_n/ .

Here, P, is the value of P, at the (m,n) resonance.

We have worked out a numerical example of the S parameter for comparison with
t.he ﬁumerical integration of the equations of motion. We consider the case where ¢ =1,
€=.03 k=1 and w = 0. The Poincaré surfaces of section of Figs. 3a and 3b were
calculated with these parameters and show points in the (1, Z)-plane as the orbits cross
the surface ¥ = 0 mod 27'r,.vvith positive value of u. The energy is fixed at H=2
With this choice of parameters, the separatrix of the corresponding unperturbed problem
belongs to the class of separatrices labeled £ in Figs. 1k and 8. The total energy is small
enough in comparison with the wave poténtial that the constant v approximation of Sec.
Ilc. fails quantitatively, despite the qualitative similarity in the appearence of the orbits
to those of the pendulum. We examine an (m,n) = (1,1) islénd and an (m,n) = (2,1)
island which can be seen in the lower portion of the figures, among the passing orbits.
From the definition of ¢, we calculate that the m = 1 resonance océurs at P, = 3.4, and
the m = 2 resonance at P, = 2.7. The “potential well” strengths A for these two islands
are calculated from the above formulae to be A; ; = —.30¢ and Az.l = .035¢, from which
one obtains an overlap criterion S = 2.14/¢. Figs. 3a and 3b have values of ¢ equal to
.1 and .16, respectively, yielding overlap parameters of roughly S = .6 and S = .8. For

the case of ¢ = .1, some stochasticity appears between the m = 1 and m = 2 islands, but
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there appear to remain preserved K.A.M. tori separating these two resonance regions. For
¢ = .16, the m = 2 island has been all but lost in the stochastic sea, and no preserved tori

remain separating the two regions.

B. Global Stochasticity Estimates

The above célculation of the overlap pa.rémeter S provides reasonably detailed in-
formation concerning the transition to stochasticity. However, the calculation is unwieldy,
especially since the unperturbed orbits apparently can not be described by known ana-
lytic functions. We would like to have at our disposal a simpler means of predicting the
appearence of global stochasticity. In this section, we provide a more rough-and-.ready
éstimate of the conditions under which global stochasticity can be expected to occur. We
adopt the view that strong sfochasticity can be expected when the primary separatfices
associated with each of the two Wavés begin to touch. We expect that if the separatrices
due to the first wave considered in isolation are well removed from the separatrices of the
second wave considered in isolation, then minimal stoche;sticity will be present. We wish
to find an overlap criterion which is defined to be equal to 1 when two separatrices are just
touching (or rather would be just touching if each separatrix were corisfructed ignoring
the effect of the other Wave); Since there is a Whole host of separatrices (a continuous
one-parameter family corresponding to the curve of Fig. 8), we must make the notion of
overlap more precise. Consider a particle which has initial conditions such that if ¢, were
set equal to 0, it would be at the maximal z-value of a separatrisc due to the first wave.
We consider this separatrix to “just touch” a separatrix of the second wave if a particle
started with identical initial phase space coordinates would fall on the minimal z-value of
a separatrix of the second wave, if only that wave were present. Under such conditions, we

anticipate strong interaction between the resonances of the two waves and the presence of
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a significant degree of global stochasticity.

To simplify the problem, we again restrict our attention to the case w = 0. As
shown in Sec. IIb., the full width of the separatrix x of Fig. 1a is given by \/m .
This width, which, except for a factor of /32, equals €L,, is the characteristic distance
used in defining our dimensionless coordinates and scales as $*/4. This fourth-root scal-
ing suggests that for small wave potential, the resonance overlap criteria should display
stronger ¢-dependence in the low kinet.ic energy regime than one would glean from the
standard pendulum approximation. This transition from ¢'/? scaling to ¢'/4 scaling is
illustrated well by the separatrix of type a in Fig. 1b. One easily calculates the full width

of the separatrix to be

1/2

e = [s8.052 /T (VAT o8~ VT=8)]

For H > e¢, the assymptoticbeha\?ior of the width is given by
Az =4 [—LseQS/(wcemev”)] vz

At the minimum value of H for which this type of separatrix occurs, namely H = ed, the

full width is given by

' I 1/2
Aw=4{ws\/e¢#—me:l .

ce

In Table II we have compiled the values of the z-extrema for the various separatrices of
the A\ = 0 problem, along with the values of v attained at the z-extrema.

Let us first consider the conditions under which two separatrices of type x are just

touching, in the sense .discussed above. The parallel velocity at the z-extremum of the

separatrix associated with the i*® wave is given by —21/e¢;/m.. Matching these velocities

for both waves requires that ¢1 = ¢ = ®. The distance between the rational surfaces
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associated with the two waves is given by 0L,, where 6 is the angle between the k-vectors.

1 32 ed
0\ weeLs V me

1s equal to 1, then a particle with initial conditions ¥; = 12 = 0, v = —2./e®/m.,

Therefore, if the quantity

S

i

T = \/ 8L, /wce\/m would be on one separatrix if qbl = @, ¢ = 0, and would be on
the other separatrix if ¢ = ®, ¢; = 0. We take S,. to be an overlap criterion for the
restricted case of this type of separatrix. For S,m & 1, these two web-like separatrices
are Well—rembved from one another. We emphasize that this overlap criterion makes sense
only for the case ¢; = ¢. Since the orbits of i;ype K, B8, and § all have extremal velocities
of —2\/6<W_me , a similar constraint applies if we seek o{rerlap criteria among pairs of.these
orbit types. | “ | |

~ From Table II, one sees that for the a type separafiices Ve < —ZW; .For
the g class, v . > —2%. Therefore, if ¢ < ¢1, we can fin'd conditions for a
| type a separatrix associated with the second wave to touch a type ~ separatrix associated
with the ﬁrsf wave. Let ;bl and p, be the particle’s value of P, Qith respect to the fwo
waves. Matching the value of v one obtains the relation 2+/b2 W = +/d1p1, or
p1 = W . From the allowed ranges of p; and p3, one obtains the condition
upon ¢/ ¢;: ’ :

b2 1

0< < —
¢ 1+p3/4

From Table IT and the above relation between p; and p;, we find that the a and v sepa-

ratrices just touch if

1 2 edy 2/ \1/2 2 /4\1/4

equals 1. Here, p; is permitted to be in the range —21/¢1/¢2 — 1 < pz < 0.
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Replacing the parameter p, by the parameter

P2

2 /% 1

b2

where the allowed range for A is 0 < A < 1, Sy, may be written

1/4
?
wce e

A=—

where

1/4

A) = \/z\/¢(1 — A?) + A% —2A/1— ¢+ 2 [4(1 - A?) + A?]

For a given value of ¢,/ qﬁl, one obtains a continuous set of overlap parameters correspond-
ing to the value of A. This reflects the fact that many orbits are of the same class. For
each value of ¢2/¢1, one may find the maximum value of G with respect to A. Denoting
this maximal function by G(¢2/¢1), one finds that G varies only between 2 and 3.4 over

the domain 0 < ¢2/¢; < 1.

Performing a similar calculation, we find that a type 6 separatrix associated with

wave 1 just touches a type o separatrix associated with wave 2 if

1/4 ‘ &
Ssa = \/w 1/ \/2—l—p1+\2 21/1—¢_2

equals 1, where ¢ < ¢;. Even for large values of 6, one can make S5, = 1 by selecting

an appropriate value of p1. This is a reflection of the fact that the § class of islands are
centered about values of z ranging from i\/m to £oo. This suggests that for the
H =1 torus (on which the § type orbits occur), the overlap parameter may not be a
meaningful quantity. For the A = 0 problem, the H = 1 torus appears to be a pathological
case which is particularly susceptible to the stochastic instability. This issue is discussed
further in the next section.
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The overlap criteria discussed in this section are somewhat problematic. The
expressions diverge as 6 approaches 0, which would suggest a large amount of stochasticity
for small §. This is a spurious result, since the equations of motion become integrable
as 6 vénishes and the waves coalesce. However, from the numerical experiments we have
performed, a value of S equal to 1 appears to be a sufficient condition for the appearence
of global stochasticity.

Figs. 4a and 5a show Poincaré surfaces of section for cases in which the parameters
were chosen in order to yield a value of S, = 1. In both cases, the plots show the branch
u > 0. For Fig. 4a we chose 0/¢ = 4.06, k - 1, H=0,w =0, and ¢ = .5. For
these parameters, the separatrix of the corresponding unperturbed problem belongs.to
the class v, the figure-eight separatrix of Fig. 11. The unperturbed problem thus contains
orbits which are qualitatively distinct in character from those occuring in the large V[
pendulum approximation. For Fig. 5a the parameter values were 6/ = 4.828, k = 1,
H=1,w=0,and ¢ = 1. As Fig. 8 indicates, the unperturbed version of this case (ﬁ =1
torus) has not one, but a continuous set of infinite-period orbits of types 4 and 6. This
example thus contains a non—universal feature which is typically absent from similar two
degree-of-freedom systems investigated in previous works.

Figs. 4a and 5a both point to the complete destruction of a second isolating integral
of the motion, when S = 1. In Figs. 4b and 5b, the same cases were run as in Figs. 4a
and 5a, respectively; except that the perturbation parameter ¢ was reduced to .01. One
sees that a high level of stochasticity remains. The persistence of such a large degree
of stochasticity at even a one percent perturbé.tion level is quite remarkable. Again, the

H =1 torus appears to be highly vulnerable to the stochastic instability.
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C. The Special Role of the H=1 Torus

Refering again to Fig. 8, consider a particle with initial conditions such that it
initially falls on thé curve ~ in the (Pz, H )-plane. As mentioned previously, in the absence
of the perturbation (¢ = ¢2/¢1 = 0), the orbit is represented by a stationary point in this
projection. For ¢ # 0, the point is free to move horizontally in the (Pz,ﬂ )-plane, but
not vertically. We expect an orbit lying near the locus of separatrices of the unperturbed
problem to be éubject to the stochastic instability. But in light of the K.A.M. theorem,
one expects that, for small enough perturbations, the orbit will remain bounded by nested
preserved K.A.M. tori. The horizontal motion in the (P,, H)-plane is thus restricted for

small perturbations.

If one were to add a third wave (or toroidal geometry) to the problem, the added
time dependence, not removable through coordinate transformation, would destroy the
invariance of the Hamiltonian. The added mobility of the particle in the vertical direction
in the (]E‘Z,I;T )—plane‘ would enable a particle starfing on the v curve to move along a
“corridor” in the vicinity of the locus of separafrices. This is the Arnold diffusion. Even
for small perturbations, very large excursions can take place in action space, under these

circumstances.

Now consider an orbit starting on one of the curves 8 or §. These are exceptional
cases, since these curves lie parallel to the P, axis. Even with only two waves present,
the particle apparently has the oportunity to travel along this “corridor” of separatrices,
while still strictly conserving the value of H. For the H = 1 torus, every orbit with a value
of P, between 0 and oo is a homoclinic orbit, and is, hence, susceptible to the stochastic
instability. We conjecture that, for this special region of phase space, something akin to

Arnold diffusion occurs for the two-wave problem, and that even for small perturbations,
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a particle could eventually diffuse to large values of P,. We have no a prior: reason to
believe there is anything preventing it from doing so. The growth of P, to large values
does not, however, imply that v becomes 4large. The parallel velocity for the w = 0
problem is restricted by the conservation of the Hamiltonian. The canonical momentum

P, is permitted to attain a large value by virtue of the coordinate Z becoming large.

In numerical experiments, we have attempted to confirm the above observations
regarding the peculiar nature of the A = 1 torus by integrating the orbits for an ensemble
of 640 particles. All particles were started with identical initial values of H and P,, but
distributed randomly in %; and 1. In Figs. 9a and 9b, we have plotted, as a function of
time, the root-mean-square deviation in the value of P,, i.e. [<]5z2> — <]5z>2} 1/2,,W1‘1ere
the angle brackets denote the ensemble average. For both of the illustrated examples,
Eqgs. (24)-(27) were integrated with w = 0, ¢ = .2, /e = .1, and k = 1. For Fig. 9a,
the initial conditions were H = 0, P, = v/2. These orbits would, in the absence of the
perturbation, thus fall on the curve v of Fig. 8. As time increases, the packet of particles
spreads with respect to the value of P,. But, as one would expect, the standard deviation
of P, eventually saturates as the ensemble fills up the stochastic layer in the neighborhood
of the unperturbed problem’s separatrix. Fig. 9b illustrates the case H = 1, P, =2. These
initial conditions correspo"hd to to the point x of Fig. 8. The qualitative behavior of the
ensemble is qualitatively different from that of the former example. We detect no evidence
of saturation and the behavior is consistent with our conjecture that a kind of diffusion in

P, takes place.

V. Conclusions

This work examines the motion of electrons in two electrostatic plane waves in a

slab magnetic field geometry with shear. We show that the drift orbits are described by a
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two degree-of-freedom, autonomous Hamiltonian system. A conserved energy confines each
orbit to a three-dimensional manifold in phase space. Each energy surface is topologically
equivalent to a toroidal volume. Our dynamical system is thus quite similar to the field-line
problem in toroidal confinement devices, except that here we have one complete toroidal

system for each value of the conserved energy.

With only one wave present, the existence of a symmetry direction leads to a
conserved canonical momentum P,, and the motion can be reduced to quadrature. The
motion on homoclinic trajectories may Be expressed in terms of elliptic integrals, but the
general one-wave orbits do not appear to admit analytic solutions in terms of well-known

functions.

In the limit of large parallel kinetic energy, we show that the two-wave system
becomes equivalent to the pendulum subjected to a time-dependent perturbation, a system
which has been exhaustively studied by otheré. In this work, we have focused our attention
upon the regime in which the electron’s parallel kinetic energy and potential energy are

comparable and the pendulum approximation ceases to be valid.

In this low parallel velocity regime, the separatrices have characteristic widths
which are on the order of \/Im ,- Where vg is the trapping velocity. This width scales
as the fourth root of the wave potential as contrasted with the pendulum separatrix widths
which scale as the square root of the potential. This difference in scaling suggests that for

small wave amplitude, the low energy electrons, when subjected to the second perturbing

wave, may display an early onset of stochasticity in comparison with those electrons in the -

pendulum regime.
In addition to this quantitative difference in scaling, the low kinetic energy regime
displays qualitatively different behavior. A much richer variety of unperturbed orbit classes
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occur in the small energy regime. We have provided a comprehensive catalogue of all pos-
sible orbit classes, for any combination of parameter values. In our analysis of the unper-
turbed motion, we have found that for a given value of the conserved canonical momentum,
chains of elliptic and hyperbolic fixed points are located at values of the radialb coordinate
2 /3,03/ 3,

satisfying a cubic equation. For canonical momenta less than 3/2m.(w/k,) one

chain of X and O points exists. For P, greater than this value, the chain bifurcates into
three chains of fixed points. Depending upon the parameter ranges and value of P,, these
fixed points may be tied together in a variety of topologically distinct ways, including a

web-like homoclinic trajectory connecting all three chains.

For values. of canonical momentum exceeding a certain positive value, which de-
pends upon the wave’s phase velocity, threé disjoint chains of pendulum-like islénds occur.
(Here, the direction of positive P, is the direction of the current j,.) The central chain is
located close to the rational surface and for large P,, may be identified with the positive
v pendulum separatrix occuring in the ususal constant v approximation. The other two
island chains, located on either side of the rational surface, are a new feature of the low
energy regime, being entirely absent in the constant v approximation. As P, is made
large, the distance of these_ two island chains from the rational surface increases without
bound. In the opposite limit of large negative canonical momentum (P, antiparallel to 7, ),

there appears only the usual single chain of islands near the rational surface.

In light of these features of the low energy regime, one expects far greater resonant
interaction of the two waves than the usual constant v approximation would permit. In
the constant v approximation, all regions of resonant trapping are spatially localized near
the rational surface. If the rational surfaces of the two waves are well-separated, resonant

interaction simply doesn’t take place. In contrast, for the low energy regime, resonance
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trapping occurs at arbitrary radial distance from the rational surface (insofar as we have
ignored the radial structure of the modes) and spatial coincidence of trapping regions
associated with the two waves takes place regardless of the separation of the rational
surfaces. Again, this leads to an enhanced level of stochasticity for low energy electrons.
Numerical integration of the equations of motion and examination of Poincaré surfaées of
section has confirmed our expectations that the low parallel velocity regime is especially

fragile to the onset of chaos.

We have undertaken an examination of diffusion rates by numerically integrat-
ing the evolution of an ensemble of several hundred particles. In Sec. IVc., we com-
pared the temporal behavior of the spread in the canonical momentum for two different
values of energy. Our investigations of radial diffusion rates are too preliminary to.be
included here. We can, however, make some statements concerning the scaling of the
diffusion rat.es. Assuming that under conditions of global stochasticity the radial mo-
t'ion can be characterized as a diffusive process, one can calculate a dimensionless radial
diffusion coefficient D, as a fuﬁction of the ensemble distribution and the dimension-
less parameters {0, /¢, $,k,0/€,w,}. From the definitions of the dimensionless quanti-

ties Z and £, we then know that the diffusion coefficient D, in real units must scale as

[(L2K%, O p3me.) /(eBg)]1/4 or (&)1/4 :g: kiyps (%) s <%)5/4 times the dimension-

mq

less number D,. In future work we will investigate the validity of the diffusion approx-
imation and the parametric dependence of D, on the dimensionless parameters of the

two-wave Hamiltonian system.
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Table 1

n BEven n Odd
¢G1>1 Stable  Unstable
0< (2 <1 Unstable Stable

(3 <0 Stable  Unstable
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Table 2
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i\/ﬁeLs\/ﬁz + 2(1 + P2/4)1/2
+v2eL,\/2+ P,
iZGLSVE
+v2eL,\/2+ B,

i\/ieLs\/Pz — 2(]33/4 —1)1/2

++/8¢L,
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Figure Captions

Fig. 1 Orbit classes for the one-wave problem. Plots show projections of orbits upon

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

(%1, Z)-plane for constant value of P,.[4pt]

2 The toroidal structure of the constant-energy surface. The poloidal and toroidal

directions corespond to k; -x and ks -x, respectively. The minor radius corresponds
with exp(u + Z2/2).

Poincaré surfaces of section for H =2, 6 = .1, e = 03, k=1l,andw=0. ¢ =.1
in (a), and ¢ = .16 in (b). - |

Poincaré surfaces of section for H = 0, 0/e =4.06,k=1,and w=0. ¢ = .5in

" (a), and ¢ = .01 in (b).

Poincaré surfaces of section for H = 1.0, 0/e =4.828, k=1,and w = 0. ¢ = 1.0
in (a), and ¢ = .01 in (b).

Atlas of one-wave orbit classes. Letters a through [ label the regions of the (A =

Wy /€, Pz)—plane which produce the corresponding orbit topologies of Figs. 1a — 11.

Plot of the curve b= (¢% 4 2¢~1)/3, where b = 2/3\"2/3P, and ¢ = \~1/3%. This
curve yields, for each given value of P, the radjal location of the fixed points.
Locus of the separatrices for the one wave system, taking w = 0.

Standard deviation in Pz as a function of time for ensemble of 640 particles.
Parameter values are /e = .1, ¢ = .2, k = 1, w = 0. Particles initially distributed

randomly in phase with H =0, P, = /2 (a),and H = 1, P, = 2 (b).
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Table Captions

Table 1 Stability of the fixed points occuring at %; = n7 and & = (b, /€)*/3¢. The (; are
the 3 roots to the cubic equation (37).

Table 2 Properties of separatrices for w = 0, one-wave system. Letters a — x correspond
to curve labels of Figs. 1 a.gd 8. Listed. are allowed ranges of P,, radial extrema,

and values of parallel velocity at radial extrema for respective separatrix classes.
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