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Abstract
A kinetic theory for the nonlinear evolution of a magnetic island in a collisionless
plasma confined in a toroidal magnetic system is presented. An asymptotic analysis of

a Grad-Shafranov equation including neoclassical effects such as island bootstrap current

defines an equation for the time dependence of the island width. Initially, the island

bootstrap current strongly influences the island evolution. As the island surpasses a certain
critical width the effect of the island bootstrap current diminishes and the island grows at
the Rutherford rate. For current profiles such that A’ < 0 the island bootstrap current

saturates the island.

. Tokamak confinement devices of large aspect ratio are predicted to have parallel

current that is not driven by an electric field. This current results from the interaction of

the radial pressure gradient with the drifting motion of trapped particles off the magnetic '

surfaces. For a system in equilibrium this diffusion driven toroidal current makes possible
the idea of a self-reliant tokamak operating in a steady state without extérnally induced
toroidal electric field. Therefore, this current is éalled “bootstrap current.”! Resonant
magnetic fluctuations change the magnetic field topology of a tokamak_ plasma with finite
resistivity; magnetic islands appear close to the resonant rational surface. The changing

magnetic field induces both an Ohmic current and an island bootstrap current associated
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with the pressure gradient. Note that pressure gradients are modified by the presence of the
island and flattened in the island interior. In this Letter we study the nonlinear evolution
of a coherent magnetic island in a high temperature tokamak plasma. Specifically, we
clarify the influence of the island bootstrap currént in the island dynamics.

We consider a toroidal equilibrium with helical symmetry described by the flux
coordinates x, § and a (x = equilibrium poloidal flux or radial variable, § = poloidal angle,
o = helical angle = ¢ — ¢;0 with gs = safety factor at the rational surface and ¢ = toroidal
angle). We use large aspect ratio approximations in what follows. The total magnetic field
in a low-f plasma can be expressed as B = Iﬁ'g + 6; X ﬁ(x + 1) where I measures the
toroidal equilibrium field and % is the perturbed poloidal flux. We suppose the islands
under consideration to be centered on some surface X = Xs with ¢ = g;. These islands
are caused by resonant magnetic perturbations of mode number m > 2. A perturbed
magnetic flux function ¥, is obtained as a solution of the equation B-V¥ = 0. When one
resonant harmonic dominates ¥ = 1y — ¢ = Po(x) _ zﬁl(t) cos.a, where Yo = ¢.%%/2¢s
is the equilibrium helical flux, ¢; = dg/dx(q = ¢s), X = x — Xs and We\ have considered
thin islands. This form of !F describes a coherent magnetic island whose half-width is
w = 2[gs11/q}]*/%. It is convenient to define the normalized flux coordinate 12 = ¥/4),
where {2 = 1 corresponds to the island separatrix. Then we can write the flux surface

average of a quantity F in the reconnected region as

(F) _/ daF / do
T )y 12+ cosalz) [2 + cos o] 1/2

where F = fa d0F /2r. Our analysis is determined by the collisionality of the bounce

motion around the major axis of the torus and by the collisionality of the particle motion
around the island. Charged particles orbit the magnetic island with a frequency w, ~
(w/a)wr where wy = v:/qR is the frequency of particle motion around the torus (a =
minor radius, R = major radius, v; = (2T /m)'/2, T = electron temperature). We suppose

that the motion of the electrons around the major axis is collisionless whereas the motion
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around the island is collisional. Then, defining A = v./wr (v, = Coulomb collision
frequency), A < €¥/?2 < 1 (¢ = a/R) and w/a ~ A2. The particles,move. trying to follow
the perturbed magnetic surfaces but they also drift on banana shaped orbits. The drift

velocity of the electron guiding center can be written as

5l BxXVe s (Bv”)

B2 E .

where @ is the electrostatic potential, v = B. U/B and (2, = eB/mc. The curl above is
taken at fixed w, u (w = particle kinetic energy, 4 = particle magnetic moment). ‘
The toroidal component of the perturbed Ampere’s law can be written in terms

of the perturbed poloidal flux as
- (1 = 4T = -
V. <—v¢> ==V 7y, (1)

where J; is the perturbed current distribution. Considering thin islands, integrating across

the tearing layer and isolating the cos a-Fourier component, we obtain

, - - | _

Z—jsc—\/%lvxlﬁw = /_1 dﬂ]( 7 + cos a]1/2 f_a;:saofl/z T (2)
where A’ measures the discontinuity in the vector potential amplitude across the tearing
layer and J)| is the parallel island current. The helical angle integration has the effect of
projecting out the dominant harmonic of the total island current. Equation (2) determines
" the island dynamics when coupled with the island Ohm’s law. An explicit form of this
‘equation is obtained here by solving the nonlinear drift kinetic equation for the electrons

in the island region. Thus we write

af of ‘
5, TV + b Vf- —v“En(9 =C(f, 1),

o) 3 2] e o)
where v V) f = 2L (4 + Wif)s Wy = (g — g:) &L — (5% - qsgf) o,

e g €| 0 8% [(8)p 3¢ q9¢
B = R | T qs)aa+<aa %P0 8x+c3t
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and & = ®—&. We use a Lorentz collision operator CH(f) =v(¢/B)(9/3X)(A€3/A) f with
v =20(v:/v)3, € =0l - AB]l/Z, o =sgnv| and A = p/w. In order to solve the electron
kinetic problem analytically we consider two independent small parameters 6 = Ppe/w and
A = veJwr (ppe = poloidal electron gyroradius). In our perturbation procedure we need to
define four basic ratios: wy! 8/8t ~~, e®/T ~ b /T ~ A, &/ ~ B and W) ~w/a~S.
We have assumed that the motion of the electrons around the island is collisional, so that
S ~ A% We also assume that the electrons complete many orbits around the island in
the time characteristic for the magnetic topology to change, so that v ~ § AZ. In addition,
we consider the electrostatic and electromagnetic contributions to the parallel electric
field near the island to be comparable, implying 4 ~ AZ%. Finally, for quasineutrality
considerations we take B ~ A. This ordering is consistent with experimental island sizes
(greater than the ion gyroradiﬁs)i and then island potential effects are important. Finally, -
We expand the distribution function as f = Zm’n AT,

To O(6°) we obtain the equation

9fo
ow

; |
v Vijfo = —v B3~ = C(fo fo)-

From 0(6°A°) and 0(6°A%) we find f§ = fu and f3 - fd (6-independent) where fas is
the lowest order local Maxwellian solution. We ignore the compiications due t(\) equilibrium
temperature gradients to emphasize the essentials of the banana regime dynamics. Ap-
plying the operators § 9%(——) and (f d3vf(}/fM.(——))!p in the equatibﬁ to 0(6°A2?)
and using the Boltzmann-H theorem we find that fas = far(¥), f& = fl, (perturbed
Maxwellian) and f& = fZ. ‘Similarly, from the equation to 0(6°A%) we find fi, = fi,(¥),
f& = fi; and f8 = (eB/T)fr + g2 with g2 = §3. After bounce averaging the 0(6°4%)

equation we find

2¢]1/2 s é¢
=0 P2 [ (wi - £20) 1 - wist] 10090 -

where Ry is the major radius at the axis, I()) is an integral function of A, 6 is a step

function, A, = [Bo(1 4 €)]7! and B, is the magnetic field at the axis. Integrating this
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result in velocity space we obtain the lowest order island Ohm’s law in the form
Jie = 2.3(1. — 2.1VE)0, B,

where o, = 1.977?,0627'5/771 is the classical parallel Spitzer conductivity (ng = density at
the island center), Jis corresponds to the island Spitzer current and E” is the #-averaged
island electric field. Note that the factor 2.3 above becomeé identically unity if we take 0, =
noe’r./m and v = v(v = vy). This result includes trapped particle corrections (trapped
electrons do not respond to the island electric field). This component of the island current
is driven by the island inductive electric field. In the nonlinear regime of interest when the
island width exceeds the linear tearing layer width an electrostatic potential builds up in
the island which then relaxes the island current so that approximately J(z,0,0) =~ J)(¥)
(inertia and interchange effects are negligible here). The island potential is determined as
the solution of the equation V| J; = 0 or J = (J}))w. Thus, the lowest order island Ohm?’s

Jaw can be written as

Jis = 2.3(1. — 2.1/e)o (E)) . (3)
Substituting this result in Eq. (2) we obtain:

dw 0.27 Alnge? =
— = | Vx|? 4
dt 1.—21y/e 47 IVl (4)

where n, = 1/0, and |V7xls is lﬁx| evaluated at x = x.. Therefore, the island grows
algebraically on the resistive time scale.2:® '

The O(6) neoclassical corrections are obtained from the kinetic equation

0 fo . = € of1
2 TuVifi+ o - Vio = —v B2~ = C(f1; fo) + C(fo, f1)-
To lowest order in A we obtain fP = v Ba(8fa/8x)/2 +¢?, where B, is the a covariant |

component of B and g9 = g9. After bounce averaging the next order equation we find

-'Ba an
2. oy [|€| —0(Ac — A)

Ae
¢ BodA
=0 > }

o 2/¢]

5



The perturbed flux surface average of the current due to f2 has the form

cIT ¢qw dn
Jip = ~1.46y/c — L= 2=
b Ve g oo OU

. where I3(2) = §, da[2/(2 + cos @)]'/?/27. This is the is:la.nd. bootstrap current. Using
this expression and Eq. (1) we can write a perturbed neoclassical Grad-Shafranov equation

for the resonant field as

A*ep = <4.5—1' — 2'1\E> <a¢> N
'3

c2ng/4m ot

g1 \? 8p - -
<—&—1) 30 1Vx|2, ()

where A*yp = R2V . (Vi /R?), B, is the poloidal magnetic field and p is the plasma
_pressure, Ip the long mgan—free path regimé appropriate to thermonuclear temperatures,
there are two crucial effects of 'phe field variation in a tokamak: particle trapping and VB
aﬁd curvature drifts of particles across field lines. These effects are included in Eq. (5).
The island dynamics equation is obtained by an asymptotic aﬁalysis of this equation.
Next we assume that there is a diffusion process operating in the equilibrium and
~also that pressure soufces exist in the plasma interior. Then the density gradient. in the
island region is found by the condition that the flux of iparticle’s be a constant* requiring
Onjo¥ = ¢s(0ne/0x)/wq,ly where Ony,/dx is the equilibrium density gradient and

Io(2) = §, do|(12 + cos &) /2]'/2/2x. Thus, the island bootstrap current takes the form
i = —0.73/& PP enqu0(02 - 1), (6)
a

where (a)~! = (|Vx|s/nolol2)(8neo/8X) and Ji, vanishes inside the separatrix. A bound-
ary layer integration in velocity space shows that this current is mostly carried by the
boundary layer untrapped electrons. The diamagnetic current originates in the trapped
electrons. Because the friction between the trapped and untrapped electrons is very intense
it causes this small diamagnetic current to be amplified according to the following mecha-

nism: the untrapped electrons start drifting in the same direction as the trapped electrons
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due to collisions between them and the drift becomes steady state due to collisions with

ions. The island Ohm’s law including trapped particle effects takes the form
Jij = 2.3(L — 2.1v/2)0o(By)e — 0.73/6 222 0(2 — 1). | (1)
a

~Substituting Eq. (7) into Eq. (2) we obtain

dw 0.27 A’nsc2 = ,7362@3 ro P’ I
— = V|2 —1.23vE [ 12820 ) (L) 2152, g
it " T—ziye an VA Ve B, [Vxls 8)

where £, = Rq?/rsqgﬁxls is the shear length, r = r; is the radius at the rational surface,
and p’ = 0poo/dx is the equilibrium pressure gradient. Equation (8) is our main result.
It is an equa’cion for nonlinear island evolution in a collisionless tokamak plasma including
conductivity decrease due to trapping in the toroidal magnetic field and bootstrap current
effects. When toroidicitfy is neglected, this result coincides with Rutherford.?® In the
general case the island dynamics is driven by the ma.gnétic free energy and by the island
bootstrap current. Initially, the effects of the island bootstrap current are dominant. When
the island grows there is a certain island width (Aw,) such that once it is surpassed, the.
effect of the island bootstrap current diminishes and the island growth rate approaches the
Rutherford’s rate? with growth dominated By A'. The critical island width for a n = 1,
m = 2 island with A'a ~ 4, r; ~ a/2is typically Aw./a ~ \/eBpe. Then for TFTR,
Aw./a ~ 9% and for a reactor Aw,/a ~ 26%. We note that interchange effects? in the
nonlinear dynamics of magnetic islands in tokamaks are of opposite sign (and of O(/€)
in magnitude) with respect to the effects considered here. In plasmas with A’ > 0 the '
island growth saturates due to geometry considerations (w ~ a) as shown in Ref. 5. For.
current distributions such that A’ < 0 the island bootstrap current causes the island to
grow until it saturates at width Aw,. The particle diffusion in high temperature tokamak
pla.smas might be understood in terms of magnetic field stochasticity induced when the

bootstrap-saturated islands overlap.
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