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Abstract

The noncanonical Hamiltonian formilism is based upon a generalization
of the Poisson bracket, a particular form of which is possessed by
continuous media fields. Associated with this generalization are special
constants of motion called Casimirs. These are constants that can be
viewed as being built into the phase space, for they are invariant for all
Hamiltonians. Casimirs are important because when added to the -
Hamiltonian they yield an effective Hamiltonian that produces equilibrium
states upon variation. The stability of these states can be ascertained by
a second variation. Goldstone's theorem, in its usual context, determines
zero eigenvalues of the mass matrix for a given vacuum state, the
equilibrium with minimum energy. Here, since for fluids and plasmas the
vacuum state is uninteresting, we examine symmetry breaking for general
equilibria. Broken symmetries imply directions of neutral stability. Two
examples are presented: the nonlinear Alfven wave of plasma physics and
the Korteweg-de Vries soliton.
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1. INTRODUCTION

The notion of spontaneous symmetry breaking is an essential idea in
relativtistic field theoretic models that describe the electromagnetic,
weak, and strong interactions.! Spontaneous symmetery breaking occurs
when the vacuum state of a physical system possesses less symmetery

than its Lagrangian. For scalar fields Goldstone's theorem?™4 tells us
that corresponding to each broken continuous symmetry there is a
massless boson. Alternatively, for nonrelativistic many body quantum
systems such as superfluids, superconductors, and ferromagnets,
spontaneous symmetry breaking is related to excitation branches that do
not have an energy gap.° In a classical physics sense one can interpret
these phenomena as arising from a particular energy functional for which
the vacuum state is not an isolated minimum but possesses directions of
neutral stability. It is this general feature that we grasp here in order
to investigate spontaneous symmetry breaking for fields, such as
continuous media fields in the Eulerian variable representation that
describe fluids and plasmas.

Field theories are usually described by means of the action .
functional formalism or its corresponding canonical Hamiitonian
description. Here we depart from this and describe spontaneous
symmetry breaking in what has been called the generalized or
noncanonical Hamiltonian formalism. This is the natural setting for
continuous media fields that are written in terms of the usual physical
Eulerian variables. The basic object of the noncanonical Hamiltonian
formalism is the Poisson bracket, which is generalized. The emphasis is
placed on the Lie algebraic properties of the bracket rather than on the
usual specific canonical form. Consequently, the bracket may have
dependence upon the field variables, contain operators, and possess
degeneracy. For continuous media there is a generic form that is
earmarked by linear dependence upon the field variables in conjunction
with operators that are structure operators for a Lie algebra. Whether
or not the bracket is of this generic form, associated with degeneracy
are special constants of motion'called Casimirs. These are constants
that can be viewed as being built into phase space, for they have
vanishing Poisson bracket with all Hamiltonians. Casimirs play an




important role in the noncanonical formalism and its application to
spontaneous symmetry breaking.

The spontaneous breaking of symmetry can be observed in either the
Lagrangian or the Hamiltonian pictures. In both cases the vacuum state
corresponds to a minium of the potential energy functional. For the
noncanonical Hamiltonian formalism treated here, equilibria of a field
theory correspond to extremals of a functional composed of the
Hamiltonian plus Casimirs. The second variation of this functional can
be used to ascertain the stability of an equilibrium. In this paper we
draw a parallel between the conventional vacuum state, which is an
absolute minimum of the potential energy functional although not
necessarily an isolated point, and an equilibrium of a noncanonical field
theory, which may be a nonisolated relative extremum. We thus observe
a parallel between the conventional mass matrix and the second
variation of our functional. Zero mass particles of the former are
analogous to neutral directions of the latter. Broken symmetries of our
functional result in such neutral directions.

We organize this paper by first briefly reviewing the noncanonical
Hamiltonian formalism, then we discuss stability, symmetry breaking
and examples, before concluding. In Sec. 2 Tfinite degree of freedom
systems are treated. This material has a long history that includes
work motivated by Lie, Dirac and others. For greater depth we
recommend Ref. [6] for a coordinate approach and Ref. [7] (and references |
therein) for a modern geometrical slant. A readable exposition is giyen
in Ref. [8]. In Sec. 3 we discuss field theories. The reader may find
Refs. [9] and [10] helpful. Section 4 deals with stability. Criteria for
null eigenvalues and eigenvectors are obtained. In Sec. S symmetry
breaking is described and generalized to include noncanonical
Hamiltonian fields. Applications are discussed in Sec. 6. In particular,
the nonlinear Alfven wave of plasma physics, and the Korteweg-de Vries
soliton are treated. We conclude in Sec. 7.




2. NONCANONICAL HAMILTONIAN MECHANICS

The canonical method for obtaining Hamilton's equations of motion is
to start by identifying the configuration space and then through physical
considerations write down the Lagrangian

g, =T-V . (2.1)

Here the configuration space coordinates are q=(g.....qy) With
corresponding velocities 4=(qy,...,qy), T and V are the usual kinetic and

potential energies. Variation of the Lagrangian (2.1) yields the
Euler-Lagrange equations of motion, from which Hamilton’s equations are
obtained by a Legendre transformation. The Hamiltonian H is given by

N
H(a.p) = 2. prdk - L(g,Q) (2.2)
=

where the canonical momenta p, are defined by

p= &b, k= 1,LN. C@23)

OH=1p, Hl, i=1,.N (2.4)

where the Poisson bracket is defined by

\ |
= of 39aq - of 8
g El [ 9q Opk apk&gl'k ] (23)




and f and g are functions of the phase space variables (q,p). Alternately,
one can define the phase space by z' = q; for i=1,...Nand z' =p;_y for

Ci=EN+1IN+2,...2N. Using zi, the Poisson bracket becomes

\

Ik %pij %;"i (2.6)
where
. 0 I
(J'J)=[ l oN } 2.7)
-IN

is @ 2Nx2N matrix and In is the NxN unit matrix. (Here and henceforth

we sum repeated indicies.) The quantity (J')) is a second order
contravariant tensor that is called the cosymplectic form. It is the dual
or inverse of the symplectic two-form that is sometimes taken as the
starting point for defining Hamiltonian flows. Hamilton's equations in
this representation are
zi=[zl Hi=uljed . (2.8)

ozJ

- It is not always possible to obtain Egs. (2.8) by the procedure
described above because the Legendre transformation may not exist.
when this occurs one must employ Dirac constraint theory.8:11713 This
theory leads one to Poisson brackets that are not of the standard form,
the so-called Dirac brackets. Also, brackets of nonstandard form arise
by the process of reduction'®!S where the dimension of a phase space is
decreased by virtue of certain symmetries in an Hamiltonian. Here we
are not concerned with this passage from degenerate Lagrangians to
Dirac brackets or with reduction, but rather we emphasize a
generalization of the Poisson bracket that includes both.




Canonical transformations, by definition, preserve the form of the
Poisson bracket, but an arbitrary coordinate transformation does not and
thus in this case the form of Hamilton's equations can be obscured.
However, in spite of the obscured form. in the latter case, the important
algebraic properties, such as bilinearity, antisymmetry and the Jacobi
identity conditions of the Poisson bracket, are maintained. This
motivates the following definition of the generalized or noncanical
Hamiltonian formalism: a system is Hamiltonian in this sense if one can
find a Poisson bracket with the appropriate algebraic properties and a
- Hamiltonian which generates the time evolution of the system. The
formalism can be cast in the following form:

Z.l = j‘jgg_} ’ i = 1,...,” ’ (29)

where (J11) need not have the form of Eq. (2.7). It may depend explicitly
on z', and the number of coordinates M def ining the phase space need not
be even. The MxM matrix (J')) defines the Poisson bracket in analogy to
Eq. (2.6), . -

QO

Ir.ql = 8L.Jij8g | | 2.10)
] oz! 8zl (

This generalized Poisson bracket allows for special constants C, called
Casimirs, which commute with the Hamiltonian as well as with any

function F of the dynamical variables z describing the system, i.e.
[C,F(2)]=0 . (2.11)

A consequence of this definition of the the Casimirs, using Eq. (2.10), is

9C 7ijoF = g (2.12)
oz! 0zl
but F is arbitrary and therefore
JHEC =0, i=1,.M (2.13)
ozl '

Thus, the phase space gradient of a Casimir (8C/82)) is a null




eigenvector of ('Jvij). In fact, it can be shown that the null space of (3ij)
is spanned by null eigenfunctions that are gradients. Clearly, nontrivial
Casimirs (i.e. not constants) exist only if

det(Jiy=0 (2.14)

and the number of independent Casimirs is equal to the corank of (J ij).

In the case that (J1)) is canonical, it has the structure given in Eq. (2.7)
and the determinant is unity. Therefore in the canonical Hamiltonian

formalism there are no nontrivial Casimirs. when (J')) has null
eigenvectors, then the phase space can be described by leaves, or
hyperplanes, which are labeled by the Casimirs. A trajectory must
remain in the hyperplane of phase space as determined by the
specification of the initial conditions. This follows from the fact that
the generalized Poisson bracket cannot generate flow, i.e. trajectories in
phase space, in the direction of these null eigenvectors.

This noncanonical yet Hamiltonian formalism is relevant and useful
in describing the non-dissipative equations that govern fluids and
plasmas. However, since these systems are usually described by an
infinite number of degrees of freedom, it is necessary to describe the
noncanonical Hamiltonian field formalism.




3. NONCANONICAL HAMILTONIAN FIELD THEORY

The state of a system is given by the specification of the dynamical
field variables ¥; (i= 1,...,.M) at time t, which are defined on some spatial

domain 2 The dynamical systems we consider are defined by a system
of equations such as

Yl =yl = AT o, ), T2 1,M (3.1)

where A! is some operator, e.g. a general nonlinear partial differential
or integrodifferential operator. Clearly, usual field theories fit into this
form. A canonical Hamiltonian field theory possesses some functional H,
usually derived from a Lagrangian functional, by performing a Legendre
transformation (similar to that of Eq. (2.2)). In this case the set of
equations (3.1) become

R AN B W (3.2)

where M is even (M= 2N) and the Poisson bracket is given, for any
arbitrary functionals F and G of the variables !, by

F,6) =] drsE0lise . (3.3)
2 syl syl

Here dz is the volume element and the MxM matrix O is

o=[ o N } (3.4)
-KN 0 .

with 1y the NxN unit matrix. Conventionally, canonical field theories

split the 2N (=M) dynamical variables \}Ji into configuration components
n' (i=1,...N) and their.canonically conjugate momenta 7t; (i=1,...,N). For

'ni, 7; defined on O C R3 the Poisson bracket, Eq. (3.3), can be rewritten




as

8F 86 _ 3G &F - (39)
p 8n'e 8! 8 |

M=

{F, G} = J a3

]

In this case the equations of motion (3.2) reduce to the Hamiltonian field
equations

= =1 N. (3.6)
it

As is well known, the Poisson bracket of Eq. (3.5) satisfies the
following algebraic relations:

(oF + BG, K} = odlF, K} + 816, K} | (3.7)
{F, G} = -{G, F} | (3.8)
(FG, K} = F{G, K} + {F, K}G | : (3.9)
{7, 6), K} + {tk, ), 6} + {6, K}, F} = 0 - (3.10)

where F, G and K are aritrary functionals of the dynamic variables (0,70,
and « and § are constants.

Noncanonical Hamiltonian field theory is defined in terms of the
generalized Poisson brackets, analogous to the case of a system with a
finite number of degrees of freedom. In this case the general set of
equations (3.1) can be cast into the form

q;it={q;i,H}=6iJ.§_*;Tj, ERIY (3.11)

where O is a matrix operator that endows the generalized Poisson
bracket defined by
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{F, G}=J dv 8F §ij 86, (3.12)
syl syl

with the algebraic properties (3.7)-(3.10) as in the canonical case.

However, the matrix operator 8 need not have the form of O in Eq. (3.4).

In particular, for continuous media described by means of Eulerian
variables this quantity has the following generic form:

511 = ykcli, (3.13)

where the quantities cijk are the structure operators for some Lie

algebra. This ubiquitous form occurs for @ wide range of field theories
including, e.g., models for tokamak discharges'01® and the BBGKY
heirarchy. !

In a way similar to the finite dimensional systems treated in Sec. 2,
a noncanonical Hamiltonian field theory can have a number {(often
infinite) of Casimirs that satisfy

(C. F1=0, k=1..P ~ (3.14)

where F is an arbitrary functional of the dynamical variables g,
i=1,..,M (not necessarily an even number). A noncanonical field theory
is defined by the knowledge of the Poisson bracket (i.e. knowledge of 0),
as well as the Hamiltonian H.

An important by-product of this formalism is that varitional
principles for equilibria are automatic. Here, gquiliDria are defined by a
set of time independent dynamical variables y' which satisfy the
vanishing of the right hand side of the equation of motion (3.11). This
definition includes the so called static and stationary solutions of fluid
mechanics. Equilibria arise upon variation of the following functional

\

P
I(y) = HY) + kZ:ICk(\P) . (3.15)
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The Casimirs Cy have the role of the constraints on the system (note,

the Lagrange multipliers are here incorporated in the Casimirs), so that
the equations for equilibria are obtained from

=0, i=1,.M (3.16)

One can see that Egs. (3.16) are equilibrium equations from the fact that
1(y) produces the same equation as H(y) (using (3.14))

= {y, H} = (g, p = B &L, 3.17
Y=y, HY = (Y1, 1} 5l (3.17)

and the vanishing of 8!/8411' implies l}li=0 for i=1,....M. Therefore the
addition of the Casimirs to the Hamiltonian enriches the variety of the

equilibria obtainable from variational principles. Suppose that ‘P‘e are

solutions of Eqs. (3.16). In this case the first variation of | in the
direction of 1 =(n,..., 7™, denoted by DI-m, is given by

_ di(y + -
1= QY+ en) = DI Jdrwl - (3.18)

Equation (3.16) implies that DI-m =0 for all 7. A second variation at
fixed 7 yields

21 = DIy + en)-m | o = DAIY)- 2= [ornl 82 e . (G.a9)

‘P'\P

The quantity (8%)/8\?‘8\}1 is an operator that depends in general upon ¥
and acts on the quantity to its right. If D2]-m? is a positive definite
quadratic form in m, then we will see in Sec. 4 how this can be used to

ascertain the stability.!8720




12

4. STABILITY

The notion of stability lies at the heart of the idea of symmetry
breaking, for classically the positivity of mass is equlivant to a
statement of stability while zero mass corresponds to neutral stability.
In this section we explore questions of stability and neutral stabilty in
the context of finite dimensional systems. We will conclude with some
comments regarding the extension to field theory. The principal new
result of the section is the connection between null eigenvalues and
eigenvectors of the "stability matrix”, (821/82'3z)), and nu!l eigenvalues
and eigenvectors of the linearized dynamical system.

Let us recall some formal definitions concerning stabllltg of aset
of -autonomous ordinary differential equations

1= Alz) =1 UN. (4.1)

A phase space point z,=(2y.....zy) is an equilibrium for Eq. (4.1) if
Ai(ze)=0 for all i. Anequilibrium z is stable if for any neighborhood N
of z, there is some neighborhood M of zg, which is contained in N, with

the property that if z is initially in M it will remain in N for all time.
This type of stability is sometimes referred to as nonlinear stability
since the "distance” between z and z, need not be infinitesimal.

Alternatively, an equilibrium is linearly stable if the system obtained by
linearizing Eq. (4.1) about z, is stable. If the eigenvalues of this -

linearized system have real parts that preclude exponential growth, then
the equilibrium z, is spectrally stable. Because of the well-known

symmetries in the spectrum of Hamiltonian systems, spectral stability
can only occur if the eigenvalues are pure imaginary. It is evident from
- the above definitions that if z, is a stable equilibrium point then it is

also linearly stable, since the neighborhood N can be chosen as "small” as
desired. Also, linear stability implies spectral stability.

Hamiltonian systems possess a built-in sufficient criterian for
stability. For example, if the kinetic energy is a positive definite




13

quadratic form in the momenta, then stability is determined by the
curvature of the potential at the equilibrium point. The equilibrium
being a potential minimum is a sufficient criterion for stability. The
field theoretical extension of this example, with quartic potential, is
the archtype for spontaneous symmetry breaking (c.f. Sec. 5). In general
there may exist energy type arguments for ascertaining stability; i.e.
where the total energy or Hamilitonian is used as a Liapunov function.
To serve as a Liapunov function an Hamiltonian, H, must satisfy; (i)
H(zg)=0s (ii) H(z)>0 for some neighborhood N of z, (deleting zg): (iii)

H=0 in N. If ()-(iii) are satisfied for the H of a canonical Hamiltonian
system, then the equilibrium zy is stable. Condition (i) is trivial since a

constant can always be added to H, while condition (iii) is true for any H
that lacks explicit time dependence. Condition (ii) is equivalent to

definiteness of the stability matrix (Hij) E(EBZH(ze)/aziazj); i.e. to the
condition that all of the eigenvalues of (Hij) are greater than zero or all

are negative. In the latter case the negative of H serves as a Liapunov
function. It should be emphasized that definiteness of (H”-) is a

sufficient but not necessary condition for stability. There is an
interesting example due to Cherry?! for which (Hij) is indefinite and the

system is spectrally and linearly stable, but unstable. Cherry’s
Hamilitonian is H=m(q2+p,2)/2-m(qo2 + p22) + klqx(q12 - p12) - 2q;p1P2l.

Let us now consider what transpires in the noncanonical case, where
the cosymplectic form, J, may be degenerate and depend upon phase
space coordinates. Here we will assume that near equilibrium points of
interest, the rank of J is constant. (See Ref. [7] for a discussion of
phase space near points where the rank changes.) If the rank of Jis
less than the dimension of the phase space, then the system possesses
Casimirs and the Hamiltonian is no longer unique. This is evident from
the following form: -

si =1zl Wy =TlleH.= JlreH., 8C1 = 121,11, (4.2)
& e &) - |

where 1=H+C and the penultimate equality arises because, by definition,
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the phase space gradient of C is a null eigenvector of J Itisan
interesting and important fact that critical points of H (i.e. pomts where
8H/8z'=0 for all i) and I are not equivalent. Since physically H should
correspond to the energy, we observe that the set of critical points of
the energy does not in general include all equilibria. Thus by adding the
Casimirs to the energy one obtains a candidate Liapunov function for a
larger class of equilibria. This is important since for fluid and plasma
fields, as some finite degree of freedom systems, the critical points of
the energy yield trivial and uninteresting equilibria, a situation which is
remedied by the addition of Casimirs. (See Sec. 8). It is now evident
that a sufficient condition for the stability of an equilibrium point z,,

which is a criticz;l p.oint of some |, is definiteness of the matrix
(L j) = (821(29)/82‘82‘).
The implication of indefiniteness of (I”-) on stability is

indeterminate. This is evidenced by Cherry’s example in the canonical
case and a similar caution applies in the noncanonical case. Also, in
spite of indefiniteness of a particular (]ij) an equilibrium point can still

be stable. Nevertheless, (Iij) does contain information regarding linear

stability and may contain information about stability. If we suppose
that z(t)=zg + §z(t) where §2(0) is an initial small pertubation away from

an equilibrium point z,, then in the canonical case the equation governing

z(t) to leading order is

521 = J1) Q3H(Ze) sk . (4.3)
dzJazK

Linear equations such as Eq.’(4.3) may have exponential as well as
secular or algebraic solutions, depending on the Jordan form of the

matrix (Al ) aur Hjy). (For a discussion of linear canonical stability
see Refs. [22] and 23 ) A general discussion of linear stability is not

our concern here, rather we wish to investigate neutral direction; i.e.
situations where Eq. (4.3) will possess zero eigenvalues. Clearly Eq.

(4.3) will possess a zero eigenvalue if det(A'\)=0. Using the product
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rule for determinants, this condition becomes (detJij)(detHij)=0. Since

in the canonical case det(J1))=1, Eq. (4.3) possesses a zero eigenvalue if
and only if det(H,J) 0. Moreover it is obvious that an eigenvector 82

corresponding to a null eigenvalue of (Hu) is a null eigenvector of (A'k)

and thus repersents a directon of neutral linear stability. Equilibria that
possess neutral directions are the objects of discussion in Sec. 5.
Consider now the noncanonical version of Eq. (4.3)

521 = 1]  (2o) —21-(-2—9)-82k , (4.4)
azlaz

where the equilibrium z, is a critical point of L. There is a distinction

between the evolution of the component of 8z(0) that lies in the
symplectic leaf of z, and that that does not. Separation of the latter

component from z, is restricted by the fact that the perturbed orbit for

 finite pertubation lies on and is confined to a different symplectic leaf
than that of z,. Here we will not concern ourselves with detailed

noncanonical stability analysis but investigate the noncanonical
condition for zero eigenvalues; i.e. det(j'J)-det(Iiij. Unlike the

canonical Case we see that this condition can now be fulfilled by
det(J')=0, as well as the existence of a null eigenvalue for (Ij;). In

~ general we know that the rank of (Kik)=(3ij1jk) satisfies
Rank(Kik) < Min(Rank 31, Rank L)

Thus for every null eigenvector of I j the system possesses a null
eigenvalue. Moreover, as in the canonical case a null eigenvector 82
corresponding to a null eigenvalue of (Iij) is also a (right) null
eigenvector of (A1).

A further remark concerning stability can be made when (Iij) is .
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semi-definite; i.e. when (I; j) possesses eigenvalues that are either zero
or have common sign. In this case (; j) can be used to place a

restriction on the behavior of a solution if it is indeed unstable.

To conclude this section we note that there are subtleties
associated with the field theoretic extention of the stability notions
presented above. The obvious infinite dimensional generalization of (lij)

is the quantity (821/69'8yJ)) defined by Eq. (3.19), although caution must
be observed before concluding that definiteness of this operator implies
stability. For infinite dimensional systems definiteness of the second
variation of a functional at an extremal point is not sufficient for
determining that an extremal point is an extremum.24 A field theory
possesses a stable equilibrium point when one produces a norm that is
bounded in time. In practice the transition from a definite quadratic
form on pertubation 1 such as Eq. (3.19) to a norm on finite pertubations
can be a trivial matter. (Many examples of this are worked out in Ref.
[19].) For our purposes we will rely on the fact that definiteness of
(821/8y'8y)) quarantees linear stability. Also our observations
concerning null eigenvalues and eigenvectors for finite systems carries
over. ~




5. SYMMETRY BREAKING

Conventionally Goldstone’s theorem appears in the context of
Lorentz invariant scalar field theory. Let us consider an example with

two real scalar fields tPi, i=1,2, and a Lagrangian density given by
L= (8, 9'8R91)/2 - m29'91/2 - N9'9T/2 . | (5.1)

Observe that in addition to the requisite Lorentz invariance, / possesses
an internal O(2) symmetry; i.e.

1 i 1
g _ cose sin | |9 (5.2)
P2 ~SInG CosO| (2|
This symmetry is maintained when £ is Legendre transformed to obtained
the Hamiltonian density ‘

H = (/nini)/z + (VOLV9)/2 + mAPIQN/2 + NPIPH/4 (53)

where ’Jrisaﬂsoi. Since the first two terms on the right hand side of Eq.

(5.3) are nonnegative, # will be minimized when <Pi is constant and
equal to the minimum of the "potential”

v = m2(9ipl)y/2 + Aplgl/g | (5.4)
Extrema of I/ are given by

ol [m2+ aA@lohl=0 =12 . (5.5)
Equations (5.5) can be solved in two ways: either (i) ¢'=¢2=0 or
(i) (@'9"=-m2/A. For case (ii) to possess a sensible solution we must

have m2<0 and A>0; hence I/ takes the "sombrero” shape with a ring of
minima at a radius ./-m2/X. There is an important difference between
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these two cases. In case (i) the 0(2) symmetry of # (and V) is main-
tained, while in case (ii) this symmetry is broken for any choice on the
~ring. A ramification of this is that the "mass matrix”, - (32 1/99'9¢J),
in the latter case possesses a zero eigenvalue. From a stability point of
view this may seem obvious (recall Sec. 4 where stability of systems
with positive definite kinetic energy was discussed), but it is perhaps
not apparent that there is a general principle at work here; namely, that
corresponding to each such continuous symmetry that is "broken” (i.e. not
possesed) by the vacuum state there is a zero eigenvalue. This is
Goldstone's theorem that we shall shortly prove formally in the context
of noncanonical field theory.

There are some comments and generalizations regarding the above
conventional picture that can be made. Notably, while the Lagrangian
approach is useful for building symmetries into field theories, the
Hamiltonian approach is more natural for discussing equilibria. For the
conventional case this distinction is trivial since the connection
between the two approaches is immediate, and since one is interested in
the vacuum state, which corresponds to the absolute (although not
necessarily isolated) minimum of the Hamiltonian. More generally, it
should be emphasized that the vacuum state (or states) is only one
element of the larger class of equilibrium states, which is composed of
all critical points of the Hamiltonian. Goldstone’s theorem is valid for
all of these equilibria. This is important since for fluids and plasmas
the minimum energy equilibrium is uninteresting because it typically
corresponds to no fluid motion, zero magnetic field, etc. If the
Lagrangian is nonstandard or there exist constraints, the transition to
the Hamiltonian may require effort; thus, the distinction between the
two approaches may no longer be trivial. Nonstandard as well as
conventional cases are contained within the noncanonical Hamiltonian
formalism, which has the equilibrium and stability apparatus discussed
in Secs. 3 and 4.

In Sec. 3 we observed that for a noncanonical field theory with field

components yi(i=1,..M) the functional 1($)=H +2.Cy is an effective
Hamiltonian. The generalization of Goldstone’s theorem to the functional

I follows directly. Let us suppose that | is invariant under a (maximal)
n parameter continuous group 6. Evidently G hasn generators and ¥
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transforms according to some M-dimensional representation L, (a=1,...,n)

as follows:
8y = €Ly | (5.6)

where €9 are the group parameters and we have arranged things so that
L, Is areal MxM matrix (operator). Since by supposition I is invariant.

under &, we have
s1= [ (s1/syi) syl dv = [ (si/syed L liwldqv=0 . (5.7)
Upon taking the second variation of Eq. (5.7) we obtain

21 = [ 63(L,1y] (s21/ayKsy) a9k +
(81/691) L, K8yK}dr =0 (5.8)

where this second S\Pk is assumed to be arbitrary and thus it need not
satisfy Eq. (5.6). Evaluating Eq. (5.8) on the equilibrium; i.e. setting
¥ =Y,, yields

521, = [ £2{L, Iyl (s21/89KeyT), s¥Krar =0 . (5.9)

Observe that Eq. (5.9) contains the stability matrix (operator)
(521/5wkw')9 evaluated on y,. From the definition of the stability

matrix [Eq. (3.18)] it is seen that its adjoint is given by the interchange
of i and k. Using this adjointness property together with the Du Bois-

Reymond lemma (arbitrariness of 6yK) we obtain

(s21/syisyk) Lyl =0 . (5.10)

Now suppose that the equilibrium ¥, is invariant under an
m-dimensiomal subgroup, 5, of &; therefore, if L, is a generator of 5
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then Lyyo=0. If L, does not generate a symmetry of the equilibrium
then Ly, =0 and in order for Eq. (5.10) to hold the stability matrix

must possess a zero eigenvalue. Given that in fact there are n-m
independent quantities LY, for which this is true, it follows that there

are n-m zero eigenvalues, one corresponding to each symmetry that is
broken by the equilibrium. By the discussion in Sec. 4 these zero
eigenvalues and corresponding eigenvectors are eigenvalues and
eigenvectors for the linearization of the field theory. In the next
section we will look at some examples of this.
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6. APPLICATIONS

6.A NONLINEAR ALFVEN WAVES

The equations of ideal magnetohydrodynamics (MHD) possess exact
nonlinear Alfven wave solutions?s. These are solutions composed of a
magnetic disturbance of arbitrary shape that can propagate at a f ixed
velocity along the direction of a given constant magnetic field. The
magnetic disturbance has a direction perpendicular to the given field and
is accompanied by a velocity disturbance. This physical description is
the same as that for the usual linear Alfven wave, except that there is
no restriction on the relative size or shape of the disturbances. Ina
frame moving at the propagation velocity of the disturbances the
nonlinear Alfven wave can be viewed as a stationary equilibrium state.
we will see that this equilibrium does not possess a symmetry of its
effective Hamiltonian; hence, there exists a zero eigenvalue.

For simplicity we discuss symmetry breaking by the nonlinear
Alfven wave in the context of reduced magnetohydrodynamics (RMHD).

This system was derived28:27 in the context of controlled fusion for
modelling some dominant physics of the tokamak machine, but more
generally it may be applicable whenever there is a strong magnetic field
and and one desires to describe perpendicular motion. Previously, the
presence of the nonlinear Alfven wave in this model was discussed in
Ref. [28]. Here we use RMHD since it can describe the nonlinear Alfven
wave with only two scalar fields, although we emphasize that the
results we present hold true for the ideal MHD “parent” of the RMHD
model.

The small parameter on which the RMHD reduction is based is the
so-called inverse aspect ratio £=a/Rg, where Rq Is a characteristic
length in the direction of the dominant magnetic field and a is a
characteristic length of the direction perpendicular to this. For a
tokmak Ry is the major radius of the torus, while a is the minor radius.
The magnetic and velocity fields take the following divergenceless (to
the order indicated) forms:
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B=Byz-€2xVy and v=£z2xV9 , (6.1)

where ¥ is a "stream function” for the magnetic field, which is
proportional to the flux through a poloidal cut of the torus (it is also the
parallel component of the vector potential), and ¢ is the usual velocity
stream function. Both ¥ and ¢ are functions z and of the plane
coordinates perpendicular to z. The field variables of RMHD are ¥ and
the scalar vorticity Us z-Vxv. Evidently, U is related to the stream
function through U= V_Lzso, while similarly the current in the Z direction

(-J) is related to ¥ through J=V 2¢. The equations?® governing the

RMHD fields can be compactly written in terms of normalized variables
as follows:

Up = U1+ [y, J] - Jy | | (6.2)

Yy = [‘{{,'P] -9, (6.3)
wheré the square bracket [,] in polar coordinates is defined by

[f.gl=(f.gg - T Q- )/r . (6.4)
Observe that if one sets lp=6 then Egs. (6.2) and (6.3) reduce to thé
well-known two-dimensional -Euler equations of fluid mechanics.

Equations (6.2)-(6.4) possess an Hamiltonian description in terms of
the following noncanonical Poisson bracket30:

{F.6} = [ {UIFy, 61 + ¥ ([Fy, 61 + [Gy, Fyl)
+ (Fy 8,6 - Gy, Fy)iar . (6.5)

where F|j is a shorthand for the functional derivative®® &F/8U and 3,
means 8/8z. The conserved energy for this system is
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H=(1/2)f (IV, 92 + IV y12)dv . (6.6)

Using Egs. (6.5) and (6.6), Egs. (6.2) and (6.3) can be written in the
following concise form:

¥y = {¢.H)
Ug = (UH) (6.7)

The bracket of Eq. (6.5) has the following Casimir invariants:

C=A[yar
C=x[yudr |, (6.8)

which correspond respectively to magnetic and cross helicities. Here A
and A are constants. ‘

we can now construct variational principles for equilibria, and thus |
investigate stability by means of the stability matrix. In fact, this
calculation was previously done in Ref. [20], where it was observed for
the nonlinear Alfven wave that the stability matrix did not quite provide
a norm for stability. Technically the stability matrix provides a
prenorm, i.e. a "norm” with degeneracy. We are now in a position to
explain this degeneracy, since in general degeneracies correspond to zero
eigenvalues of the stability matrix, which in turn arise from broken
symmetries. The effective Hamiltonian3® for the Alfven wave is

1=(1/2) [ (IV 912+ |V ¥I2 - 22V 9-V y) dv . (6.9)

Variation of | yields the following equilibrium equations:

81/8U=-9+ Ay =0
§l/8y =-J+2AU=0 . (6.10)

These equations become effectively redundant if A=+1 and their solution
is ¢ =+, where the spatial dependence is unrestricted. Thus the shape
of the magnetic disturbance is arbitrary and it is paralleled by the
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velocity flow corresponding to ¢. Let us consider the case where A=-1
and rewrite Eq. (6.9) as follows:

1=(1/2) [IV(9+¥)i2de . ®.11)

Evidently Eq. (6.11) is invariant under the transformation

R IS M
tl -3 d Y (6.12)

where a and d are arbitrary except a+d#1. This group is really a single
parameter continuous group with two 2, subgroups. The upper sign
corresponds to the subgroup connected to the identity; it has the
following elements:
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where a is arbitrary. The generator corresponding to the second
(continuous) element of (6.13) is

=) v
-roy (6.14)

This symmetry is broken by a any choice for the Alfven wave
equilibrium. ,

Let us now show this directly. Suppose that ¥, is a choice for a
spatially dependent equilibrium magnetic pertubation with corresponding
velocity pertubation $,= -¥,. The equilibrium state is then given by

the following column vector:
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w2y
\Pe (6.15)

The upper entry corresponds to the equilibrium velocity stream function.
According to the analysis of Sec. S, the quantity (L'} ¥.J) should be a

null eigenvector of the stability matrix. The stabiliity matrix, (’ij)' in
this case is given by

-V 2 -v 2
(1”)=[ - 12] (6.16)
v, -v,2) .

From Eq. (6.16) it is clear that 1;;LI¢ ¥ K =0 for i=1,2. (Here we have

defined the stability matrix in terms of the variable ¢ instead of the
dynamical variable U; in particular, 1y7=821/692.) It is now evident why
the analysis of Ref. [20] resulted in a prenorm: the Alfven wave breaks
symmetry. |

6.8 SOLITONS AND SOLITARY WAVES

Sometimes nonlinear field theories possess soliton or more
commonly solitary wave solutions. These are nonlinear solutions that
propagate at constant velocity (c), with-an unchanged shape that may be
pulse-like or step-like. In the "wave frame”, which moves at velocity c,
the shape corresponds to an equilibrium state. Loosely speaking solitons
are solitary waves with the further property that when two collide the
original shapes and velocities are preserved after the interaction.
Typically this is only approximately true for solitary waves. Solitons
have all or part of the inverse scattering machinery available for
integration (see, e.g. Ref.[37]). The distinction between solitons and
solitary waves will not concern us here; our results are not restricted to
the relatively rare case of soliton solutions, in fact our results apply for
equilibria of any field theory with a conserved momentum.

Field theories that have soliton of solitary wave solutions can be
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either canonical or noncanonical. For example, the ¢4 Kiein-Gordon
equation, the sine~Gordon equation and the cubic nonlinear Schroedinger
equation are canonical (see, e.g. Refs. [37] and [38]), while the
Korteweg-de Vries (KdV) equation and the regularized-long-wave
equation are naturally noncanonical (see, e.g. Refs. [37] and [39] for the
former and [40] for the latter). As an example we will work out the
case for a single KdV soliton. Stability for this example has previously
been investigated*!42,

Consider the KdV equation transformed into a frame moving at a .
constant velocity, €

Up = Uly + Uygy = Clly (6.17)

This equation possesses the following Poisson bracket due to Gardner33:

.

00

{F.G} = [ (8F/5u)8/3x(8G/6u) dx . (6.18)

The Hamiltonian and Casimir are given respectively by

foe)
H= [ (ud/6 - u,2/2 - cu?/2) dx , (6.19)
-00
o0
C=2fudx .
-0

For our purposes the Casimir C is not needed. The "momentum”, ju2 dx,
has been added to the Hamilitonian in order to boost the system into the
wave frame. Thus we have |=H and

>
81 = [ (U%/2 + uyy - Cu)du dx . | (6.20)

-0
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Equilibrium requires that uxx—cu+u2/2=0, which has the desired
solution ug=Asech?kx, where A=x,/12 k and k?=c/4. The

specification of ¢ at the outset determines a particular equilibrium
solution. Observe that | is invariant under space translation. This is
evident from Eq. (6.20) since if su=gu,, we obtain §/=0 upon enforcing

the boundary conditions u(te)=0. The choice of u=ug for an equilibrium

breaks this symmetry; thus, we expect a zero eigenvalue. Consider the
second variation \

(e

821 = [ u(u - c + 82/3x2)8m dx . (6.21)
00

The stability operator, u-c+0282/8x2, possesses the null eigenvalue when
evaluated at u=ug. The corresponding eigenfunction is given by

87 = €U, = Esech?tanhkx | (6.22)

as can shown directly. Here € and € are constants.
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7. CONCLUSIONS

In Secs. 2 and 3 we have reviewed the noncanonical Hamiltonian
formalism for finite degree of freedom systems and field theories,
respectively. This formalism is based upon a generalization of the
Poisson bracket. Unlike typical quantum fields, Poisson brackets for
continuous media fields, that are written in terms of Eulerian variables,
have explicit linear dependence upon the field components. Additionally,
because of degeneracies there are Casimir invariants. Casimirs are
important because they enlarge the class of equilibria obtainable from
variational principies. Typically for media fields, variation of the
energy alone yields uninteresting equilibria, a situation that is remedied
by using Casimirs as constraints. The so-called "thermodynamic”
variational principles of plasma physics?3 are Casimir constrained
variational principles. The noncanonical formalism explains the
existence of these Casimir invariants, explains the connection between
the equilibrium variational principles and the dynamics [see e.g. Egs.
(3.17) and (4.2)], and provides a framework for finding new Casimirs.

Stability was treated in Sec. 4. For canonical finite degree of
freedom systems the Hamiltonian can serve as a Liapunov function for
determining nonlinear stability. If the Hamiliton has standard kinetic
energy and potential energy terms, then the sign of the curvature at the
equilibrium point provides a necessary and sufficient condition for
nonlinear stability. If the Hamilitonian is not of this standard form then
one must examine the curvature of the entire Hamiltonian. A sufficient
condition for stability is definiteness of the stability matrix, (Hij)' In

the noncanonical case the situation is complicated. If one can find an |
for which the desired equilibrium is an extremal point and for which
(lij) is definite, then a sufficient condition for nonlinear stability is

obtained. We have shown that if (]ij) is indefinite by possessing zero
eigenvalues, then the zero eigenvalues and eigenvectors of (Iij) imply

neutral stability for the linearized system. The zero eigenvectors of
('ij) are neutral directions. Neutral linear stability for infinite

dimensional systems similarly arises if (5%/8@@) has zero directions.
In Sec. 5 Goldstone’s theorem was adapted to the noncanonical
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formalism. It was emphasized that the Hamiltonian formalism is the
natural place to dicuss symmetry breaking since the Hamiltonian or its
generalization, I, provides a variational principle for equilibria. If an
equilibrium obtained in this way has less symmetry than that of I, then
for each such broken continuous symmetry there is a zero eigenvalue of
(lij). The corresponding null eigendirection of (lij) is a null

eigendirection of the linearized equations.

There are two features of our presentation of Goldstone’s theorem
in the noncanonical context that differ from the "conventional” context
discussed at the beginning of Sec. 5. Firstly, the conventional case
makes a distinction between coordinates and momenta, the neutral
direction being soley in the configuration space. Our presentation
includes this possibility, but is not restricted to it. Secondly, in the
noncanonical context we have made the connection between symmetry
and neutral directions of the linearized system, but in the conventional
case it is apparent that the neutral direction persists nonlinearly.
Neutral stability on the linear level is necessary but not sufficient for
the nonlinear level.

Sometimes it can be shown that, although a linear neutral direction
exists, the system is nonlinearly stable. In the noncanonical formalism
an approach arises because the quanity I is not unique. This lack of
uniqueness is due to freedom in the choice of the Casimir constraint; i.e.
in the definition 1=H+C one can replace C by a function of C, but still
produce the same dynamics and obtain the same equilibrium upon
variation. The quantity (I”) though, will in general be different. In

particular if T=H+AF(C) where A is a constant chosen 5o that Tand |
yield the same equilibrium, then (T”) ()= (FCC/FC)(BC/BZ')(BC/BZJ)

(Here the subscript C means derivative with respect to C.) This
additional term can, but need not, result in definiteness of (Tij) and thus

stability*4. If one attempts this for the nonlinear Alfven wave
discussed in Sec. 7 it is seen that neutral stability persists.

Finally, we speculate about some ways that neutral stability can be
removed. In the conventional case this is achieved by the Higgs*®
mechanism when the scalar fields are coupled to the electromagnetic
~ gauge field. The addition of new physics into a continuous media model




can achieve the same end. This could be done either by the introduction
. of dissipation or by coupling to new fields.
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