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Two coupled nonlinear equations describing the flute dynamics of the magneti-
cally confined low-f collisionless rotating plasma are derived. The linear instability

and nonlinear dynamics of the rotating column are analyzed theoretically.

In the linear stability analysis, a new sufficient condition of stability is ob-
tained. From the exactl solution of eigenvalue equation for Gaussian density profile
and uniform rotation of the plasma, we find that the stability of the system strongly
depends on the direction of plasma rotation, FLR effect and the location of the
conducting wall. An analytic expression showing the finite wall effect on different
normal modes is obtained and it explains the different behavior of (1,0) normal
mode from other modes. The sheared rotation driven instability is investigated by

using three model equilibrium profiles and the analytic expressions of eigenvalues

v




-which includes the wall effect are obi‘;ained. The analogy between shear rotation
driven instability ‘and the instability driven by sheared plane parallel flow in the
inviscid fluid is analyzed. |

Applying the linear analysis to the central cell of tandem mirror system, the

trapped particle instability with only passing electrons is analyzed. For uniform

rotation and Gaussian density profile, an analytic expression which determines

the stability boundary is found. For a typical sheared rotation profile numerical
calculations are carried out and the results are presented.

The nonlinear analysis shows that the nonlinear equations have a solitary
vortex solution which is very similar to the vortex solution of nonlinear Rossby
~-wave equation. In the rest frame the w}ortex has dipole structure, keeps finite am-
plitude inside a small region and exponentially decays to zero at large distances.
This solitary vortex propagates with constant speed in the azimuthal direction
and keeps its shape When it moves. Also the propagating speeds of vortice; are
complementary to the phase velocities of corresponding linear modes. Two exact
vortex solutions are obtained for the flute case and the case when the flute dy-
namics was modified by small amounts of passing electrons, respectively. These
theoretical results may suggest a new picture of the dynamics of rotating low-§
plasma: comp]efe description of fluctuations should include the coherent vortex

component as well as the conventional modes.
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CHAPTER 1

INTRODUCTION

This thesis is devoted to the study of linear instability and nonlinear
motion of magnetically confined rotating plasma.

For a long time there has been considerable interest in rotating plas-
mas in various research areas from controlled fusion experiments to theoretical
astrophysics. In astrophysics, the plasma confined in the strong magnetic field
of rapidly rotating neutron stars plays an important role in the radiation of the
pulsars [ Zheleznyakov, 1977 |; the possibility of using the instability of the lab-
oratory rotating plasma to simulate the spiral arm formation process of galaxies

also was suggested [Fridman and Polyachenko, 1984]. In the controlled fu-

sion study the centrifugal confinement concept was proposed to reduce the end

loss from magnetic mirror devices [Bishop, 1958;Artshimovich 1964], where the
plasma has to be put into fast rotation. Beside this, the plasma rotation has been
observed in several magnetic confinement devices such as # -pinch, field reversed
pinch, tandem mirror and tokomaks. It made the investigation of instability due
to rotation in these devices important from the point of confinement. In addition,
theoretical and experimental research on rotating plasma are also carried out in
other fields. For example, nonneutral plasma needs to be rotating to maintain

equilibrium | Davidson, 1972}, and plasma centrifuge device is expected to use
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- rotation to separaté isotqpes of various gaseé , especially Uranium-compound [Mc-

. Clura and Nathrath 197 7] More of the applications of the rotating plasma can
be found in a review paper by Lehnert [Lehnert, 1971].

Since the early sixties many efforts have been put into the study of low-
frequency instabilities of magnetically confined rotating plasma, since it is be-
lieved that the low-frequency, long wave length perturbation greatly influences
the plasma confinement property.

As many theoretical investigations and experimental observations show,
there are two basic mechanisms through which the rotation can drive low-frequency
instability : first, since magnétically confined plasma generally is inhomogeneous
- and has negative density gradient from the-center to the boundary, the centrifugal

force experienced by the plasma plays a role similar to destabilizing gravity in

Rayleigh-Taylor instability of a heavier fluid on top of a lighter fluid; second, .

when the density gradient of the plasma is very weak and negligible there is no
driven mechanism for the Rayleigh-Taylor instability, but the shear associated
with nonuniform rotation may drive instability similar to the Kelvin-Helmholz
instability of parallel flow with velocity shear. In general these two mechanisms
drive the instability simultaneously.

Before the late seventies, theoretical interest centered on f-pinch and Q-
- machine devices. For both devices the plasma confined by axial magnetic field

and there is an equilibrium radial electric field which give an E x B rotation and
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drive both Rayleigh-Taylor and Kelvin-Helmholz type iﬁstabilities. These were
: observed experimentally. From the late seventies to now,the emphasis of research
-has gradually become the Tandem mirror device in the west and the SVIPP de-
vice in the Soviet Union. For the central cell of a Tandem mirror, considerable
E x B rotation due to the strong radial equilibrium electric field was observed
in laboratory experiments [Hooper et al, 1983] and the related possible rota-
tional instability is a topic of recent investigations | Freidberg and D’lpolitto,
1984;Horton and Liu, 1984; Kesner and Lane, 1985]. For the SVIPP device,
a very strong externally imposed ra,dial electric field causes the rotation with a
frequency several orders of magnitude higher than the ion diamagnetic drift fre-
quency, which severely limits the MHD stability of this system [Breizman .and
Tsel’nik, 1984].

In the early studies of low frequency rotational instability the following
theoretical models were developed and employed alternatively in calculations by
different authors:

(1) ideal magnetohydrodynamic model [Chandrasekhar, 1961; Taylor,1962;

Freidberg and Wesson, 1970 ; Spies, 1978];

(2) Finite Larmor radius two-fluid model [Chen, 1965; Berge, 1966; Frei-
dberg and Pearlstein, 1978 |;
(3) the Vlasov equations | Rosenbluth et al, 1962; Rosenbluth and Si-

mon, 1965; Wright et al, 1976; Davidson, 1976,




(4) The Vlasov-Fluid model [Freidberg,1972; Seyle, 1979).

The publication on this topic is voluminous, but for the sake of finding

a guide to our further work we would like to give a brief summary of the main

results from the previous calculations.

(1)

In all the calculations based on the ideal magneto-hydrodynamic model
for flute mode,;m = 1, n = 0 mode is marginal stable,other modes are
unstable. If considering the axial variation of the perturbation,i.e the
modes are no longer flute, m = 1,n = 0 mode can have growth rate for
certain parallel wave number regime.

Calculations based on finite Larmor radius two-fluid model give a stable
range of rotation frequency and conclude that for sufficient finite Larmor
radius effect the modes with m > 2 can be suppressed; this confirms
the FLR stabilizing effect first proposed by Rosenbluth et all (1962).
However, the m=1,n=0 flute mode is also marginal stable in this model.
Taking into account non-flute perturbations for a rigid-rotor equilibrium,
Freidberg and Pearlstein (1978) obtained a positive growth rate for this
mode.

The results from Vlasov equation are diverse, Using low-# and flute ap-

proximations and solving Vlasov equation by direct integration along

-the unperturbed orbits [Rosenbluth-et al, 1962] or by FLR expansion |

‘Rosenbluth and Simon, 1965] the results are the same as the FRL two




fluid model. But for high-8 non-flute perturbation Bowers and Haines
[1971] concluded that the m = 1,n = 1 mode is more dangerous than
would be expected from the two fluid model.

(4) The Vlasov-fluid model results add new information to the rotating in-
stability of §-pinch plasma. The numerical calculation by Seyler (1979)

. shows that due to the existence of small amounts of resonant ions in-
teracting with the perturbation, beyond the region where FLR two fluid
model and Vlasov equation calculations gave stable results, the system
still can have residual instability. However the growth rate of this»residual
instability is very small.

(5) Above calculations are carried out under the assumption that the rotation
of the plasma column is uniform, so the conclusions drawn from them
apply only to the Rayleigh-Taylor type instability. There are only few
numerical calculations of instability with nonuniform rotation [Kent et
al, 1969;Perkins et al, 1971; Rongline, 1973; Jassby 1972|. All
these calculations are based on the FLR two-fluid model and take specific
equilibrium density and rotation frequency profiles, so there is no genefal
conclusion. All the calculations agree that the rotational shear instability
differs qualitatively bfrom the Rayleigh-Taylor type instability.

‘Due to lack of systematic an& complete measurements of the relevant

data, the comparison between theoretical results with experiment observations is
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obscure and even controversial. There are several positive points can be made. (i)

. The fact that the #-pinch experiments always observed the unstable m = 1,n =

0 mode but not m = 2 and higher m modes is in direct conflict to the ideal
MHD model, in a certain sense it may be a support to the concept of the FLR
stabilizing although the theory including FLR effect predicted marginal stability
of m = 1,n = 0 flute mode. (ii) The nonflute FLR two-fluid model calculation by
Freidberg and Pearstein (1978) has some success because the real frequency and
growth rate of m = 1,7 = 0 mode given by them is quite close to the experiment
value of the "wobble” mode and their calculation also showed that this mode has
lowest threshold value for excitation. (iii) The calculations on instability due to

nonuniform rotation have fair good agreement with experiment observations in

- edge oscillation of Q-machine plasma and instability in hollow cathode discharge

plasma.

Since the Tandem mirror devices stepped to the stage of the open-ended
confinement devices and the experiments in TMX showed the quite fast rotation
of plasma in central cell of this device, theoretical works on rotational instability
in Tadem mirror appeared recently. The theoretical models used here are the
ones from the early studies with certain modiﬁcations; Freidberg and D’Ipollito
(1984) discussed the low-f rotational interchage marginal stability condition for a

conventional tandem mirror on basis of the Viasov-fluid model and concluded that

- -low m modes are stable in the TMX experiment. Horton and Liu (1984) , by using




. two fluid model discussed rotation driven drift r’n(l)des in central cell of tandem
mirror and suggested the weak unstable modes observed in TMX experiment may
be the rotation driven drift modes. Kesner and Lane (1985) discussed low
tandem mirror trapped particle instability for arbitrary azimuthal mode number
including the effects of radial equilibrium electric fields by solving Vlasov equations
and suggested a possible rotationally driven trapped particle mode.

The numerous articles and reports mentioned above show that the re-
search of low frequency rotational instability in plasmaﬂe%i_i énriched a great deal

during the past two decades, but unfortunately, all these works belong to the linear

analysis. The only nonlinear work in this respect is reported by Janssen [Janssen,

- 1983]. In this work the equilibrium plasma parameters were adjusted to allow only

one weakly unstable linear mode, then by using the multi-time method the author
studied the saturation of the unétable mode and found that the amplitude of this
mode is in récurrence, hence in average there is no radial transport. Janssen’s
model is an oversimplified case for the real rotating plasma but this work is a
useful effort in the direction of nonlinear study of rotating plasma.

The purpose of this thesis is to achieve two goals: first, to derive a set
of model nonlinear equations which is suitable to treat the nonlinear dynamics of
inhomogeneous rotating plasma; second, to apply the model equations to investi-
-gale some practical problems, specifically, the mode structure of rotational trapped

- particle instability in the central cell of the Tandem mirror by linear analysis and




. under some approximations give a nonlinear solution of the model equation. For
* this ;purpose, it is necessary to consider the balance between physical effects in-
cluded in the theory and the mathematical tractability of the problem. From the
physics side, the model equation should contain the physics effects which are im-
portant for description of the system under consideration; from the other side,
the mathematical formalism used in the theory should not be too complicatéd to
prevent solving the problem practically. After considering this balance, we choose
a two-fluid description of the plasma, which unavoidable excludes kinetic effects
. from our consideration, but it was proved by the previous works on the linear anal-
ysis of rotational instability that for low frequency perturbation this description
is quite fruitful. We also limit our study to low § isothermal plasma and flute-like
- perturbations, which reduce the number of perturbed quantities to two and make
the problem two-dimensional; by this choice the mathematics become much leés
involved. Despite above mentioned limitations, we include following physical ef-
fects which were pointed out by the previous linear studies being es§ential to the
rotational instability into our consideration: inhomogeneity of plasma; arbitrary
radial equilibrium electric field ( in other words, arbitrary rotational frequency of
plasma); magnetic field line curvature effect or pondermotive force effect of RF

heating; FLR effects of ion component; and the finite boundary effect.

The arrangement of the materials of the thesis is as follows. In chapter

IT we derive the nonlinear equations from the two-fluid model of plasma and give
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the conservative quantities kept by this set of equations. We prove that for a
. closed syétem the model equations keep the total mass, entropy, angular momen-
tum and energy of the plasma conserved. In chapter III, we give three forms of
the linearized stability equation from our nonlinear equations, among which the
first one i§ convenient for treating uniform rotating case of plasma; the third one
is a form convenient to the linear mode spectrum analysis for instability. The
second linearized form of the model equations recovered the compact linear sta-
bility equation first derived by Rosenbluth and Simon (1965) from solving Vlasov
equation. This means that, at least through the linear treatment, our model
equations is as powerful as the Rosenbluth-Simon equation. Through a general
discussion of this equation, besides recovering some previous reported conclusions
we find a sufficient condition for stability of low-8 plasma rotating with arbitrary
frequency which generalizes the condition given by others [Freidberg and Pearl-
stein, 1978]. By cqnsidering special equilibrium density and electric potential { or
rotation frequency) profiles, several analytic solutions for uniform and nonuniform
rotation were given and the wall effect on m = 1,n = 0 mode is analyzed.

In chapter IV, we modify ‘the linearized stability equation derived in
chapter III to include effect of small amounts of passing electrons and study the
rotational trapped particle instability in central cell of simple Tandem mirror and
- give the stability boundary for the passing electron ratio versus plasma rotation

- frequency. In this chapter we also numerically treat the shear rotation effects for
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a specific rotation profile and two continuously varying density profiles.

- In chapter V we treat the nonlinear problem of ﬁniform rotating plasma.
By introducing certain approximations, we find a solitary dipole solution of our
nonlinear equations. The vortex moves with constant velocity in the azimuthal
- direction in-the rotating.frame of plasma. This solitary vortex sol‘ution is similar
to the solitary vortex discovered in nonlinear Rossby wave equation for planetary
atmosphere study by Larichev and Reznik ( 1976) and adds two new members
to the recently rapid growing famﬂy of solitary vortex solutions in magnetically
confined plasma study. The propagation and spatial properties and the possible
implication of these vortices on plasma transport are discussed.

In chapter VI,.the conclusions of this thesis is given.




Chapter II
FLUTE DYNAMICAL EQUATIONS

FOR ROTATING PLASMA

Introduction

In this chapter we derive the nonlinear equations for flute dynamics of
low B rotating plasma and give the constants maintained by these equations.

We assume the plasma under consideration is a dense, collisionless plasma
column confined in a constant, uniform axial magnetic field B = B,Z. Most
importantly, we suppose the plasma has a radial equilibrium electric field E, =
E,(r)f which causes the plasma column to rotate transverse to the crossed electric
and magnetic field: in cylindrical coordinates, the plasma rotates in the azimuthal
direction 8 with frequency 1 = % This configuration is shown in Fig. 2.1. Since

our purpose is to study the low frequency ( characteristic frequency w < we; =

eB

==, ion cyclotron frequency) instability of rotating plasma, we require the basic

equations to include the following essential effects: equilibrium electric potential,
inhomogeneity of plasma density, finite Larmor radius (FLR), magnetic field line
curvature.

Instead of using the most accurate description of plasma-electromagnetic
fields system by Vlasov equations for electron and ion components and Maxwell
equations for the fields we describe our system by using two component hydrody-

11
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. namic equations and Maxwell equations which neglect the kinetic effects included
- in the first description but retain thé'ﬁuid like properties of plasma. Due to
- the fact we are dealing with low frequency electrostatic perturbations for low 3

(B =4rm Z n;Tj/B?), dense plasma, the Maxwell equations are legitimately re-
placed b§/=;’eqﬁasineutrality condition. This choice of description greatly reduces

the mathematical complexity of the problem. The flute approximation also is as-

sumed in the derivation of equations which limits our consideration to the plane
per};endicular to equilibrium magnetic direction.
This chapter consists of two sections. In section II.1 we derive the equa-

tions appropriate to stability analysis of rotating plasma, and in section I1.2 we

derive the conservation law of these equations.




Fig.2.1 The configuration of the system. a plasma column confined in
a constant axial magnetic field B,Z,the equilibrium electric field
E = E(r)f, the E x B Wrift causes the drift causes the plasma
rotating in § direction, where b is the location of a conducting
boundary.

13
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I1.1 Derivation of Nonlinear Equations

We take two component hydrodynamic equations to describe the dy-

- namics of the ion and electron fluids and the Maxwell equations to describe the

electromagnetic fields which interact with the plasma.

The full hydrodynamic équations consist of the continuity equations, the
momentum balance equations, and the thermal energy equations for both compo-
nents.

The continuity equations:

on:
7‘%7— + V- (n;V;) =0, (I1.1)
The Momentum equations:
dv, V;xB :
The thermal energy equations
3 dTy .
: J-d—t]+p,-v.vi+v-Qj+n(J>:VVJ- =0 (I1.3)

Equations (I.1)-(IL3) can be obtained from the Vlasov equation by in-
tegrating the first three moments |Braginskii, 1963; Mikhailovskii, 1977]; they

- are not closed yet.  To close the equations or to terminate the moment hierarchy we
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need to introduce constitutive relations,i.e. the equations of state, the expression
for viscosity tensor TI(¥) and the heat fluxes Q;.

- The equations of state for a hot plasma (nT > €*n%) are the same as that for an

ideal gas:

p; = n;T;. (11.4)

In Cartesian coordinates with the Z in magnetic field direction, for col-
lisionless plasma, the viscosity tensors for ion and electron components can be

expressed as [Mikhailovskii, 1977):

Py (3W2+3Vy'y)_ 1 (aQy'z+any)

() — @) — __
Tz My 2we; \ Oy oz S5we; \ Oy oz

ny) =y = X <3V¢x _ 3ny)+ 1 (anz _ 3ij>

2we; \ Oz dy Swe; \ Oz dy
0) = 10) = _ P (IViz), 5
ng) = g wcj( 5 ); (11.5)
) = 0 = Pi(Viz)
My _ My wcj( oz )
n =o
and the heat fluxes are given by
5 pj .
Q;=¢ Zx VT, (11.6)

2 myWey
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The Maxwell equations should be introduced to describe the electromag-

netic field:

V-E=41) nq (11.7)
;
10B
VXE_‘ZE ‘ (118)
V-B=0 (I1.9)
10E 4n

J

The set of equations (IL.1)-(IL.10) is a closed complete set of equations
describing the dynamics of collisionless plasma in electromagnetic fields. Here we

- list the-definition of the notations appeared in Eqns.(I1.1)-(I1.10):
7 =1, e = The species of charged particles of plasma.

m;, me = The mass of ton and electron.
gi, qe = The electric charge of ton and electron.
ng, ne = The number density of ion and electron fluid.
pi(X,t), pe(x,t) = The pressure of ion and electron fluid.
Vi(x,1), Ve(x,t) = ThLT velocity vector of ion and electron fluzd.

i, T1(®) = The viscosity tensor of 1on and electron fluid.
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T:(x,t), Te(x,t) = The temperature of ton and electron fluid.
Qi(x,1), Qe(x,t) = The heat fluz vector of ton and electron fluid.
Fi(x,t), Fe(x,t) = The nonelectromagnetic forces exerted

on ton and electron fluids.

B .
Wei = :]:z'c = The cyclotron frequency of tons.
(2
B
Wee = :]; - = The cyclotron frequency of electrons.
€

¢ = The velocity of light.
E(x,t) = The electric field vector.

B(x,t) = The magnetic field vector.

d o
(@i=g+ ViV
d g
(E)e—a'l've'v

To further reduce the equations, we introduce the following assumptions:
1. the flute approximation, all the quantities of the plasma under consider-
ation have no variations along the axial direction and V;, =V, =0
2. the plasma is isothermal, i.e. VI; = VT, = 0;

3. low B plasma, i.e. the thermal pressure of plasma is much less than the

- magnetic pressure. (8 = ﬂﬁ—gi"—nl < 1);
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4. the plasmais dense, i.e (g”—’:)z» 1; where wy,; = (Mr_:zn_,_g,j)% is fon plasma‘jﬂ;.n,
ci i :
frequency;
5. the plasma is hydrogen , ¢;=—g.=e, where e is the electron charge. and
due to m,/m; < 1, we neglect the inertia of the electron component.
Due to the assumptions we made above, the set of equations (I1.1)-(I1.10)
can be greatly simplified. By assumption 1, the flute approximation, the prob-
lem becomes two-dimensional, all the fields only depend on the two coordinates
X, v in an Cartesian coordinate system or r, § in a cylindrical coordinate system
at the plane perpendicular to B. By the assumption 2 (the isothermal approx-
imation),equations (II.3) is eliminated as well as the free energy for driving an
instability from the temperature gradient. By the low-# approximation (the as-
sumption 3), the thermal energy of the plasma is too low to disturb the magnetic
field; from the Maxwell equations we can eliminate the teﬁpora] and spatial vari-
ation of the magnetic field. Then only the electrostatic perturbation needs to be

considered and two equations for V - E(r,0,t) and V x E(r,6,t) remain and they

can be reduced to a single Poisson equation:

Vig = —47qujnj (I1.11),
7

by taking

E=-V¢. | (I1.12)
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One more step farther, by using the dense plasma assumption (assumption 4) we

can use the quasineutrality condition
n; =N, (11.13)

to repiace the Poisson equation (II.11) as a good approximation [Rosenbluth
and Simon,1965; Mikhailovskii,1977 |. And finally, by assumption 5, we can
neglect the term with électron viscosity tensor Il(,) and the term F.(x,t) from
the momentum balance equation for electron component. Up to now we have
not specified the non-electromagnetic force F;(x,t); we identify this force as a
fictitious force to model the magnetic field line curvature or the high frequency

pondermotive force with the form
F;(x,t) = m;g(x,t) = —m;VU(x,t),

where in modeling curvature of magnetic field line , g ~ (T; + T.)/m:;R, R =
Rx,1) is the curvature of magnetic field line. Then the momentum balance equa-

tions (I1.2) can be written as

V. xB
[4

em(E+ )+Vp. =0 (11.14)

ViXB

g—& =nie<E+

—Vp,— V- i .15
= ) - Vp II + m.g (11.15)

myny
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where the ion gyroviscosity tensor IT is a 2 X 2 matrix which can be written in the

polar coordinates as

I, Il
T = 11.16
(Her Hee) ( )
where

_ _ niTi 8V5 1 aV,- Vg
Tlrr = —Tlog = 2Weq ( or r 06 r ) (11.17)

niTi aV-,- 18V9 V,-
Moo =Tor = 35 (57 = 750 — ) (11.18)

After the simplifications, the problem becomes two dimensional and the
~number of independent equations describing the plasma is greatly reduced. There
are two continuity equations, two momentum equations (4 scalar equations), two
state equations, two constitutive relations (8 scalar relations), an equation defines
electric field (2 scalar relations), and a quasineutrality condition. In total 19
scalar equations remain independent, which correspond to 19 unknown functions
ni(r,0,t),ne(r,0,t), Vi(r,0,t),Ve(r,0,t),p;(r,0,t), pe(r,0,t), IL;(r, 0,1), I‘Ie(}', 6,t),
E(r,0,t) ¢(r,0,t).
To set up the model equations suitable to the stability study, it is nec-
essary to further reduce the number of equations and corresponding unknown
functions. For this purpose we introduce the FLR (finite Lafmor radius) ordering

into the analysis. The FLR theory [Rosenbluth and Simon, 1965] assumes the
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following ordering of frequency of the waves:

w= O(e2wc¢) (I1.19)

(M

where € = 2% <1, p; = th¢ is the ion cyclotron radius, v; = (;":4-) is

L Wes
ion thermal velocity and L is a typical gradient length of plasma.

—cF

5 is assumed of the same order
r

Also the E x B drift frequency 1 =

as the characteristic frequency w,

0= O(ezwci) (I1.20)
and then the E x B drift velocity V = ¢E x B/B? is of the order

V = O(evin,) (11.21)

According to equation (I1.21) the electric force is of the same order as the pressure
gradient enE ~ Vp.

Taking this ordering into account, we find that the ion momentum bal-
ance equation can be solved iteratively.Substituting Eqns. (IL.3), (I1.12) into

Eqn.(I1.15), taking z x (I1.15) gives

c cT; ¢ 1 1 dVv;
; ZxV-II—- —ix Zx —
B Ben; Ben; wciz g+wc,- dt

(11.22)

for the ion fluid velocity field.
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According to the FLR ordering we find that the first two terms of Eqn.
(I.22) are of order € while other terms are two orders higher, of order €2, so to

the lowest order

my_ ¢, Ti . ) 3
Vv, Bz><V¢+Benl.sznz Besz¢ (I1.23)
where we define
¢=%qj+lnn¢

. For constant B it follows that V - Vi(l) = 0.

By iteration, the third order correction of ‘the velocity is given by

(1)
@_ 1, Vi e o oo nqm_ 1,
v, wm‘z X ——+ Beniz x V.II WCiz X g (11.24)

Repeating the same operation on electron fluid momentum equation

(I1.14) gives
cT,

en,

v = an‘i X Ve — i x Vn, (I1.25)

since we neglect the inertia of the electron component, there is no/need to lqok for
higher order corrections to the electron fluid velocity.

Substitute Eqns. (11.23)-(I1.25) into the continuity equations (I1.1),(I1.2),
respectively, considering the quasineutrality condition (I1.13), to the first order of

¢, for both electron and ion components we have

— 4+ Vaep V=0 (I1.26)
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where
n; =n, = n(r,0,t)
and

c

VEXB = B

Zx V¢ | (11.27)

is the E x B drift velocity of ion and electron. Subtracting the ion and electron
continuity equations, the E x B drift cancels for both components. Since the
diamagnetic drift due to pressure gradient of isothermal fluids not participate in

the continuity equation, the lowest order equation becomes
v. (nv§3>)= 0 | (11.28)

= We take the equations (I1.26) and (I1.28) as our basic nonlinear equations,
because after substituting (I.27) into (II.26), (I1.23) into (I1.24) explicitly, Eqns.
(IL.26) and (I1.27) become two independent equations in respect to two unknown

functions n(r,0,t) and ¢(r,6,t).
Here for convenience we introduce the Poisson bracket [, ]to represent

the following linear differential operation on arbitrary function T(x,t), g(x,1)

[f,g]=(i><Vf)Vg

_ 12100 _0s g
r orod 06 3r’
By using the Poisson bracket notation we can write the equation (I1.27) as
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i
o

on L cT; {qﬁ,n]

=" B (I1.29)

where

-
il
S8

JV(I)
dt

. To express (I1.28) in terms of n and ¢ we need to calculate the terms nz x

and z x V- TIV,

aviy
A. Calculation of nz x —i—

Substituting (II.23) into

we have

(1) .
nixdvi — T (8V¢+(CT

- = (2 x Vi) - vw)
cT; d

=—B—;n( V¢+—V1nn) (B) [%0, V’ﬁ}

(11.30)

Notice that
8 Vnon

and equation (I1.29) gives
ot  Bel®’
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then

nb%v1nn=;1;f([vn,$]+[n, ~]—Yf?["’ ]) | (I1.31)

Using the property of Poisson bracket

n[c;;, Vlnn]: [qz , Vn]—vn [43 , n} (11.32)

n
Substitute (II.31), (I1.32) into (I1.30), after some cancelations finally we obtain
. _av?? T 8

o S = e e

cT;
Be

)n([w, V4] +% n,V9]).  (I1:33)

. B. Calculation of z x V - II(1)

Substitute (II.23) into the expression of gyroviscosity tensor (II.16), then

the tensor can be expressed in terms of 7.

T;\2 o~ 2 252
oM = —lrm(i—) <(3$ azay )y azazayaz (I1:34)
2 Be 26z6y¢ _(E - ayz)‘p
Operating with V- on (I1.34), after some algebra one finds
IO = — s (TN 1 2
V.11 mi(52) {2 x [n, V4] +59(nV?y) | (11.35)

Acting Zx on (IL.35) gives




ix V- = mi(%ﬂ)z{[n : vzp]—%z x V(nvy) }

€
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(I1.36)

The third term in equation (I1.28) comes from the fictitious gravity drift,

-after introducing an effective potential U(r,6,t) such that
g=VU
the divergence of this term can be written as

V(—Lni X g)= 1 [U , n}

Weq Wesq

Substitute (I1.33), (11.36),(I1.37) into (I1.28) and notice that
V.- {2 x V(nV?*¥)} =0

and
inn, §l==[n,

then equation (I1.28) is expressed in terms of n,gz; as

Tio, 0 n T2 [ (1 o= .
SV v+ S V- (a2, val+ [n, V3] }+[n, Ul=0

(11.37)

(11.38)

From this derivation we have obtained the nonlinear model equations

(I1.29) and (I1.38) which describe the flute dynamics of rotating plasma. Physically
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they are the lowest order continuity equation for the ion and electron components
of the plasma and the lowesf order quasineutrality condition in the FLR ordering.
The equation (I1.29) shows that the change rate of the density of each component
of the plasma fluid is caused by the E x B convection while the equation (II.38)
shows that the total current caused by all the drifts produced by the inertial force
must be divergenceless to keep the plasma quasineutral. The meaning of each
term in equation (I1.38) is clear: the first term and the first Poisson bracket in the
second term represent the charge separation caused by the ion polarization drift,
the second Poisson bracket is the charge separation comes from FLR of the jons,
and the third term is the charge separation due to the drift caused by magnetic
field line curvature or RF pondermotive force. Previously Horton and Liu (1984),
derived a similar set of nonlinear equations under an MHD ordering where they
assume that the E x B drift is dominant over the ion diamagnetic drift. In this
ordering the ion FLR term, the second Poisson bracket of equation (II.38), is
dropped.

The equations (I1.29), (I1.38) are written in the laboratory frame. When
the plasma is rotating uniformly, we can write them in the rotating frame under

the coordinate transformation
Tlab.frame > Trot.frame

0lab.frame — 0rot.fr‘a.me + ntrot.frame




28

Ligb.frame — trot.frame

where

0= -I%i X Véo(r) = constant

@,(r) is the equilibrium electric potential in lab. frame.
After completing the transformation we obtain the following set of non-

linear equations in the rotating frame:

2_’; n [gs , n] =0 (11.39)
CBTT;{V i (ngvé)_l_(%%y{n[& , Vq?)]-}-[n , Vg;]} —29% [n s Qz]
7202
+[n,U—— 5 ]=0 (11.40)

From equations (I1.39),(I1.40) we can see the characteristic terms Ain a
rotating frame, the Coriolis drift term 2QCB—T2 [n , Vd:] and the centrifugal drift
term which joins the gravity term‘a.s a centrifugal potential %rzﬂz. We have
shown that the above explanation in fact can be justified by a more elementary
derivation from the single particle picture of plasma [Horton and Liu, (1984)].
The equations (I1.39) and (I.40) are more convenient to be linearized than the
equations (I1.29) and (I1.38) when we treat the linear problem of uniformly rotating
plasma because in the rotating frame equilibrium electrical field is eliminated by

the transformation and the term proportional to V- {n[q; , Vq;]} is at least second
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order in the perturbation; in equation (II.38) the corresponding term contains
.. several terms linear in the perturbation and needs to be treated carefully.

In the following chapters of this thesis we will use the equations (I1.29)
and (I1.38), or (I1.39) and (I1.40) as the basic nonlinear equations to treat the low
frequency electrostatic instability of rotating plasma. To conclude this section we
would like to point out that although the approximations introduced for derivation
of the equations limit the validity of the equations only to the flute perturbations
of low f collisionless dense plasma, these two mathematically relatively simple
nonlinear equations still retain quite a few essential physical factors for the motion
.of the inhomogeneous, rotating plasma including the magnetic field line curvature
or RF pondermotive force effects and the finite Larmor radius effect. Within the
limit-of the flute perturbation the equations'can be used to treat the E x B rotation
driven electrostatic instabilities of inhomogeneous plasma with or. without FLR
effects. In addition to these, since we have not specified the equilibrium elect-ric
potential, our equations can be used to treat either uniformly or nonuniformly

rotating plasma.




JI.2 The Conservation Laws

- In the previous section we derived a pair of nonlinear equations under
certain approximations; in this section we will derive the basic conservation laws
of these equations. Here we suppose our system is a closed, that means the system
we considered will not exchange mass with outside sources. We also suppose the
plasma column is surrounded by a conducting wall on which the electric potential
of plasma is zero.
A. The conservation of the total mass and the total entropy

Since equation (I1.29) is in fact a particular version of the continuity

equation of ion and electron fluids under convection by E x B and ion and elec-
tron diamagnetic drift motion respectively, obviously the basic physics law, the

conservation of total mass expressed by this equation must obtain, i.e.

= [ nbx,t)ax =0 (11.41)

Mathematically, (II.41) can be verified simply integrating the equation

(I1.29) over the whole volume (the whole cross sectional area in the two dimensional

problem) filled by the plasma and using the integral property of the Poisson bracket

/n[qﬁ,vn]dx:/qﬁ[n, n]dx=0

Furthermore, since the fluids only experience the E x B and the Vp drift

(the diamagnetic drift) motions in a constant axial B field, V -Vf’le) = 0, the fluids
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are incompressible. This means they are only mixed but not compressed in the
‘motion: This fact implies that equation (II:29) will give a family of constants of
‘motion,i.e. any physical quantity which only depends on n is conserved by the

motion:
dit, / 7(nfx,1))dx = 0 (I11.42)

8
Specifically, in the isothermal case the entropy S(n) = Z n; ln(nj_lsz) [ Bra-
Jj=t,e
ginskii, 1963] belongs to this family, so it is a constant of motion

d
= [ S(n)dx =0 (I1.43)
dt

(IL.42) and (I1.43) can be easily proved by multiplying f/(n) or Si(n) by the equa-

. tion (IL.29) and integrating over the whole volume, remembering the property of

Poisson bracket

/f(n)[¢, njdx = /qS[n, f(n)]dx = 0.

B. The conservation of total energy
We define the total energy of our system as the sum of two parts, the

kinetic energy

1
2 Z m;n; (X, t)Vnsz
J

=1,e

and the potential energy density

min;(x,t)U(x,1)




32

. Due to the smallness of -;1—6 the electron’s contribution to the kinetic energy can
i

- be neglected. Then the conservation law of the system can be expressed as

% / mini(V2, /24 U)dx = 0 (I1.44).

To prove that the equations (I1.29) and (II.38) conserve energy, some
algebra manipulations are necessary. Multiplying equation (I1.38) by q~5 and inte-

grating over the whole region occupied by the plasma yields

[ {5 g9+ (GPV - (g, VH+ V- [, 9E]) + [0 ,0] Jax =0

(I1.45)

By using the integral properties of Poisson bracket and integrating by parts, one
finds the terms in equation (II.45) as

1cT; d
Term 1 = & n—

2
2Be | Mg Vo) dx

Term 2 = -3(59° [ (V)1 , dlax

Term 3 =0
Term 4 :—/U[n,q;]dx

0 T; ~
Substitute the equation (I1.29) 6_7; = %ﬁ[n , ¢] into term 2 and term 4

and finish the integrations, one obtains -

d Ti 0 o oU
a/n{%(cB—C)z(Vﬁé)Q—i_U}dX:/nﬁdx' (I1.46)
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The meaning of (I1.46) is the change of the total energy of the system comes from

4

the time variation of the fictitious potentail U.

oU '
Noticing that—ét— = 0 if we supposed the system considered can not
exchange energy with outside. Then the right hand side of Eq.(I1.46)=0, it means

that

The Total Energy = / mini(%Vng + U)dx = constant. (11.47)

C. Conservation of the total angular momentum

1
Multiplying equation (1.38) by -2—r2 and integrating over the entire volume
- of the plasma one can obtain the angular momentum conservation law of the

system. The details of the proof follow.

/5 {CTV {n——qu—I—( T) (nlg, Vo] +[n, V¢])}+—r2[n U]}d. 0

B
(11.48)
integrating by parts
i [1 SV (n—wsdx L[, 806,

0
= —/né—trngx
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where Vy = —-—% is the azimuthal component of Vg, 5.
. Be Or

/ 11V (nfd, Vé)ax = - / nrld , Vg dx
_/n (a_qz 8*¢ 940%$ 13553‘7’)49@

"\or 660r 060 612 r Or 90
(11.50)

where [q; , ngNS],_ denotes the r component of [cg , V¢~>] Integrate the first

two terms of (I1.50) by parts

8¢ 8% _1/ana$2
/ggg_a_@d 99998,

8% 824 an 8¢, .
r 06 or or 06 or

" 50 ardda_ 80(67)

substituting these two terms back into (I1.50)and use equation (II.29), one gets

T; ¢Ti., [,0n8¢ Ondd,dd
(G0 = (5 [ (G55 - 5 57) 3,
_ (cT) /r[n,é]ar—(ﬁdx (I1.51)

/ ——‘rV(-)dX

other terms in equatlon (11.48) are integrated and give
1 -
/ 2V ln, Vd]=0 (11.52)

and

/%{n , U]dx:/angdx (11.53)
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- Finally, substituting the relations (IL.49), (I1I.51)-(I1.53) into equation

where Fg = —

(11.48) one obtains

dL, _d
dt  di

nrVpdx = / nrFpdx (11.54)

Equation (II.54) states that the total angular momentum of the system is driven
by the external torque. The change rate of the angular momentum of the system
equals the total torque of the external force. For the axisymmetric system like the
central cell of the Tandem mirror devices, Fy = 0, there is no torque acting on the

system the total angular momentum is conserved

The Total Angular Momentum L, = / nrVedx
(I11.55)

= / nriQl(x,t)dx = constant




Chapter II1

LINEAR STABILITY ANALYSIS

Introduction

Based on the nonlinear equations derived in chapter II, we study the
linear instability of rotating plasma in this chapter. In section III.1 we derive
the radial eigenequation of the normal mode by linearizing equations (II.29) and
(I1.38). The radial eigenvalue problem is presented in three different forms. The
first form is written in terms of perturbed radial potential 6¢,,(r), the second one
in terms of radial Lagrangian displacement &,,(r) and the third one is written in a
matrix form. Each of these three forms has own advantages. The first form has the
virtue of transparency of physical meaning for each term in it and is convenient
for treatment of the uniformly rotation case. The second form which is often
referred to in publications has the advantage of compactness of the form and is
conveniently used to discuss the general property of stability of rotating plasma.
The lést one is an appropriate form to be used to solve the problem numerically;
it can give the radial structure of densiﬁy and potential perturbations of all radial
normal modes for given m together with complex frequency of the mode by one
run.

In section II1.2 we discuss the flute instability of rotating plasma by the

36
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method of energy integratioh and give some general conclusions about the rotation
driven instability. A new sufficient condition for stability is derived.

In sections II1.3 and section II1.4 we treat two typicél cases of rotational
instability of plasma by solving the eigenvalue problems analytically in order to
reveal the basic features of the Rayleigh-Taylor type and Kelvin-Helmholtz type
instability of rotating plasma. In section III.3, we choose a diffusive equilibltium
density profile (Gaussian density profile) and a quadratic equilibrium electrical
potential profile which gives a uniform E x B rotation of plasma to model the
stationary equilibrium state of plasma. The instability driven by plasma rotation
in this case is of the Rayleigh-Taylor type. In section II1.4 we choose the model
equilibrium profiles of density and electrical potential which are favored to drive
. the Kelvin-Helmholtz type instability, three analytically solvable model profiles
are discussed. In both uniform and nonuniform rotation cases the finite boundary
effect is considered.

To avoid putting the lengthy derivations into the main text, the math-
ematical details of the equation derivations are put into three appendices at the

end of this chapter.
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II1.1 The Linearized Stability Equations
A. The equilibrium state and the linearized equations of perturbations

Denoting the equilibrium quantities of the plasma density n and the

electrical potential ¢ by subscript ”0”, since they are the quantities in equilibrium

on, =0
a7
0¢,

ot =0

In equilibrium state, the equations (I1.29) and (II.38) become

[$0 » o] =0 (I11.1)
and
V(£ olge » Vo) + g ln, Vool } 4 [no, U=0.  (1112)

From the property of the Poisson bracket we can easily write down the

solutions of(II.1) and (III.2) in the cylindrical coordinates as

$o = ¢o(r)
' (I11.3)

no = ny(r)
provided U = U(r).

Suppose there are small time dependent perturbations of the density and

the electrical potential én(r,8,t), 6¢(r,0,t) around the equilibrium state:
#(r,0,t) = do(r) + 6p(r,6,1)

(I11.4) -

n(r,0,t) = ny(r) + én(ré,1)
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Substituting (IIL.4) into equations (I1.29) and (II.38), after neglecting

higher order terms one obtains the linearized eqﬁations of (11.29) and (II.38):

oén

N {[5¢’”o]+[¢o, n]} =0 (I11.5)

and

0 0
Vo{ £ (nom; VEs+6n 2V 0) +(5)2 (6110 , Vool +70[68 , Vool+nols, , V64)

cT;
Bm,-wc,-

+ (162, Vol + [no , vég]) }+len , U(r) =0 - (I116)

B. The linearized equations of normal mode

Considering the axial symmetry of equilibrium state (II1.3), we can ex-

. pand the perturbations én and 6¢ to the following Fourier series:

o0
én(r,0,t) = Z {5nm(r)ei(me_“’t) + complex conjugates} (I11.7)
m=0
é(r,0,1) Z {6¢m(r)e ™09t 4+ complex conjugates} (I11.8)

Substituting (II1.7) and (II1.8) into the linearized equations of the pertur—'
bations (IIL.5) and (I11.6) and éoing through lengthy but straightforward algebra
[ see appendices A-C], one obtains the following three forms of the equations for
normal mode m.

Form 1:
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Wiy

d
a =)6¢]

m2(Q2 + g/r) 3 m%Tii rzd_ﬂ)]ldno
" @Ber dr* dr’'r dr
1d

mn, d ,1d ,
+—= = (S ()4~ (nowas) }odpm = O (I111.9)

. ©d0
Vi [no(w — w*i)V_LMm] + mg- {no(l —

+{[2mQ +

where

(r) c 1dg,
r) = ——
Br dr
du(r)
g(r) = - yt
mT; ldlnno
MiWe; ¥ dr

Wiy =

Form 2:

ol Clrwe) [ oL+ (mirg +r°w®) —=]ém =0 (I11.10)
where
m
T
Wey

Form 3:
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67im (z) ) <6ﬁm($) )
A . = wB - II1.11
(55mte) 56m(2) ()
where
r . N - .~ ebdyn
= (5)2 167 = n:n 16¢m = :qui
A , B are 2 by 2 matrices of differential operators
A Ap
A=
(A21 A22>
Au = mﬁ(a:)
Az = mw*e(z)
T, ddd 1. s T, _id, :d0 di dInn,
A — —_— - 2 _ D Y ——
z m{ T. dz dsr;‘*-4(Q +2729(z)) Te[m dm(z d:c) dr dz ]}
T;dlnn,, d? 0 d 2T; d , dn,.. d
Agg = N+2— — 4+ [— o — —
22 m{:z:( T. dz )d:z:2 [nod (zm0) Teno‘d:c( dz )]da:

dinn, d , ~. m?20 T; ,d*n, m2dn,
_;E(I d:z:)_ dz Ea—;(zm_ 4z _Teno(dzz + 2z dz)}

_ (B B
B =
(321 Bzz)

B, =1
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B;2 =0
By =0 ‘
d? 1d,- . d 2
Boy = z— + ——(zn,)— — o

dz? ' nodz' dr 4z
C. The boundary conditions

To analyze the linear stability problem we must impose the appropriate
boundary conditions on the second order differential equations derived in previous
subsection to form the well-posed eigenvalue problems. Here we give the bound-
ary conditions from the following physical considerations. On the.axis of plasma
column we naturally require the perturbation to be finite. At the outer edge of
the plasma the boundary conditions may be imposed differently according to the
different physical situations, for example, the plasma may be surrounded by neu-
tral gases, vacuum magnetic field or a solid limiter. For simplicity of treatment
we limit our discussion to the case of conducting wall boundary, which models
the conducting limiter. Now we are in the position to write out the boundary
- conditions for each form of the differential equation of normal mode.
For the first form, the equation (IIL.9), the boundary conditions for the

potential perturbation function ¢,y (r) are

6¢m(r)|r=0 = Finite
| (I11.12)

6¢m (T) |r=b = 0

where b is the position of the conducting wall.
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For the second form, the equation (IIL.9), the boundary conditions for

. the radial displacement function £,,(r) are

Em(r)jr=0 = Finite
(I11.13)
fm(r)|r=b =0.

For the third form, the equation (IIL.11), the boundary conditions for the

normalized density and potential perturbations 67, (r) , 6 qzm(r) are

87im(2) , 66m(z)|s=0 = Finite
(I11.14)
2 =0

biim(2)  66m()

S

After adding corresponding boundary conditions to the three forms of
the differential equations we obtain three forms of the eigenvalue problem for the
radial perturbation functions of the normal mode. By solving these problems we
can analyze the linear instability of the rotating plasma.

Before going to the analysis of stability it is worthwhile to add a few
remarks on these three forms of eigenvalue problems.

(1) In the form 1 of the eigenvalue problem, equation (II1.9) and the bound-
ary condition (III.12), the unknown function is the radial perturbation
function 8¢,,(r). The equation looks lengthy, but the physical meaning
of each term in it is quite clear. As we pointed out in the previous chap-
ter, each term in the equation-(IIL.9) repres.ents the charge separation

caused by corresponding drift motion: the term 1 is given by the usual
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polarization drift convection modified by thel FLR effect; the terms 3 and
4 are given by the Coriolis, the centrifugal ( proportional to 12 ) and the
gravity drifts; the terms 2,5 and 6 are caused by the shear of rotation;
and the last term, the term 7 is purely due to the FLR effect. When
the rotation is uniform, i.e. {2 = constant, the equation (IIL1.9) takes a
simpler form because the three terms related to the shear of rotation are
dropped. If we consider a cold ion system, it means that compared with
the fast rotation of the plasma the finite ion temperature effect can be

neglected, and suppose the rotation is uniform the equation (IIL.9) take

its simplest form as

6¢m =0

2, 2omy Mgy (2l (@t ofr)ydne

(I11.15)
which contains only the convection, the Coriolis, the centrifugal and the
gravity drift terms. This equation describes the fast rotating confinement
devices such as the SVIPP device, where the ion temperature can be

neglected compared with the fast rotation speed. This equation was

derived previously by a simpler way [Horton and Liu,1984].

The equation (II1.10) has the virtue of compactness despite the fact that
the physical meaning of each term in it is not as clear as the equation

(II1.9). This linearized equation was first derived by Rosenbluth and Si-
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mon [1965] from solving the Vlasov équations by impose a FLR ordering

and it has been citated in the plasma literature as the Rosenbluth-Simon

equation. We have rederived it from the set of nonlinear equations based

on two fluids model of plasma; this fact may partly justify our formalism.

. It is easy to see that the equation (II1.10) is not a self-adjoined equation

- respect to the eigen frequency w. So there is not a very useful variational

principle can be formulated for this equation. But this form of the equa-
tion is very convenient to analyze the general property of the stability of
the system.. We will give a general discussion of rotational instability by
using the energy integral of this equation in the next section.

The equation (III.11) is of matrix form. This form is convenient for the
study of the eigenvalue spectrum of the problem with arbitrary equi-
librium density and potential profiles by numerical method using linear

matrix algebra. As an testing example, we numerically solved the equa-

tion (II1.11) with the uniform rotation and the Gaussian density profile

without FLR effect and the gravity. In Fig.3.1 we give a picture of the
eigenfrequency of the numerical calculation and find it is in good agree-
ment with the analytic results of the same problem which we will give in
section III.3. Since the main emphasis of this thesis is in the analytically
solvable case we will not use this form in the further analysis. But as

the problem needs to be analyzed numerically, this form of eigenvalue




problem should be very useful.
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Fig.3.1 The eigenfrquency calculated numerically from solving the eigenequa-
tion (II1.11) for a uniform rotation and Gaussian density profile
with a linear gravity g = g,r/a,and g,/a = 1%, the boundary set
to infinity. The frequency is normalized to the rotation frequency
f1.(a) m=1,(b) m=2. each cross corresponds to a mode (m,n).
Notice good agreement with formula (II1.39) and (III.40).
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IT1.2 The General Stability Properties

In this section we analyze the general stability properties of the rotating
plasma column by using the equation (IIL.9) and the boundary conditions (II1.12).
By the term ”general” we mean that in the analysis we will not specify the equilib-
rium density profile and the rotation frequency () particularly, so the conclusions
drawn from this analysis should be generally applied to the different cases with
specific equilibrium state. We notice that a analysis similar to the analysis for
rotating plasma column also can be carried out for the plasma rotating inside
an annual between two conceﬁtric conducting cylinderical walls with the radius
r1 , ro respectively, a configuration very much like the Couette flow experiment in
hydrodynamics, if the corresponding boundary conditions on inner and outer wall
are imposed. The rotating plasma in SVIPP device corresponds to this configura-
tion. Sihce we are interested in the rotating plasma in the central cell of Tandem

Mirror devices here we only give the analysis of the plasma column.

Multiplying &;,(r), the complex conjugate of function ¢,,(r), to equa-
tion (IIL.10) and integrating over the region r = 0 to r = b,taking the boundary

conditions (III.13) into account, we obtain the quadratic form

Aw?*+Bw+C =0 (I11.16)
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where

b b b
A=(m2-1)/ m, | €m |2dr+/ norsl——dgm |2dr——/ r2£l£-°—|§m |2 dr
0 0 d'f 0 T

d
(I11.17)
b b
— 3 Wi d_fﬁ 2 2 / Wyi 2

B = 2m{/0 rno(ﬂ+2m)| - 2 dr + (m* — 1) 0rno(n+2m)|£ml dr}
(I11.18)

o =mt{ [ nono + ) | 2 2 1) [ 00+ 22 |6 P
=m . nor - I r m . NoT m m T
_/br dno €2 dr} (I11.19)

o gdr .

The equation (II1.16) is-a constraint that -every integrable solution of
equation (II.10) which satisfies the boundary conditions (II1.13) must satisfy.
Solving the equation (II1.16) respect to w we obtain

1
24

w=—(—B =+ (B?—44C)3) (I11.20)
From equation (II1.20) we have the sufficient condition of stability for the system

A=DB?*-4AC >0 (I11.21)

Since the coefficients of quadratic equation (I11.16) A,B,C are integrals of a compli-
cated combination of the equilibrium quantities no(r), #o(r), the unknown radial

perturbation function &,,(r) and their derivatives, this sufficient condition is not
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very convenient to use in the applications. But we still can draw several useful

.conclusions about the stability of the system by close observation of this condition.

It is interesting to note that for the density proﬁle wit

" This property of the integral will help us to analyze the condition (IIL.21).

(1) The m=o0 mode is marginally stable because for m=0 the two
coefficiens B and C =0.

(2) For the pure rotation driven magnetically confined plasma sys-
tem, when the outer boundary is in the finite distance and the
FLR effect éan be neglected , the linear modes with m =1 are
generally unstable.

" The prodf of this statement is as follows. since we neglect the curvature

effect and FLR effect ¢ = 0,w,; = 0, under these conditions

/{o"’ldfl 2% | ¢y [Pyar

B= —2/ rPno0 | == a3 ? dr (111.22)
0 dr
: d¢
cz/rnom] e 2 g,
o dr

From (II1.22) we have

b b
A=4{(/Orno 'd£1 1> d )2_/07,%02"151 |2d/ noraldél |2 dr

b ) b dno
/0 ne| %224 / & [2)dr (I11.23)




By using the schwartz inequality
b b b
( / f(2)g(x)dz)? — / 12(z)ds / ¢*(2)dz < 0 (111.24)
and the fact that for magnetically confined plasma % < 0 we can immeadiatly
see that
A<O
431

for both uniform and nonuniform rotation cases provided that e not disap-
pear everywhere in the plasma region. In the uniform rotation case it is the last
term of (II1.23) destabilizes the system where as in the shear rotation case both
destabilizing terms contribute.

It is noteworthy to mention that several authors [Freidberg and Pearl-
.. stein, 1978] claimed that m=1 flute mode for rotating plasma is marginal stable
based on the argument that this mode is so-called rigid mode, i.e. | % |= 0 ev-
erywhere in the plasma region. We think this statement is dubious. Our argument
is that although in the central region of the plasma column the m=1 mode might
be rigid, due to the boundary condition (III.13) at r=b, the perturbed displace-
ment function & (r) must start to decrease from some place inside plasma in érder
- to get its zero value at r=b. This means that the existence of a condubting wall
requires the m=1 mode being nonrigid. The closer the wall loc:a_,tes the farther

the m=1 mode deviates from the rigid mode. Intuitively, the relation between

the "rigidness” of the m=1 mode and the location of the conducting wall can be
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explained as follows. If the conducting wall is located very far from the plasma
- center, due to the decreasing density profile for confined plasma, the region where
- ‘-i%gl | is noticeable has negligible plasma density, the integral of (II1.24) which
contributes negative value of A caﬁ be neglected and m=1 become marginal stable.
In this situation the rigid mode argument makes sense. But when the conduct-
ing wall locates quite close to the center of the plasma column, the region where
the noticeable | d—%—fﬂ | may penetrate into the main body of plasma where the
plasma density still is high enough to contribute a considerable negative A, in this
case the rigid mode argument is unreasonable. We feel that this understanding
about the rigid mode explains the discrepancy between the marginal stability of
the m=1 rigid mode expectation and the considerable growth ra,te' of the samé
mode calculated numerically by some authors [Chen, 1967]. In the next section
we will discuss this wall effect by solving the eigenvalue equation for a specific
equilibrium profile, which quantitatively supports our argument.

(3) For the pure rotation driven magnetically confined plasma sys-

tem with the FLR effect, if

| wT(T) |>0(r) >0 (I11.25)

everywhere inside the plasma region, the system is stable.
The proof of this statement is straightforward. since for magnetically

d
confined plasma % < 0, from equation (II1.17) A > 0. Substituting condition
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(II1.25) into equation (IIL.19) gives C' < 0. Thus we have A > 0, the system is
stable. Condition (II1.25) was also derived previously by Ffeidberg and Pearlstein
[ 1978 ] for uniform rotation case of the plasma with finite 3. But in our low f
plasma case the condition (III.25) is not limited to the uniform rotation; it also
valid for rotatiqn with shear. In certain sense this condition genelarizes the one
given by Freidberg and Pearlstein.

(4) For rotating plasma without the curvature effect, if the equilib-

o

r

rium density profile can be adjusted to > 0 everywhere in
the plasma then the system is stable.

The proof of this statement is straightforward, set g=o in (III.19) and
substitute (II1.17)-(I11.19) into (II1.20), many terms canceled and A > 0 is ob-
tained which proves this statement.

As we mentioned at the beginning of this subsection the conclusions we
obtained from the energy integral are quite general, they do not depend on specific
equilibrium state of the rotating plasma. But on the other hand they are quali-
tative statements about the stability property of the system, they do not provide
quantitative information such as the mode structure, the oscillation frequency and
the linear growth rate of the unstable modes. To get this information we need to

proceed to solve the eigenvalue problem given in section III.1. This is the task of

. the next two sections.
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IT1.3 An Analytic Solution of The Eigenvalue Problem For The Uniform

Rotating Plasma

In this section we analyze the linear instability of an uniformly rotating,
inhomogeneous plasma with a Gaussian density profile. To model the magnetic
field line curvature effect we also suppose a gravity which is linear function of r.
To study the wall effect on stability of the system, we assume there is a2 conducting
wall located at finite distance from the center of the plasma. The nice point of this
model case is that we can get the analytical solution of the eigenvalue problem
(IT1.9) with the boundary condition (II.12). Through analyzing this model case of
rotating plasma, we can get all the quantitative information about the stability of
the rotating column and clearly reveal the role played by different physical effects
on the stability of the system. Since we supposed the rotation of the plasma is
uniform, the instability is of Rayleigh-Taylor type. Accordingly the solution of this
model will show the basic feature of the instability of this type. Quite interestingly,
since we take the eflective gravity into account, the dispersion relation provides a
possibility to discuss the difference between the pure gravity driven instability and
the pure rotation driven instab.ility of the plasma column in a unified formalism.
We should mention that the similar model has been analyzed by various people

previously. Rosenbluth et al [1962], Berge [1966] has discussed the pure rotation

‘driven case with infinite boundary, Rognlien [1973] studied the finite wall effect
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without taking account of the field line curvature term. Here we show that when
we take the corresponding limit, all the previous results are recovered.

We take the following equilibrium profiles of the plasma column

bo(r) = @, + B;czo r? (I11.26)
9o
g(r) =="r

as shown in Fig. 3.2, where n,,a,{1,,g, are constants giving the plasma density
at the center, the‘perpendicular dimension scale of the plasma, The equilibrium
electric potential at the plasma center, plasma rotation frequency and the effective
gravity constant, respectively.

- Substituting (II1.26) into equation (II1.9) one obtains

d?*6¢m, 1 2r dbédm, 2 a’m?
a tG @) Tl T g ) =0 (e

where

_0(2mA + wi) + mP(w? + go/a

= 1171.28
g 56 — we) ( )
With the substitution z = \/52 equation (II1.28) transforms to
d*6¢m, 1 déo,, m? :
) %%m _ M\, = 29
127 + (:c z) 12 + (v - )6 0 | (111.29)




Fig.3.2 The equilibrium density and electrostatic potential in section
m.3
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Furthermore with the transform
bdm(z)=eTz™

one finds that y(x) satisfies the equation

d?y 22 (m+1/2)(m—1/2)
Fr 22

ly=0 (I11.30)

We recognize the analogy between equation (III.30) and the standard
form of radial equation of the quantum spherical harmonic oscillator [Fliigge,

1974)

A sy,
dr?

+ (k2 — A%2 = i(t+1) Ix, =0 (I11.31)

r2

where the potential V (r) = Ar2. This analogy gives a qualitative picture of function

I(0+1)

r2

y(x). Like the particle is repulsed by the centrifugal force from the origin,
the larger the equivalent angular quantum number /=m-1/2 in equation (III.30) is,
the farther the peak of y(x) is located from the origin. However, we should notice
that the analogy between our eigenvalue problem and the one of quantum oscillator
is only a formal one. The difference of these two problem rests in two aspects. (i)
The equivalent angular quantum number in (II1.30) is half integers instead of the

integers in the oscillator problem. (ii) The outer boundary conditions are different

for both problems; for equation (I11.30) it is
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but for the oscillator problem the outer boundary condition is set as

X1 (r)|r=oo =0

Due to these differences we cannot directly use the results already obtained in the
well known oscillator problem. But this analogy suggests to us to solve our eigen-
value problem by the similar way of solving the oscillator problem . Completing all
the steps necessary for solving the oscillator problem, we find that the solutions
of equation (II1.30) with boundary conditions (III.12} can be expressed by the

2
. . T . .
Wittaker function W 4(—) or the confluent hypergeometric function ; Fy(a, b; 2)
a

as
— 2
E¢m(r) = Amr™ Fy (T > Y om+1;5) (IT1.32)
A v
with the eigenvalue vy, ,(b/a) determined by
P (T mt 1;(3)2) =0 (I11.33)

where A,, is an arbitrary constant, the confluent hypergeometric function is de-

fined by
= z"
F b; _n_
1F1(a, Z gb !
an=ala+1)...(a+n—-1)

In Fig 3.3 we give the first three low m perturbation functions é¢, o(r) for bound-

~ ary distance b/a=3.




Fig.3.3 The radial eigenfunction §¢,(r). (a) For (1,0), (2.0), and (3,0)
modes with b/a=3. (b) For (1,0), (1,1}, and (1,2) modes with
b/a=2.5. '
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From the pictures we see that the higher azimuthal mode number is the
farther the peak of the function is removed from the origin, as we predicted by
the analogy between our equation and the quantum spherical oscillator. From the
theory on zeros of the confluent hypergeometric function [Buchholz, 1969] we can

€Xpress Vy, (b/a) as
Vmn(b/a) =2n 4+ m+ frm o(b/a) (I11.34)

where n is zero and positive integers which determine the node numbers of function
6¢m(r) in the region between the origin and the boundary, and f, n(b/a) is a
monotonous decreasing function of b/a which approaches zero as b/a tends infinity.
Although the hypergeometric function is a well studied function the practically
useful references about zeros of this function are hardly available. In Fig. 3.4
we give several graphs for function v,, », numerically calculated from the equation
(I11.33) for our use.

. Inserting the different values of vy, , determined by (II1.34) into equa-
tion (III.28) one obtains the dispersion relation corresponding to the perturbation
function 6@, n(r), here we explicitly put the radial mode number n as a sub-
script to denote the fact that eéch azimuthal mode number m corresponds many

eigenfuctions distinguished by the number of their radial nodes.
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b/a
Fig.3.4 The eigenvalue Vm,n(b/a)

calculated from Eq. (111.33) for low m
modes.
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AG?+ Bo+C =0 (171.35)
where
A= Vm,n
B =2m0 + w.i(1 — vy n) (111.36)

C = m?(0? + go/a)
Solving (II1.35) respect to & one obtains

W= -

{20+ wi(1 = vn,n) F {20 + woi(1 = 1m0
2umon

— 4, om3(Q% + g, /a)} 2 } (111.37)
which gives the Doppler shifted complex frequency for the normal mode (m,n) in
the rotating frame. By using the relation

w=w-—mf

the complex frequency of the mode (m,n) in the laboratory is given by

(Vmpn = 1)(Q + 52)2

w=m(Q+w./2m)(1 -

{121

m,n
(111.38)

Writing the real part and the imaginary part of complex w separately we have the

oscillation frequency and the growth rate for the mode (m,n)

) =m0+ 21 111.39
w, m( + Zm)( Vm’n) ( )
2
men) = Wriy2 Wi goyi
AT Vinon {(vm,n 1)[(0 + 2m) - I/m,n(4m2 )] + Vm,n ~ }2(111.40)
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The graphs of the oscillation frequency and growth rate versus rotation
frequency with fixed g and T;/Te for several low m modes and the growth rate‘
versus mode number m for other parameters fixed are given in Figs. 3.5-3.8.
This exact solution of the rotational plasma’ stability eigenvalue problem gives a
good opportunity to study the mechanism of the instability caused by the plasma
rotation in presence of the effects of the magnetic field line curvature and the
the FLR, and to determine the stability boundary depending on various effects.
Also the analytic expression of the dispersion relation which explicitly related to
.the boundary depending eigenvalue v,, , enables us to investigate the wall effect

analytically.




Fig.3.5 The growth rate for (1,0)

mode., where ﬁ,g are dimensionless
value of  and go/a, the frequency unit is psce/a®. Other pa-
Tameters are b/a=3, T;/T, = 1.
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5.0

Fig.3.6 The growth rate for (2.0) mode, the parameter is the same as
Fig.3.5.
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Fig.3.7 The growth rate for (5,0) mode, here T;/T, = 77,b/a = 3.
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Fig.3.8 The ;'eal frequencies and the growth rates for different (m,0)
modes, where ) = —4,T;/T. = 1,b/a = 3,§ = —1. Note the
FLR stabilizing effect for large m modes.
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II1.3.A. The mechanism of the instability and the stability boundary

- Obviously from equation (II1.40) we can see that the stability property of
the system for the normal mode (m,n) perturbation is determined by the quantities
Q,9/a,w.i, and vy, » which represent the rotation, the curvature, the FLR effect,
and the boundary effect respectively. To investigate these effects more closely, let

us study the determinant of the quadratic dispersion relation (II1.34)

A = B? — 4AC
= —{4m®yn (02 + L) — 2mO + wi(1 = vim,n))?) (111.41)
. 2
- 2 . Wiiyo W Vm,n9o
= —am*{(Umn — D[+ 222 =y 2] D00} (117.42)

By observation of the equation (II1.41) and (II1.42) we can draw following
conclusions. |
(1). The centrifugal force destabilization. Formally,the first term of equation
(111.41) is the driven term of the instability. Recognizing that the first
part of this term comes from the centrifugal force drift and the second
part from the gravity drift, we can see that the role played by the gravity
depends on its sign. If ¢ < O (the good curvature), it always stabilizes
the system; ifg > 0 (the bad curvature), it always destabilizes the system.

Since 22 > 0, independent of the rotation direction of the plasma, hence -

the centrifugal force due to the rotation play the same role as the bad
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curvature, it always destabilizes the system.

. The role of the Coriolis force. The second term of (II1.41) is a stabilizing

term which comes from the Coriolis force drift and the FLR. Since this
term combines both effects together and plays the role of stabilization,
the Coriolis force plays a subtle role in the process. The Coriolis cilarge
separation enhances the FLR stabilizing effect or reduces it depending
on the direction bf plasma rotation. When the plasma rotates in the
direction of the electron diamagnetic direction (2 > 0, corresponding to
the inward equilibriuin electric field case), the Coriqlis term adds with
the FLR term; when the plasma rotates in the ion diamagnetic drift
direction (f2 < 0, corresponding to the usual outward equilibrium electric
field in the confinement devices), the Coriolis term and the FLR terms
cancel each other and the stabilizing effect reduced. This implies that
the plasma rotates in positive ¢ direction is more stable than it rotates

oppositely with the same rotation rates.

The stabilization of FLR is not absolute. From the same argument
about the second terrh of (III.41), we can easily find that, unlike the
MHD interchange instability driven by unfavorable curvature only, there
is not the absolute FLR stabilizing effect for the instability of rotating

plaSma. Because when there is no rotation in the plasma the equation
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(II1.41) reduce to
A= —{4m?v, ng/a — wE(Vmn — 1)},

the only term showing effects to reduce or suppress the instability caused

- by the bad curvature is the FLR term, in this sense we may call this FLR

stabilizing effect absolute. But in the case of the rotating plasma,' the
stabilizing effect is shown by the whole term of [2m + w.i(1 — vm,n)]?,
when 1 < 0, but 2m |  |> w«(1 — Uy p) it is the Coriolis force part
which contributes the main stabilizing effect and the FLR tries to reduce

it.

. The stability: boundary and the most stable case. = As we mentioned

above, the instability of the rotating plasma is the result of the compe-
tition between several effects. whether the plasma is stable or unstable
depends on what region of the relevant parameters its equilibrium state

lie in. From equation (I11.42), set A = 0 we have

Wi W2 Go
= — F Uma(—5 — III.
f 2m {V ’ (4m2 (um,n—l)a)} (T71.44)

From (II1.44) setting b/a and either one of 90 and glmz fixed we can get
: T

the stability boundary for rotation versus gravity and rotation versus

FLR effect respectively. these are drawn in Fig.3.9-3.10 for several low

* m modes. From equation (III.42) we can immediatly see that for given
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"
9o and ==* the most stable state of rotation is when
a 2m
w .
Q *17 — 0
M 2m
because this condition gives the minimum of | A | . Also we want to

mention that if there is no FLR effect and gravity term,then from (I11.42)
the rotating plasma is unstable for any normal mode (m,n) no matter how
slow and in which direction the plasma rotates, only after the FLR effect
and the good curvature effect joining the process there is possibility of

existence of the stability window or stability boundary.

Ti/Te=1'

1

0. 2. 4,

0

Fig.3.9 The stability boundary in {3 = = — § plane for modes (1,0), (2,0}
and (3,0). Below the boundary curve is the stable region, above
the boundary curve is unstable region. Other parameters are
T;/T. = 1, bja=3. Notice the boundary curve are not symmetric
about {1=0, positive rotation state is more stable. the unit of
frequency is the same as previous Figs.
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600.

‘ Fig.3.10 The stability boundary in T;/T. — — — f plane where § fixed and
b/a=3 for (1,0) mode and (2,0) mode. Compare two figures can
see m=1 mode is hard been FRL stabilized when 2 < 0. The
curve of the boundary for good curvature case in the negative {

region shows the competetion between Coriolis force stabilizing
effect and FLR effect.
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II1.3.B. The wall effect

The conducting wal] boundary effect nontrivially enters into the stability
aqa]ysis of the rotating plasma as we can see from the terms related with vy, ,, in
the equations (II1.35)-(III .42) énd influences the values of the oscillation frequency
and growth rate of different modes. Since it winds up with the FLR term and the

m,n)

centrifugal-gravity term in the expressions of 'y( and there is no explicit

analytical expression of Vm,n(g) or fm,n(-(b;) available, the analytic analysis of
the wall effect seems impossible. However by knowing that v,, , = 2n + m +
fm.n(g) and fm,n(-g) is a monotonous decreasing function of —Z— we are able to
figure out how the growth rate 7("””) is changing when the boundary is moving

from the infinity towards the plasma. Suppose we fix all other parameters and

change the boundary distance from the plasma center, then from equation (II1.40)

d,.),(m,n) B de,n d,.),m,n
d(bja)  (b/a) dvm.n

m? AV Wsq
= o0 +
gnylmm) s d(b/’a){ (24 2m

2
W,

; go-
2m?2 +2 a I}
(I11.45)

Wy

2m

)? = V(4 )%+
If we suppose g, > O then for the mode (m,n) with m > 2,n > 0 the equation gives
positive value, it means that for those modes the growth rates is a monotonous
increasing function of the boundary distance. That implies that when the bound-
ary moves towards the plasma it stabilizes the system. The only exception is the

(1,0) mode. Since v3,0 =1+ f1,0(b/a) > 1, until the boundary reach the location




where
. _‘*ﬁL + do
vio=2[1- 22 (111.46)

the expression (II1.43) gives negative value, which means when the boundary moves
towards the plasma until reaching the characteristic point determined by equation
(111.46) it destabilizes the system. After pass this point it stabilizes. At this points
the growth rate of (1,0) mode takes its maximum value. In Fig. 3.11 we give the
graphs of the growth rates v(™™ for modes (1, 0), (2, 0) and (3, 0) versus %
From it the peculiar wall effect on the (1,0) mode can seen clearly. As the wall

comes from infinity to the plasma, instead stabilizing this mode as it did for other

b
modes, it destabilizes the (1,0) mode until — reaches the value of about 1.8.
a
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The limiting cases

As we mentioned in the beginning of this section that in the correspond-

ing limits, our results will reduce to the results obtained by others. Here are three

interesting limiting cases.

b .
(1) If we set 1 =0, — = oco. Then the eigenvalue vy, , = 2n + m. Instituting
a

these ekpressions into the dispersion relation (II1.33) the results given by
Mikhailovskii [1977] are recovered.

Substitute ¢ = 0, g = oo hence Vm ., = 2n + m into the dispersion
relation (II1.33) then calculate the frequency and the growth rate for
mode (m,n), we find all the results given by Rosenbluth et al [ 1962] and
Berge [1966], In these limiting case, since v; o = 1, (1,0) mode become
marginal stable. |

If we set g=0 in our equat.ion, and keep b/a finite then results given by

Rognlin are recovered.
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II1.4 The Instability Due To The Shear of The Rotation Frequency

Different from the analysis in the previous section where the instability
.of the plasma is driven by centrifugal force and the bad curvature, in this section
we study the the instability driven by the shear of the plasma rotation frequency
which resembles the Kelvin-Helmholtz instability in the shear flow of the ordinary
hydrodynamics. As the equation (III.9) shows, the sheared rotation brings into
the linear stability equations several more terms than the uniform rotation case
hence it makes the the problem more difficult to solve analytically. In general,
the numerical methods need to be emploved. For the purpose of revealing the
basic features of shear rotation caused instability in an analytic way, we have to
simplify the equilibrium profiles. Similar to the analytic treatment of sheared
flow instability for a vortex sheet [Drazin and Reid 1981], we limit our model
to three limiting cases (see Fig. 3.12), where the first two cases corresponding
to the situations for which the plasma rotation frequency experiences an abrupt
change in a very narrow layer, but the density either keeps constant or also changes
abruptly over this layer; the third case allows finite width of the the rotation shear
but keeps density profile constant. Unlike the treatment for plane parallel sheared

flow case, in our analysis the cylinder geometry is kept.
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II1.4.A The constant density and abrupt sheared rotation case

As the simplest model we suppose the equilibrium density of the plasma
is a constant no(r) = N and the rotation frequency has a abrupt change over a
narrow layer around some position 7, between the plasma center and the boundary

Ty, 1.€.

I RT (0<r< Ts);
a(r) = { 0, (rs<r<rp.)

as shown in Fig.3.12 (A). Substitute this equilibrium profile into equation (111.10),

for both regions ry > r > 1 and 0 <7 < Ts, the equation is

d*€,, 3dé&m 1- m? .
SR -+ . =0. II1.47
dr? r dr r2 : (111.47)
Readily we obtain the solutions

¢() = Arm? (0<r<re),

(I111.48)
553) — Br—(mF) L o™t (o <1 < 1)

From the boundary condition at 7 =74 and the continuity condition of displace-

ment &y at Ts

®

D (r)jr, = €2 (i, (111.49)
the coefficients A, B, C are determined as
A/B = —rb-zm,

(I111.50)
C/B = rm— rb—zm.
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Integrating equation (II1.10) over the narrow layer rg —€ > 17 2 e T €
then taking the limite — 0, and using the relations (IIL.50) we have the dispersion

relation
(m - 1)(w—mﬂ1)2+(m+1)(1+5)(w—-mﬂz)2 =0 (I11.51)

where

_ (7'8/7'6)2m
6= 1-— (rs/rb)Zm

is a factor showing the outer boundary effect in the dispersion relation, when the
outer boundary tends to co,6 = 0.

Solve equation (II1.51) respect to w we have
_ (m =10+ (m+ 1)(1+ 6)02

“r 2(1+ ZE6) '

2 . (II1.52)
/P -1)([146) (92— |
b 2(1+ o)

The equation (I11.52) clearly shows that the rotation with an abrupt
shear drive the plasma éystem unstable. Except for m=1 mode, all the modes are
unstable with the growth rate proportional to the strength of the rotation shear
| Qs — Q1 | . The feature of this kind of the instability is very different from that
driven by cenrifugal force which closely depends on the density gradient. Equation
(111.52) also shows that the finite boundary effect on the instability through the

V146
factor i———i—- when r, — oo this factor becomes 1, and we have

+2Es
Ymi—1
_EE___lQZ_Ql‘

2m

wy = %[(m S+ (m+ 1)) s Y = (111.53)
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Horton and Liu 1984]. The growth rate increases monotonically with m but
is limited by the validity of the sharp jumi) of scale Ar, at r, by m/r, < 1/Ar,.
The FLR limit on m is given in the next subsection.

Compare (II1.53) with the hydrodynamic results for two horizonal parallel
infinite streams of different velocities U;,U, separated by a vortex sheet in a

homogeneous inviscid fluid
k k
w=§(U1+U2)iZ§(U1—U2) (III42)

where k is the wave number[{Drazin and Reid 1981], we see that the rotation
shear caused plasma instability has similarity with the one caused in inviscid fluid

" by the sheared flow with k — m/re and U — 101

II1.4.B The case when both the density and the rotation frequency

have abrupt change

Although the results given in subsection II1.4.A reveals the basic features
of the instability driven by the shear rotation, the model is too idealized for some
physical problems.

We consider the following model profiles which includes the density vari-

ation along with the variation of rotation frequency of the plasma.

_fni, (0<r<ry)
n(r)—{nz. (ro < 7<) (I11.55)
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N, (0<r<r,

Or) = { Q. (re<r<my) (III.SQ)

as shown in Fig. 3.12 (B).

Completing the similar procedure as in the previous subsection, we obtain

the dispersion relation
(1+26ar)w? —2[(m+1)ase+ (m—1)a; 05 + (m® - 1)k(es — 1) +2mbaz 2w

+m(m+1)azﬂ§+m(m—l)alﬂ§+2m26azﬂ§+m(m2 -1)k(Q14+Q2)(az—0;1) =0

(I11.57)
where
n, N9
@ = 3 Qz = )
ny -+ no ny + ng
o (re/rs)®™ _ piWe

- 1— (rs/rp)2™’ = 27,

The parameter 6, as in equation (IIL.52), enters the analysis to represent the
influence of the outer boundary. At once we can see that, since :—: < 1, this wall
effect can.be considerable for low m modes provided the shear layer is not too close
to the center of the plasma, but for high m modes it has very small influence, i.e.
the higher modes hardly notice the wall. The parameter k represent FLR effect
and it is decreasing with the increase of the distance of the shear layer from the

plasma center.

Solve the dispersion relation (III.57), one obtains

w, [(m+1) Qs+ (m—1)af; +(m?2—1)k{as — a1) +2mbéN,) (I11.58)

T 1+ 260,
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1

T 1+ 260z {—[(m'*' DaxQs + (m—1)a1Q; + (m? — 1)k(ez — o) + 2mbaz,)?

Tm

+(1426az)m[(m+1) a2+ (m—1) ey Q§+2m26azﬂ§+(m2—l)n(91+ﬂz)(ag—al)]}

(I11.59)

Fig.2.12 The real frequencies and growth rates for different m mode cal-
culated from Egs.(I11.58-59). The corresponding parameters are
a; = 2/3,a2 =1/3,0) = =4,0; = 1,7,/ = 1/3,8 = 0,1,2,
respectively. Notice the FLR stablizing effect for large m modes.

W=
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In Fig. 3.13 we give the graphs of the real frequency and the growth rate
versus mode nurhbers for a set of typical parameters.

To see the mechanism of the instability we discuss the sufficient condition
for instability

v > 0.

explicitly it gives
erop|(m+1)0; — (m =102+ (m ~ 1) 0% — (m+ 1) 02

+2mblajos(m — 1)(0; — 02)° + az(a; — @2)03] > &(m? — 1) (@2 — a1)?x
CRUECAYY +2mé ar
a1 — Q2 Q) —.Q2

(21— ). (111.60)

X[lﬁ(ﬂl'z*—'l)ﬁ'm(ﬂg—ﬂ])';—z

The inequality (II1.60) looks messy but the physics meaning of it is quite clear.
The first term in the left hand side represents the Kelvin-Helmholtz excitation ofK
the instability. This term is always destabilizing and it is essentially proportional
to the shear of the equilibrium rotation. The second and the third terms in the
left hand side represent the net centrifugal force excitation acting on the layer

from both sides of it, in fact, it is the integrated form of the centrifugal force
dno(r)

term in equation (II1.9) which is proportional to 02
r

. A Rayleigh-Taylor
type instability would be excited if the inner region is more dense or it rotates
faster than the outer region. The fourth term in the left hand side represents the

finite outer boundary effect on the instability, for this model this term is positive,
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it destabilizes the system. Since m=1 mode is stable in this model problem, so
the finite outer bou.n.dary plays the same role as it does in the Rayleigh-Taylor
type instability discussed in Section II1.3. The right hand side which is propor-
tional to k is the stabilizing term; it represents the FLR effect modified by other
parameters. From the dependence of this term on mode number m we see that
the FLR stabilizing effect will dominate for the higher m modes, the graphs in Fig
3.13 shows this tendency.

Compare the results given in this subsection and the results in last sub-
section, we see that the jump of the density profile brings more physics into the
problem; the most important effects it brings is that the instability in this section
is no longer pure Kelvin-Helmholtz type instability, but is a mixture of two types
oAf instabilities. Remember that the Rayleigh-Taylor type instability is closely
connected with density gradient and the finite density jump over a very narrow
layer is a limiting form of the existence of density gradient, this mixture seems
understandable. One word needs to be added, when a; = as, the results in this

subsection reduces automatically to the results of the last subsection.
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I11.4.C The problem of constant density profile with finite width layer
of the rotation frequency variation

In the last two subsections we treated the two simplest cases of the
sheared rotation instability problem and found that the instability caused by the
sheared rotation plasma has remarkable similarity with the instability of inviscid
parallel shear flow. To study this analogy deeper, in this subsectipn we show that
under certain conditions our linear stability equation is mathematically equiva-
lent to the linear instability equation of the shear flow in inviscid fluid, hence the
method and the existing‘ results of the latter can be applied to the plasma prob-
lem too. Suppose the plasma is homogeneous, n, = ﬁo = constant and through a

finite width layer the rotation frequency has a continuous variation such as

0, (O0<r<rs—A4A)
Qr) =1 f(r), (re—A<r<rs+4) (I11.61)
Ny, (re+AD<T) :
as shown by Fig. 3.12 (C), where 2A is the width of the layer, it is finite compare

with the wave length of the perturbation but we suppose that

A
— < 1. (I111.62).
TS

Since wy; = 0 everywhere, the equation (II1.9) reduces to

V2 6¢m =0 (I11.63)

outside of the layer, i.e. when0<r <r,— A, or r >r;+ A. and
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2 (0(0)
2 drlrdr
Vibom o mal)

b¢m =0 (I11.64)

inside the layer, ie. forr. — A <r < r.+ A.
By using the narrowness condition of the layer (II1.62) we can further

reduce the equation (II1.64) to

d%6¢, 9 sz/da:2
where
m . d d
k= g V =rQ(r)=rf(r), and prialien

Equation (I11.65) is exactly the same equation as the equation for the
perturbation of plane-parallel flow of a perfect fluid [Lin 1966]. In hydrodynamics
the equation (II1.65) was studied thoroughly and two theorems of the necessary
condition of instability for the flow satisfying this equation with the boundary

conditions

66m(r)rmrr— = 6m(T)rmrsa = 0

were formulated as the Rayleigh’s inflection-point theorem and the Fjortoft’s the-
orem [Drazin and Reid 1981 pp.133|.

Although

6¢m(r) =0 for r<rs—A,andr>r.+A
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satisfied the equation (II1.63) hence the above mentioned theorems can be applied
to our problem, for solving our eigenvalue équation their help is limited. But
the mathematical identity of the sheared rotation problem with the well-studied
hydrodynamic problem gives us great opportunity to use the existing results. If

we take
0,+n0 0, — 0,1
1 2 2 ()

2 g (T

V(r) =rf(r)

and consider the boundary conditions at r=0 and r — oo for equation (II1.63), our
problem is equivalent to a special case of the unbounded shear flow problem solved
by Chanderaskhar [1962]. From his solution we can readily get the dispersion

relation

1 _ 1 —
w4—ﬁ(21/2—21/+1—e 2”)w2+;§[1—e —-vP*=0 (111.66)

2mA
where v = 2mA /r. Solve (II1.66) respect to w we find for m > 1.2785 the mode

Ts
is stable, otherwise it is unstable. In Fig.3.14 we give a graph of the perturbed

A _ 0+ 0
me2 0.64 observed in the rotating frame with (0 = b B

E x B flow with
Ts 2




PERTURBED E x B FLOW
IN SHEARED LAYER
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Fig.3.14 The perturbed E x B flow seen from the frame rotating with
N=(0+0z)/2atr,.




H;ghly piled, is the firewood stable?




Chapter IV
TRAPPED PARTICLE MODE WITH PASSING ELECTRONS
AND ROTATION SHEAR IN THE CENTRAL CELL

OF TANDEM MIRROR

Introduction

In this chapter we present an application of the linear stability analysis for-

the rotating plasma-the rotation driven trapped particle mode in the central cell
of the Tandem Mirror devices.

The low frequency fluctuations with low azimuthal mode numbers and rotat-
ing in the ion diamagnetic direction with speeds near the equilibrium E x B drift
velocity are observed in numerous tandem mirror expei‘imenfs and have attracted
considerable attention. In reference [Horton and Liu, 1984] Horton and Liu sug-
gest the possibility that the low m rotation driven drift modes may be responsible
for the fluctuations. The conventional FLR-MHD, rigid rotor modes studied by
Freidberg and D’Ipollito [Freidberg And D’Ipollito, 1983] for the axisymmetric
tandem mirror are stable at the low plasma pressure in the experiments where the
modes are observed. The flute-like drift modes called trapped particle modes by
Rosenbluth [ Rosenbluth, 1982] and Berk et al [Berk et al, 1983| are driven
unstable by the plasma pressure gradient acting across the unfavorable curved

magnetic field at the ends of the central cell, and also are another candidate for

89
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the observed low m oscillations.

In this chapter we extend the rotationally driven drift model of Horton and
Liu to include the effects of the passing electron population and the effect of
differential rotation in the equilibrium. The drift modes have frequencies greater
than the ion transit frequency and less than the electron transit frequency over the
length of the central cell. To keep the analysis simple, we use the hydrodynamic
description of the system, i.e. we use the FLR ion fluid equation for ion and two
component electron fluid equations for trapped and passing electrons respectively.

The stability analysis is carried out first for the uniformly or rigidly rotating
plasma which permits the exact solution and second by using a shooﬁing method
eigenvalue code to determine the modes of general radial profiles with different
rotation.

The eigenvalue analysis allows consideration of profiles which have free energyv
from both radial density gradients and sheared rotation. Our numerical results on
a sheared rotation profile shows, contrary to a simple free energy argument, that
a mildly sheared rotation flow can be a stabilizing effect. The stab'ility may arise
from the fact that the interchange of plasma pressure from the inner high pressure
region to the outer low pressure region is inhibited by the differential rotation. The
free energy in the sheared rotation is released by a different kind of interchange
mode working on the radial mixing of the angular momentum gradient rather than

the pressure gradient. Since the dynamics represented by the eigenfuctions of the
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pressure gradient modes and of the sheared flow modes are rather different, there
are more stable plasma configurations with both monotonically decréasing density
and rotation rate profiles.

In Section IV.1 we derive the linear stability equation by a way similar to
what we did in Chapter II and III, but modified by including the contribution of
the passing electrons. In Secfion IV.2 we investigate the stability of uniformly
rotating plasma with a Gaussian density profile and a linear gravity. It turns out
that we can find an analytic solution of the stability equation, hence we are able to
present the analytic formulas for the threshold and cutoff passing electron ratio as
a function of rotation frequency, effective gravity, the relative wall distance, and
the ion-to-electron temperature ratio. In Section IV.3 we present the numerical
study of stability with the shooting code which reproduces the analytic results and
shows the stabilizing effect of mildly sheared rotational profiles. In Section IV.4

we present the summary and conclusions.
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Fig.4.1 Axial variation of magnetic field, ambipolar potential ®,and ExB
rotation frequency 2 about midplane of a model tandem mirror con-
figuration.
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VI.1 Derivation of Trapped Particle Mode Equation From Hydrody-

namic Equations

In this section we derive the equation of trapped particle mode from the hy-
drodynamic equations with the finite ion gyroradius stress tensor in the ion fluid
and a two-component electron fluid consisting of trapped and passing components
in a cylinder model of the axisymmetric tandem mirror. The two-component elec-
tron fluid model has been used for trapped particle modes by Rosenbluth [Rosen-
bluth, 1982]. The analysis shows that this hydrodynamic description gives a good
simplified description of the modes compared with that given by the Vlasov de-
scription recently presented by Kesner and Lane | Kesner and Lane, 1985]. The
hydrodynamic description given here is valid for modes with frequencies greater
than the ion-transit frequency and less than the electron-transit frequency. We

restrict consideration here to the electrostatic approximation.

To derive the linear stability equation, we use an equilibrium model of three
cells tandem mirror system. The axial variation of electromagnetic field, equilib-
rium electrostatic potential and the E » B rotation frequency is shown in Fig.4.1.
This model simple tandem mirror system is composed of three parts. A rela-
tively long central cell of length L., with the pl;sma having uniform or nonuniforn
rotational frequency there depending on the radial variation of the electrostatic

potential. This region has an unfavorable field line curvature. At each end of
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the central region are magnetic or electrostatic plugs which are charachterized by
gobd curvature, which we referred to simply as plugs. this region can in practice
be quite complex being made up of quadrupole coil sets, choke coils and coils for
thermal barriers. However, for our theoretical model, we will avoid these complex-
ities and consider the plug regions as axisymmetric single mirrors that are nearly
square well in shape as shown in Fig.4.1. Besides having a favorable curvature,
these cell have positive electrostatic potential with respect to the central cell and
the plasma there has different rotation frequency than the plasma in the central
cell (see the dashed line in Fig.4.1), and this axial shear of rotation frequency
can be another source of instability [Lee and Catto, 1981;Byers and Cohen,
1985:Berk and Lane, 1985!. But for simplicity of mathematical treatment, here
we suppose the potentials are the same in plugs and in the central cell (see solid '
line in Fig.4.1).

IV.1.A 1Ilon hydrodynamic equations

As we mentioned ealier that we treat the ion filuid with account of the FLR
effect, i.e. we take the FLR ordering. By the same procedure as we presented in
Chapter I1, we obtain the ion fluid continuity equation up to order €® by iteration

as

V{riaVé+ g, V4

on; c C
L

5 T gl - weiB
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cT;

I e_Bt ;,V(ﬁ}——'[n,, ]—0. (IV.].)
where all the notations have the same definitions as in Chapter 1.

Completing the linearization procedure as in Chapter III for normal modes,

we have the linearized equation of (IV.1) for the fluctuation component with az-

imuthal mode number m as

. cm On,
—i(3)8nim — i 5 "0 o -+ V- {6(n: V)P =0 (IV.2)

where

2 .- C . , .
V{5V = i { V- no(® = wi) VEdm] + = — 2 00m

dQl d md.ld, ...
M 06 m +~ ——=—r in,00m
m— dr(n Om) . dr"rd.r(r N)in.bo

cT;md 1dn, : Bm . 2 4 (1V.3)

eB r dr'r dr cr

Tim d 1d , T; dQ1d 1 1
= () ibnim = — 1o (S6nm)

er drirr

IV.1.B The electron fluid equations
Following Rosenbluth [Rosenbluth, 1982] we describe the electron fluid by
n = n! + n?, where n! is the density of electrons trapped in the central cell and

nP is the density of electrons passing through the central cell to the plugs or end

cells.
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Neglecting the collisionall mixing between the two electron components we

have
OntrP
ot

+ V- (n V)PP =0 (IV.4)

The trapped electron componentE x B drifts with the local potential of the central

cell, hence

t
;cng. _cTe. :
(neVe)' = =t2 x V¢ eBszne_ (IV.5)

and the passing component E x B drifts with an average potential obtained from
averaging the electrostatic potential ¢ over the central cell plasma (where the char-
acteristic parameters are L.-the central cell length,B.- the magnetic field strength
in the central cell and n.-the density of corresponding component in the central
cell) and the plug plasma (where the corresponding parameters are L,.B,, 7).
The precise definition and the calculation of the.electron a.vera.ging-operator. re-
quires the use of kinetic equations. Here we follow Rosenbluth {Rosenbluth ,

1982] by taking the simple approximation that

A - 1 ds L ¢, | 8%
p— >= —— Y ——— V.G
Lo=<o> <r/v|!¢cs> Lc+Lp ( )

In Ref./Horton and Liu, 1984] a similar approximation is made by introducing
the constant eigenvalue A of the bounce-averaging operator L, however, no attempt
is made to evaluate X in terms of the central cell and plug parameters there.

In addition to the convective change in the trapped electron density given by

me dnP.. -
—2845¢. V.7
rwoB dr ¢ 4 )

P— _
onk =




there is an adiabatic change arising from the rapid transit motion given by

nb.e(b¢ — 69)
T (IV.8)

én®, =
efl

as well known from kinetic theory, when we give the equations (IV.7-8) the as-
sumption of no axial dependence for the equilibrium electrostatic potential is used.

The total passing electron density fluctuation is

—6d P
p (68 —64) mc dnoe&5 (IV.9)

6nf =
e =TT, rGB dr

and the trapped electron density fluctuation is

: me dnt.
6ni = ——— %450,
rwB dr

(IV.10)

IV.1.C The Radial Eigenvalue Equation
For low frequency drift modes the electrostatic potential is governéd by the

condition of quasineutrality

n; = nt + n? ~ (IV.11)
Evaluating the fluctuating part of equation (IV.11) with equations (IV.2) and
(IV.9-10) yields

_me dno5, Y 6(n Vi) . me dn’éeéqS me dn?
rwB dr 07 o =~ TI0B dr roB dr

e enge Z
66+ 2% (69 = 89)

(IV.12)
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Using n! = n!, + n?, and equation (IV.3) for the term V - §(n;V)i)¥) yields the

radial mode equation

oV [0(® — w2 VEG ] + M= = [no(1 - Z2)66,0]
m?(0% +g/r) m?cT; d ,d0, ldn,, m d 1d

+[(2mQ + r’())

__no.__.

@Berzdr(r E))(r dr) r dr(za(

P P -
mednoe | Mo (§gm— < 66m >) = 0.  (IV.13)

1d
+7 g nowlbon | - CE+

Equation (IV.13) includes a term of the average of the fluctuating poténtial
with mode number m, < 6¢,, >, which we need to model in order to make the
equation mathematically tractable. For modes that are essentially flute-like in the
central cell with the fluctuating potential dropping to a small value in the plug

the bounce average can be approXiinated quite well as

. N , L. . -
LGy, =< 60y >= NG, = I — I, b@m. (IV.14)
which gives
L, '
1-As I <1, IV.15
L.+ Ly ( )

For strong mirror ratio R = B, /B, at the ends of the central cell, assuming
essentially mirror confinement for the bulk of the electrons, then the density of

the passing electrons is small with

nP 1

. B
ot~ -~ 2%, IV.16
nee 2(R+1) B, ( )
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Taking estimates (IV.14-16) into account, the term representing the charge

separation from the passing electrons in equation (IV.13) may be written as

T e e ) (S < 66m >) = T2 (Z22) (2 )( = w20)66m

(rB dr T. Te noe’ Lc+ Ly
(IV.17)
where we assume that
= _mcT, dinnf,
wee = WE, =~ (——2). (IV.18)

Introducing a dimensionless parameter A, measuring the ratio of the charge

separation from the passing electrons to that from the polarization current gives

%]

— 2n§e azwgz’mz L]:' a Lp . (ZchL;,
Ap“( Ny )( Te )(LC+LF‘) 277}."( %)(L +L - pZBcht

(IV.19)

where .a is the perpendicular length scale of the plasma, n, = nf,/n.~ the ratio

T,

,.2 0
’ITI,-L..:.CT:

. . 2
of passing electron population, and p% =

Bv using equations (IV.18-19) we rewrite equation (IV.13) as

a1l d

. ) — i m] | pteiad o :‘l .
Vo no(® —we)Véd J+m—— [mo( - )6d]
m2(Q0% +g/r)\1ldn, mnyw.; d , ,d
] A —_— — — fp—— /
—;—[(Zmﬂ ‘ w )r dr r2y dr (r dr(Q)) (1V-20)
mn, d 1 d 1d 2A,n
r dr[r dr( Q) + rdr(now ) a? (& = wee)lom = 0.

Equation (IV.20) in fact is the equation (II1.9) modified by adding a passing

electron term. With proper boundary conditions. such as 6¢,,(r)jr—o =~ " and
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dédm(r)

given 6¢(r) or o at the boundary r=b, the equation (IV.20) determines ’

the spectrum of eigenvalues for given radial profiles of n,, ¢, (hence £(r)) and
the explicit form of fictitious gravity g(r).
In the limit in which the density gradients are weak compared with the po-

tential gradients, equation (IV.20 ) reduces to

26 41 d o ZAP
V286 + T —(r0) - Z2]66m =0, (IV.21)

where the é term describes the interchange of vorticity x(r) = d(;in) = d(;‘:g).
For the case % # 0 there is a restoring tendencv of the perturbed flow discussed
in subsection IV.3.B of this chapter.

Here, as in section III.2, we introduce the linear Lagrangian displacement

Em(r) defined by

Em(r) = w35¢m( r) (IV.22)

r

and rewrite the first-order ion density perturbation as

dno

Onim = Em

(V.23)

The nonlinear Lagrangian displacement was analyzed in Ref.| Liu et al, 1985].

Substituting equation (IV.22) into equation (IV.20) yields

= —[r¥n,0(@ — w.g d =]+ (1 = mH)ne@ (O — wa)
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ng)rdno 24,077 0(@ — wae)
r dr - a?

+(w? + |ém = 0. (IV.24)

The boundary conditions on {m(r) are {m(r)|,_ o = r™=! and given €m (7)) r=b
or g%n;(:l] r = b. For the A, = 0 case, equation (IV.24) reduces to the Rosenbluth-
Simon equation for flute mode in a cylinderical plasma.

Although not as obvioﬁs, the mode equation (IV.20) and (IV.24) can be re-
garded as the generalization of the equations in Ref. {Horton and Liu, 1984 for
electron drift waves in a rotating plasma as given, for example, in equation (21)
of Horton and Liu. identifying the axial eigenvalue A from the electron bounce
averaging operator in equation (21) of their paper with A, given in this chapter
through the relation 1 — A = 20?4, (a = p./a) then the equation (24) in that
paper is the same as the equation (IV.20) in this section. For large A, values,
Ap = 1/20°. the passing electron contribution dominates and give rise to an elec-
tron drift wave with & ~ w../(1 + 20V ») which is the drift dispersion relation
with k_:'._vp‘f — 20°Vm » from the radial eigenvalue problem. The electron dissipa-

tion 26, (k) retained in that paper but neglected in this chapter, drives the electron

drift wave unstable.
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IV.2 Analytic Solutions for Solid Body Rotation with Passing Particles

Here we derive and analyze the dispersion relation for solid body rotation

1 = constant, the Gaussian density profile and linear gravity
no(r) = n,exp(—r?/a?) and g¢(r) =gor/a

as we did in section ITI.3. The eigenvalue Eq.(IV.20) reduces to the same equation

as (IIL.27)
d? 1 2r\ dé¢ 2 m?
R - — — | — —_—y - — = { V.
dr25 +<r a2) dr +<a7-u r2>6¢ 0 (1v-25)
where we define the eigenvalue v by
TV = - Y 22y Yo
viw,m,Ap,go/a,T;/Te) = 56— [m*(Q° + a)
+@(2m0 + w;) + Apo(® — wl)]. (IV.26)

Notice that here v is different from the one given by equation (3.28) by adding
a term from charge separation by passing electrons. Following the same procedure
as in section III.3, the solution of Eq.(IV.25) is given by the Whittaker function

W, o(z) with

6bmn(r) = Ami:-e;q)(r2 Ja2)W, 4(r2/a?) (IV.27)

where p = (Vm,» + 1)/2 and ¢ = m/2, or equivalently in the confluent hypergeo-
metric function as the equation (II1.32)

m m 7.2
6¢m’n(r) = Am’”(r/a) 1F1(§- +1-Vmna,m+1 ZE)
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The eigenvalues, which are determined by boundary conditions é@m,»(b) =0,
are

Vm,n(b/a) = m+2n + f(b/a)

the same as (II1.34).

The dispersion relation following from Eq.(IV.26) is

AD*+Bo+C=0 (1V.28)
where v
A=vmn+ 4,
B =2m0 4+ w.i(l — Umn) — ApWee (V1.29)

C=m*0%+ gf)

Equation (VI.31) is related to Eq.(25) of the Ref.[Horton and Liu, 1984]
by re-interpreting the meaning of the axial eigenvalue parameter A in that work
in terms of the passing electron parameter A, defined in Eq.(IV.19).

The quadratic Eq.(IV.28) gives instability for C' > 0 driven by the centrifugal
force of rotation. The stabilization arises from B # 0 due to the charge separation
from the Coriolis force, the finite Larmor radius effect and the axial motion of the
passing electrons. The passing electron contribution has the opposite sign to the
finite Larmor radius effect whereas the Coriolis force effect can reinforce either the
passing electron (2 < 0) or the finite Larmor radius effect (Q > 0).

The effective gravity g, may be due to the ponderomotive force either from

radio frequency fields or from the curvature of the magnetic field lines. For the case
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where g is dominated by the curvature of the axisymmetric magnetic field lines

we remove the scaling of g by introducing g, = (v2a/L?)g with the dimensionless

2/ 1 dB\? '
a2 ) \BEaz) %
! (IV.30)

2 /2 dz
1 B?

which is order unity in terms of the gyroradius and aspect ratio scaling. The

g given by

g=

maximum value of § is.given by the infinite parabolic mirror field B = B,(1 +
2%/L%) and where § = 3/4 [Horton, 1981].

In this analytic model the frequency and growth rate are functions of the
six dimensionless parameters: m, fl, g, Ap, g—, %,1, and units of frequency are
cspe/a’.

The dimensionless frequency and the dimensionless growth rate given by the

quadratic dispersion relation (IV.28) in the laboratory frame are

. . T
w=ml+ — Ay = = Z(vmn — 1))
Vman + Ap T, '
T (IV.31)
__m A2 45) — (B4 D — 1) = 4)22

1= 5 A +9) = (04 7 e = 1)~ 45’
respectively.

The discriminant determining stability(in the dissipationless limit) is given
by

~

A= B?—4AC = 4m*{(0+ = (vmn—1) = 4,2 = (§+ %) (Vm,n + Ap)}. (IV.32)

3
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The stabilizing condition as

. T
42— D0+ 2) + 9+ 22 (U — 1))

T
A Ti - Ti ~ )
~ [(vmn —1)(Q - T_(V}n/,%z +1)(2 + F(V}n/,zl —1)+vmngl 20 (IV.33)
€ €

A

For given m, (1, §, we can determine critical A, for stability. We find a
‘good approximation for the critical density above which the mode is stable in the

absence of electron dissipation

~ (0 +2) + 5+ 2%(um,n(b/a) _1). (IV.34)

€

(Ap)crit = A;

The region of stability determined by (IV.33) is shown in Fig.4.2-4.
We discuss the different effects on stability as follows.
A. Effect of Passing Electrons

For low rotational speeds there is in general both a critical or threshold value
A; and a cutoff value Aj for the passing electron density. For unstable modes
A < Ap < Aj. For A, below threshold A;l the stable region in ﬂ is determined
by finite Larmor radius effects through (T;/Te)(Vm,» — 1) and the value of §.

For reference parameters we take § = 0 which implies just enough rf stabi-
lization to balance the bad axisymmetric curvature or very weak bad curvature
and b/a = 3. The stable windows for m = 1 and m = 2 are shown in Fig 4.2(a-b).
For m = 1, Fig.4.2(a) seems give a stable window —2 < fl < 0. But carefull
treatment shows that for Ay <« 1, the stable window is located in 0 < 0 <2

which consistent with what we found in section IV.3.[see Fig.4.2(b)]. For m = 2
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the window —0.2 < {1 < 2.0 is destablilized for 4, > A =~ 1 and stabilized for
Ap > A; ~3.0. For [o} > 1 the system is unstable for all A, below A] where A7
is given by Eq. (IV.34).

For § = +1, a typical value for an axisymmetric system v;rith no rf stabiliza-
tion, there are unstable regions for all 1 for 0 < Ap < 2 for the m = 1 mode and
for 0 < A, < 4 for the m = 2 as shown in Fig.4.3.

For § = — 1 corresponding to a strongly quadrupole or rf stabilized system
the m = 1 mode has a stable window for — 2.7 < 1 < + 1.2 for all A, as shown
in Fig.4.4. Thé m = 2 mode is stable for — < 0 <1 for all 4,.

B. Effect of the Ratio of the Wall-to-Plasma Radius

Now we consider the effect of varying the wall-to-plasma radius ratio b/a.
Decreasing b/a may be viewed as the relaxation of the original plasma profile from
the instabilities or from other transport processes. In the analytic model used here
there is an edge or wall plasma density given by n(b)/n(0) = exp( — b*/a?). For
" the values of b/a = 3,2,1 the edge-to-central density ratios are 104, .02 and .37,
respectively.

We use § =0 and () = — 4 as the reference values for varying the plasma-to-
wall radius. In Fig.4.5 we show the effect of decreasing b/a. As the wall is brought
into the plasma, the m = 1 growth rate increases as (v1,0(b/a) —1)*/2 whereas the
finite Larmor radius stabilization increases as (T;/Te)(ul,o(b/a) —1). For small b/a

first the m = 3 and finally the m = 2 mode become stablized; however, the m =1
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b

mode remains unstable for smaller 2. The effect of the wall-to-plasma radius on
the threshold passing electron density is shown by comparing Fig.4.6 for b/a = 1
with Fig 4.3 for b/a = 3. The A, required for stabilization of the m = 1 mode
increases from A,(b/a = 3) = 2 to Ap(b/a = 1) = 10.

Thus we find that as b/a decreases from 3 to 1 the finite Larmor radius
effects opens up a stable window for — 2 < {1 < 2.5 and A, < A% ~ 4 but for
Q< - 2, typical of tandem mirror rotations, there is a substantial increase in the
A, required for stability, A, > A3(b/a), with decreasing b/a.

The result of varying b/a has an important implication for the quasilinear
evolution of the system. As the quasilinear relaxation take place, the plasma radius
becomes a function of time a(t) and increases toward b. The stability analysis
implies that in the final stages of evolution only the m = 1 mode is unstable and
that there may be a marginally stable quasilinear steady state for a{t — co) ~ b.
In this final state the plasma is poorly confined with n(b)/n(0) ~ 1/3 for the
Gaussian density model.

C. Effect of Varying the Quadrupole RF Fields

The effect of varying the quadrupole or rf fields is parameterized by the value
of §. Changing the system from a strongly unfavorable effective gravity § = +1
to a strongly favorable effective gravity § = — 1 is shown by comparing Figs 4.3

and 4.4. or Figs.4.6 and 4.7. For § = + 1 the system is unstable to m = 1 and

m = 2 modes for all {1 unless the passing electron density parameter A, exceeds
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the cutoff value A, > Aj. For strongly favorable § there is a stable rotational
window for || < 1 for m = 1 and m = 2 for all values of Ay

For faster rotational speeds 12 > |§| the value of § is of secondary importance

compared with the values of 4, and b/a in determining the stability of the system.
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40.
 m=1
30.L b/a=3
A v
A =0
20.F
czlt
10.F Stable
| Unstable
O. 1 L 1

30.

Stable

Unstable

Fig.4.2(a) The stability boundaries in the plane representing passing particle den-
sity, A,,, and solid body rotation frequency, {}, with T./Te=1,§=0,

b/a=3,and m=1.2.
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M o= 1 .
B/A = 3 G = o
NU = 1.01497, : ALPHA = 5.00E-@2-
TI/TE = 1 A = 209

40

30 |

20 [

10|

3

-0.4 .0 e .4 e.8 1.2 1.6 2.0

Fig.4.2(b) The details of stability boundary for m = 1, 4, < 1, magnification=
1x 10° compared with Fig.4.2(a). Notice the consistency with Fig.3.5.
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Fig.4.3 The same as Fig.4.2(a) with a unfavorable radial well, = + 1.
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0 | 1 1 [
T -4, -2. 0.’ 2. 4.

Fig.4.4 The same as Fig 4.2(a) with a favorable radial well, § = — 1.
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7.5

Fig.4.5 The variation of the low-m growth rates with wall-to-plasma radius
ratio, b/a, for solid body rotation, {} = —4, and Gaussian density

profile.
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Fig.4.6 The same as Fig.4.3 with § = + 1, but b/a = 1.
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Fig.4.7 The same as Fig.4.4 with § = — 1, but b/a=1.
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.IV.3 Differential Rotation and Passing Particles

... For general profiles of density and potential that evolve from background

.. transport processes the stability analysis must be performed numerically. In this

section we use the well-known shooting method to find the eigenvalues and wave-
- functions from Eq.(24): In this study we restrict consideration to the simple
boundary condition ¢, (r = b) = 0.

The profiles used in the study are Gaussian and parabolic for the density

ny(r) = noexp( — r?/a?) - (IV.35)
np(r) = no(1 —r?/b%) (IV.36)

and the inverse tangent for the rotational speed

Q(r) = ertan™! (r ;ﬁ) + e (IV.37)

where ¢, and c; are given in terms of the central rotation frequency Q, = 2(r = 0)

and the edge rotation frequency 0y = Q(r = b) by

ﬂb_ﬂo
Cc1 =
tan™?{ 2570 ) 4 ‘1<ﬂ)
- <A) oA (IV.38)
_ T
czzﬂo—i-clta,n 1<Z1>

The constant A is a parameter controlling the steepness of the rotation frequency
variation. The potential ¢,(r) and rotational {(r) profiles used in the study are

shown in Fig. 4.8.
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0. S L. 1.5 2.
x=r/a

Fig.4.8 Typical pro!iles of the equilibrium potential and the sheared rotational
frequency, (}(z), used in the study of differential E x B rotation. Here,
the on-axis rotation rate is {3, = — 4, the edge rotation is {1, = 0,

Ala=0.1,r1/a=1
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The accuracy of the eigenvalue solver is tested by taking the limit Qp = (o
- which gives ¢; = 0 and Q(r) = 2, =constant and comparing the results with the
analytic solutions given in Eq. (IV.34) for a Gaussian density profile.

A. Differential Diamagnetic Drifts

For the parabolic density profile(IV.39) the absolute value of the diamagnetic
drifts waqe(r) are strongly increasing fungtions of radius. In this subsection we
keep the E x B rotation rigid at (1 = 01, and show that the change from a Gaussian
to a parabolic density profile is stabilizing for comparable mean density gradients.
(As usual in changing a profile, an exact comparison is not meaningful since it
dependé on choosing some arbitrary constraints.) the decreased growth rate is
| expected from the local approximation since the dispersion of the wave frequency
waie(r) with radius weakens coherence of the modes. For the parabolic density
we note that although w,; ¢(r) — co as r — b the function n(r)waie(r) in Eq.(24)
femains finite for 0 < r < b.

The unstable modes in the spectrum m = 1 — 10 are shown in Fig. 4.9. The
width of the unstable spectrum is limited by FLR effects which are enhanced by
the radial dispersion from w.q,(r)-

In the presence of w.;.(r) the modes develop radially outgoing and incom-
ing wave components given by k. = (21)71 (645,07 60m — 6¢m0r6¢5,) which, in
contrast, is zero for for the w.; = constant Gaussian profile. The wave function

. for the parabolic profile is peaked closer to the plasma in radial position than the
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Gaussian wavefunction consistent with the local approximation. The change in
the wavefunction is shown in Fig. 4.10 (a), (b), which compares the m = 1,2,3
. modes for the parabolic and Gaussian profiles and gives their respective frequen-
cies and growth rates. The preferred sﬁability of the parabolic profile suggests
that quasilinear relaxation may drive the system toward states with variations in
w.i(r) subject to the constraints imposed by particle sources and sinks.
B. Differential E x B Rota’.cion

For the Gaussian density profile with constant w.; . we decrease the magnitude
of the speed of rotation of the outer plasma by varying Q3. A smaller {1, than
0, is observed in the experiments [Hooper et al, 1983, and may result from
collisiongl ion viscosity in the edge plasma or charge exchange collisions with the
higher edge neutral density component.

In Fig. 4.11(a) we show the m = 1 growth rate as a function of decreasing edge
plasma rotation speed (1;. With the central plasma rotating at 1, = Zw*,-(fl =
—4 for T; =T,) the solid body growth rate is-v; =~ 2[pscs/a’] for A, < 2 as

given by Eq.(IV.34) and shown in Fig. 4.11(a) at 0, = Q,. As the edge speed
drops to zero the growth rate decreases for all A4,.

Figure 4.11(b) shows the same parameter variation for the m = 2 mode which

has the solid body growth rate v, =~ 4[pscs/a?] for 0, = Q,. Again the growth
rate decreases as {1 approaches zero.

- .Changing to a parabolic density profile combines the stabilizing effects of
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w. (r) and 0(r) and is shown in Fig. 4.12(a) for m = 1 and Fig. 4.12(b) for m = 2.

-A. possible explanation (;f the stabilizing effect of the differential rotation on
the interchange instability driven by the centrifugal force acting on the density
~ gradient is the change in the topology of the eigenfunction. As the interchange of

the plasma from én = — £dn,/Or takes place to release the energy density
1 2 1 242
W = Emiénrﬂ = — Emir(ano/ar)ﬂ £

the tongues of displaced plasma are wrai)ped back in azimuthal angle (entrained)
which decreases the amount of interchanged plasma. Mathematically, the falling
behind or entrainment of the tongues is givén by the phase shift that the eigen-
function develops from the dispersion in @ = w — mQ(r).

We take the wave function 6., (r) as real in the interior of the plasma and
write |6¢m|cos|m8 — wt + B(r)] for the phase shift arising from the complex wave-
function 6¢m(r) = |6ém|exp[iB(r)] for r > 0. Although it is not possible to derive
a formula for 8(r) we can estimate the value of 3 by integrating Eq.(IV.20) across
the resonant layer defined by Re(w) = m(r,) while neglecting B(r) in all terms

except the second derivative term. These approximations lead to

dédm i . ié
Tdr  dr [66m| + Hédm| dr

P64

~ T (IV.39)

for r sufficiently near the resonance Q(r,,) = Re(w/m). Integrating through the

resonance gives 3 = 7 Fy, /m|df)/dr| where Fy, is a constant. This simple calcula-
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tion of B is useful for understanding the origin of 8, but the value of f is computed
from the arg[6¢,,(r)]-

The change in the topology of the wavefunctions is shown in Flg 4.13 and Fig.
4.14, which gives the contours of constant ¢(r,8,t) = ¢o(r) + [66m(r)|cos[mf +
B(r) —wt] for a typical 25the wave. The spiraling of the tongues of plasma develops
in the vicinity of the resonant layers. In contrast for solid body rotation the
wavefunction is purely real (8 = 0) and the tongues or arms are pure radial
displacements with symmetry about the radial axes of the arms at 8, = 27n/m
withn =1,2,.--m.

A dynamical picture of the stability effect of the differential rotation follows
from the vorticity theory of instability given by Lin [Lin, 1966). In this argu-
ment the flow V3 = r(1 is decomposed into sum of vortex filaments and the inter-
change of a strong and weak vortex filament is shown to result in a perturbed flow
that restores the original configuration provided the gradient of the vorticity does

d(TVg)

not vanish. In our problem the effective vorticity is ¢ = N which follows

from the stability analysis of equation (IV.21) and the condition is equivalent to

dg
F=— #0.
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|

T;/Te=1.“

n(x)=exp(-x2)

il

1l

n(x)=exp(-x2)

Ti/Te=2.

Fig.4.9 Low-m spectra for solid body rotation, ) = — 4, Gaussian density
profile with T:/T. = 1,2, and the parabolic density profile with T3 /T, =

1.
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n(x)=exp(-x2)

(0]

-1.60 + 2.26i
-6.77 + 4.38i
-12.00 + 5.37i

1.5F

“N a3

Ov = 5 3. 1.5 2.

x=r/a

Fig.4.10(a) The wave functions vs. z = r/a for m = 1,.2, 3, with solid body

rotation, {} = — 4, T;/T. = 1, and a Gaussian density profile. The
imaginary parts of the wave functions vanish.
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n(x)=1—x2

e
-4.94 + 1.71i
-10.38 + 1.39i

-13.82 + 0.00i

~ Real 6%,
6¢m A4F .

SV CR |

0 25 .9 75 1
x=r/b

Fig.4.10(b) The real and imaginary parts of the wave functions vs. z = r/b for
m = 1, 2, 3, with solid body rotation, {} = — 4, T;/T. = 1,and a
parabolic density profile.
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Fig.4.11(a) The real and imaginary frequencies versus the edge plasma rotation
frequency, (s, for the m = 1 mode and varying A,. The density profile
is a Gaussian with b/a =2, A/a=0.1,r;/a=1, and T;/T, = 1. The
central rotation rate is {0}, = — 4, so that {}, = — 4 corresponds to
solid body rotation.
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Fig.4.11(b) The same as Fig.4.11(a) for the m = 2 mode.
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-4. -2. 0. 2.

Fig.4.12(2) The same as Fig.4.11(a) for a parabolic density profile, m = 1 mode.
: The shear parameters here are scaled to the plasma radius, A/b = 0,{
and ry /b =0.5.
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Fig.4.12(b) The same as Fig.4.12(a) for the m = 2 mode.
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SOLID BODY ROTATION

m=2 Q=-4
0 = -6.77 + 4.38i

Fig.4.13 The contours of constant potential in the laboratory frame which are
the instantaneous flow lines of the (clock-wise) E x B guiding-center
motion. Shown is the m = 2 mode of the solid body rotating plasma
for a Gaussian density profile. The amplitude of the perturbation is

taken as max(6¢.,) = 0.25¢,(r = 0).
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SHEARED ROTATION

m=2 Q°=-4 Qb=0
=-4.26 + 2.52i

Fig.4.14 The same as Fig.4.13 for a differentially rotating plasma. The rota-
tional profile is as shown in Fig.4.8.
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IV.4 Summary and Conclusion

In this chapter we analyze the trapped particle mode stability of the rotating
plasma including the effects of differential E x B rotation, sheared diamagnetic
drifts and the role of passing electrons in stabilizing the rotational instabilities of a
tandem mirror system. The basic stability equation for the system is derived from
the ion and electron hydrodynamic equations with a two component electron fluid
description introduced by Rosenbluth describing the trapped and passing electron
dynamics. The mode equation contains the finite ion Larmor radius, the Coriolis
force and the passing electrons as sources of charge separation thaf influence the
stability of the centrifugal force driven interchange mode.

The stability analysis shows that solid body rotation with a Gaussian density
profile, which allows analytic solution, is substantially more unstable than the
profiles with differential rotation with E x B and diamagnetic drifts.

For sufficiently strong shear the radial gradient of the angular momentum will
drive a different type of instability; however, below rthe onset of the sheared flow
instabilities the change in the topology of the interchange wave function, as shown
in Fig. 4.13-4.14, produced by the differential flows reduces the effectiveness of
the density gradient or pressure gradient driven interchange instability.

The critical passing electron density required for stability A} is given ap-
proximately by Eq.(IV.34) which agrees well with the exact results given in Figs.

4.2-4.4, 4.6-4.7.
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. The stability analysis shows that there are a number of combinations of differ-

. ential flows and passing electron density values that produce stable system when

electron dissipation is neglected.

In the low m modes example considered it is shown that the growth rate
begings to increase from the free energy in the sheared rotation only after the flow
becomes reversed at radial boundary. Similarly the introduction of differential
rotation in the diamagnetic drift frequencies by a broader density profile distorts
the wave function and substantially reduces the growth rates. For example the

change to a parabolic density profile gives the growth rate spectrum shown in Fig.

' 4.9 which has ~,, monotonically decreasing with m and only m = 1 and m = 2

- modes unstable for T; = Te.

Stabilization by large A, > A; tends to push the wave frequency in the
laboratory toward zero which is detrimental for plasma confinement since the
m = 2 asymmetries of the laboratory plasma then resonate with the wave.

In conclusion we suggest that a plasma starting in with cc;nstant 2 and wyie
profiles will tend to be strongly unstable and would evolve through the quasilinear
relaxation as contained by background transport processes towards more stable-

configurations with substantial differential rotation in the profiles.
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chapter V
NONLINEAR MOTION

- THE SOLITARY VORTEX SOLUTION

Introduction

In the previous two chapters we analyzed the linear instability of the rotating
plasma and its application to the central cell plasma of the Tandem Mirror devices.
In this chapter we study the nonlinear motion of the rotating plasma by solving the
nonlinear equations derived in Chapter II. We show that under certain conditions
our nonlinear equations can have an analytical solution which is similar to the

Asolitary vortex solution first obtained in the study of nonlinear Rossby waves
[Larichev and Reznik 1976]. The solitary vortices have attracted considerable
attention in the study of planetary atmosphere dynamics and oceanography, and,
in past few years, the number of articles abopt the solitary vortex solution in
magnetically confined plasrha is rapidly growing and their potential importance is
gradually being acknowledged.

In this chapter we will shov; that a low 8, inhomogeneous, rotating plasma
column immersed in a constant axial magnetic field can exhibit solitary vortex
soiutions as well. These vortices take the form of a shielded dipole, the vorticity
falling off exponentially at large distances. They travel in the azimuthal direction

with a constant velocity. We obtain the relation between the velocity, the core
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size of the vortex dipole,and various system parameters, which we refer to as the
- nonlinear dispersion relation b& analogy with the corresponding relation between
linear phase velocity and wavenumber. The nonlinear dispersion relation shows
that the velocities of the vortices and the phase speeds of the linear modes occupy
. .complementary regions of parameter space. This complementarity also holds true
for most one-dimensional soliton systems, as well as the other cases for which
solitary vortex solutions are known.

The arrangement of this chapter as follows: In Section V.1, we give a brief
historical summary of this topic and present the usual mathematical method for
obtaining this kind of solution from a typical nonlinear _equation-the single layer
_.quasigeostrophic. equation. In section V.2, we reduce the nonlinear equations of
rotating plasma to the proper form for obtaining the solitary vortex solution. In
section V.3, we give the solitary flute-vortex solution of the rotating plasma and
nonlinear dispersion relation of the solution. In section V.4 the solitary flute-vortex
solution modified by small amount of passing electrons is analyzed. In section V.5,
we give a discussion of the properties of the vortices obtained in section V.3, and

finally in section V.6, we give the summary and conclusions of this chapter.
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V.1 A brief historical summary

In 1976 an exact solitary vortex solution was obtained by Larichev and Reznik
for nonlinear Rossby waves. Soon after that the solution was applied to explain-
ing the atmospheric blocking [Flierl 1980] and in oceanography it was used as a
model for gulf gtream rings [Flierl et al 1980]. In 1979 Hasegawa et al discussed
the analogy between the nonlinear drift wave equation in magnetically confined
plasma and the nonlinear Rossby wave equafion [Hasegawa et al 1979]. In 1982
Mei‘ss and Horton solved the the nonlinear equation describing electron-drift and
ion acoustic waves in presence of magnetic shear and obtained the two-dimensional
solitary wave solution | Meiss and Horton 1983]. Later, Pavlenko and Petvi-
ashvili reported that for a coupled nonlinear equations describing the flute motion
of the inhomogeneous magnetically confined plasma with a transverse gravity field
a solitary vortex solution for the density and electric potential perturbations were

obtained|Pavlenko and Petviashvili, 1983].

Since then, growing number of papers about the solitary wave solutions for
drift waves, flute-interchange and other modes in magnetically confined plasma
has been published [Taniuti and Hasegawa 1982;'Mikhailovskii et al, 1984,
Petviashvili and Pogutse, 1984; Shukla et al, 1985; Hazetine et al, 1985;

Horton et al, 1985).

At the same time as theoretical workers are predicting the solitary vortices
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from theif equations, laboratory experiments have confirmed the existence of these
vortices in the rotating shallow fluid [Antipov et all 1982,1983; Antonova et all
1983; Flierl et all 1983|. In the experiment of Antipov-group the results favored
- monopolar vortices (they also observed the dipolar ones); while other two groups
- observed quite stable dipolar vortices. In nl;merical experiments, the robustness
in strong interactions of the solitary vortex solutions for the nonlinear drift wave
or Rossby wave equation has been indicated [Makino et al 1981;McWilliams
and Zabusky 1982;Zabusky and McWilliams 1982]. Recently Laedke and
Spatschek proved that for certain special cases the solitary vortex solution of the

nonlinear Rossby equation is linear stable [Laedke and Spatschek 1985].

As well as study of the solitary dipolar vortices, there is another direction to
attack the problem. Recognizing the analogy between Rossby waves in the atmo-
sphere of planet and the drift waves in magnetically confined plasma, Petviashvili
derived a nonlinear equation describing the nonlinear Rossby waves on a planet
which is similar to the equations he derived for drift waves in a plasma [ Petvi-
ashvili 1977; 1980; 1983]. From his equation an anticyclone solution- a single
monopole vortex which rotates oppositely to the global rotation of the planet at-
mosphere is obtained. As we mentioned moments ago, the experiments of Antipov
group seems favored to his monopole solution. According to this theory and the

results of the rotating shallow fluid experiments, Nezlin suggested that Jupiter’s

.Great Red Spot and the largest anticyclonic vortices in the atmospheres of other
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giant planets are Rossby solitons [Nezlin 1984]. Horton and Meiss collaborated
- with Zabusky also studied fhe solitary monopole solution of the nonlinear drift
wave equation from a view of a macro-charge source, and proposed that the wake
field produced by a macro-charge travelling above certain speed is captured to

form the ”"wakeless” monopole vortex [Horton et al 1985].

Based on above mentioned facts we can see that although much remain to
be done, the feature of the solitary vortices is attractive and it could reasonably
be expected that solitary vortices will play as essential a role in two-dimensional
fluids as the classical soliton does in the one-dimensional case [Mikhailovskii et

al 1984].

Since no matter how different the physics is discussed, the published works
on solitary vortices with dipole structure always obtain finally the same nonlinear
equation which allows the solution, and the procedure for obtaining the sdlution
often referred by many authors as ”"standard procedure ¥ and omitted in in their
text; here we show this procedure in some detail. The author of this thesis should
mention that the remain materials in this section is not his original work; most
the material here used due to the authors who pioneered this topic of study |

Larichev and Reznik 1976; Flier et al 1980; Meiss and Horton 1983|.

As the typical equation we take the single layer quasigeostrophic equation in

geophysical context first derived by Charney for the Rossby wave in a rotating
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neutral fluid [Charney 1948]

8 | 9
5 (V2 =0)+ 2w+ v, V] =0 (V1)

- where ¥ = t¢(z,y,t) is the stream function which related to the velocity field
v(z;y,t) by v = Z.x V3. In plasma physics equation (V.1) also called the
Hasegawa-Mima equation describes the drift wave without dissipation .

To seek a stationary solution of equation (V.1), we set
¥ =Y(z,y —ut) = ¢(z,y) (vV.2)

where u is a constant represents the propagating speed of the perturbation in the
y direction. Substituting (V.2) into equation (V.1) yields

9 (2 _9 20 =
~ugg (VYW = gt V=0 (v:3)

By using the property of Poisson bracket equation (V.3) can be written as

[ —uz, V2 —9p—z]=0 (V.4)
The solution of equation (V.4) is

Vi) - —z=F(p —uz) : (v.5)

whereF'(2) is arbitrary function of z. Our purpose is to seek a localized solution
of the equation (V.1), so when y — oo we require that ¥y — 0,V?y — 0. This
implies that

z

Flz) == - (v.6)
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hence the equation (V.5) becomes
"1
VWH%L+?¢:O. (v.6)

In a polar coordinates r, 8 where

!
2 Y
r? =22 + y'*,0 = arctan =,
- T

the solution of equation (V.6) which meets the localization requirement is

o0} oo
P = Z D, K, (kr)sinnd + Z En,Kp(kr)cosnd (V.8)
n=1 n=0
where
=t (V.9)
u

and K, is the n-th order McDonald function, D,, E,, are constant coefficients.
We notice that the linear form of the function F(z) (V.6) is required by the
localization condition of the solution and it holds for any region with streamlines
which extend to infinity in y. But for the region where the streamlines are closed
V24 still can be any arbitrary function of ¥ — uz. For simplicity, we choose a

dipole solution by keeping only one term in (V.8)
¥1(r,0) = E1 Ky (kr)cos b (V.10).

For this choice of the solution, if E;u > 0, there is a special closed streamline
in the frame comoving with the wave. On that line the stream function of the

comoving frame

x(r,8) = ¥(r,0) —urcosd =0, (v.11)
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where r=a, and a is related with the constant u and E; by relation

u+1a)_i
=

L Ky (V.12).

au
If Eyu < 0, the solution (V.10) is singular at the origin and all the streamlines are
closing at this singular point.

The physical requirements for ﬁniteneés of vorticity and energy lead us to

choose the solution (V.9) with Eju > 0. And we consider (V.9) as the solution of

equation (V.5) in the outer region were r = V2 + (y —ut)? > a.

In the inner region where r < a, we still have the freedom to choose the
form of F(z) providea the choice can meet the requirements of matching both
¥ in both region and its first few order derivatives on the border line r=a, and
guarantying the solution is regular. This means that even though we specified the
outer solution by taking a dipole solution, the freedom of choice of the form of F(z)
under the just mentioned conditions allows a more general set of the solutions for
equation (V.1). Once again, for simplicity (this can be read synonymously with
the lack of the author’s knowledge about how to treat the general case), we take

~ F(z) as linear function of z,
F( —uz) = C + D(¢ — ux) (V.13)

where C and D are constants. Substituting (V.12) into equation (V.5), and letting

D = 1 — p? one obtains

V2 + p?p = C+ [(1 + p?)u + 1)rcosd (V.14)
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. The solution which is regular in the region r < a can be written as

(o o] (oo}
%(r,0) = %—i— ;}5[1 +(p® +1)ulrcos 6+ z ApJn(pr)sinnf+ Z B J.(pr) cosnd.
n=1 n=0

(V.15)
where J,, is the n-th order Bessel function,A,, B, are constant coefficients. We
. match the solution (V.8) and (V.15) on the border line r=a by requiring that
(i). the stream function is continuous:¢|,—, = ¢2lr=a; \
(ii). the velocity Z x V1 is continuous: Z X Vih1j,=o = 7 X V2)r=g;

(iii). the vorticity is continuouszvzzbll,:a = V2¢2|,=a.
After matching two solutions, at the end we obtain the solitary vortex solution

of equation (V.1) as

{—ggm—i-(l-l—k—z)}urcos& (0<r<a)
(r6) = K&QMW> P (v.16)
ﬁ;uacos 6. (r>a)
) ‘

This solution has two free parameters u and a, which represent the scale and the
propagating speed of the vortex respectively. Two other parameters k and p are
not independent, they are determined by u and a through the equation (V.9) and

the relation

15(0) _ _1Ka(p)
Y0 " T BE) (V-17)

where 4 = pa, B = ka. Equation (V.17) has an infinite set of roots v(B),n =

1,2,....., the first three roots are given graphically by Meiss and Horton [1983].
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. Several pertinent remarks about this solution follow.

(i). It is a special solution of the nonlinear equation. First of all, from infin-

ity of terms of the outer solution (V.1) we only picked the dipole term, this choice

gave a closed streamline which is a circle. Second, inside the circle, from many
possible choices for the form of the function F(z) we made an ad hoc assumption of
the linear form (V.13) which further limits the solution. Even so, this solution is a
nonlinear solution, because the form of F(z) we chose has a nonvanishing nonlinear
term - the advection term [¢ , sz,b].

(ii). It is a coherent solution. In the rest frame of the vortex, it is a constant
dipole. Inside the vortex core a, the vorticity and Ve.locity are finite; outside the
core the strength rapidly decays to zero with the asymptotic form r=zekr,

(iii). There is a complementarity relation between the linear mode phase
velocity and the propagating speed of the vortex. One of the most remark-
able properties of this solution is that there is a close relation between the phase
velocity of the linear modes of the equation (V.1) and the vortex propagating
speed u, both of them complementarily fill the w — k space. We can show this
remarkable feature by consider the relation (V.9) and the dispersion relation of
the linear modes of the equation (V.1). Linearizing equation (V.1), assuming a

normal mode with form e*(¥=2T*:¥=%%) yields the dispersion relation

== . (V.18)
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.From it-one can immediately obtain the allowed region for the phase velocity

-1<v < 0. (V.19)

phase

-On the other hand equation (V.9), implies the vortex is localized if

ttlso, . (V.20)
u
This leads to the conclusion that
u< —1, or u>o. (V.21)

Comparing (V.19) and (V.21) we see thé complementarity. Due to the fact that
the equation (V.9) determines the allowed region for the propagating speed of the
-vortex just like the dispersion relation of the linear modes determines the phase
velocity, we call the relation (V.9) nonlinear dispersion relation of the vortex. It
may be useful to mention that all the publications about the dipole-like solitary
vortex solution in plasma physics give the identically same solution as (V.17);
the differences between them ‘rest on the different nonlinear dispersion relations.
So at least formally, we can use the nonlinear dispersion relation as a standard
to distinguish the different physics of the vortex solutions. In appendix D of
this thesis we list all reported vortex solutions in magnetically confined plasma
classified according to their nonlinear dispersion relations.

(vi) Limiting cases. As the last remark we like to point out that although

‘the solitary vortex solution presented in this section is a special solution for the
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nonlinear Rossby wave equation (V.1) as we argued in remark (i), it includes two
famous exact vortex solutions obtained before as limiting cases.
.. (a) Stern vortex [Stern 1975). When u. — 0% with a fixed (so that ka — o0},

the vortex solution (V.17) becomes Stern vortex

0, r>a

¢Stcrn = as (Jl ('an/a) r

— —Jcosbl, r<a,
(v2°)* ) ’

Ji(ve a
where v5° is the n-th zero of Ja(7y).

(V.22)

(b)Lamb vortex [Lamb 1916;Batchelor 1967]. Whenu — 1 with a fixed (so

that ka — 0), the solution in (V.17) reduces to the Lamb vortex

a?

—cos ¥4, r>a

¢Lamb = ar< r _2_ Jl ('7?17'/0:) | (V-23)

cosl, r<a
a 5 Jo(78) } ’

where 72 is the n-th zero of J;(7vx).




V.2 . Reduction of The Nonlinear Equations of rotating plasma

~Starting in fhissection we study the nonlinear motion of the rotating plasma,
and particularly the solitary vortex solution of our nonlinear equations. In this
. section we reduce the nonlinear equations derived in Chapter II to a proper form
for pursuit of the vortex solution. We suppose the plasma is rotating uniformly,
so we take equations (I1.39)-(I1.40) as the basic equations.

The analysis of linear instability of uniformly rotating plasm‘a we did in Chap-
ter III shows that when the azimuthal wave mode number m is small, for example,
when m < 3 the mode is quite global, but when m> 4 the linear modes are
basically localized near the edge of the plasma column [see Fig.3.2]. The linear
analysis also shows that for low ic;n temperature T; < T, i.e.the ion FLR effect
is not very strong, the high m modes have much higher growth rate than low m
global modes. Based on these results we propose that the nonlinéar interaction
between the local high m modes at the plasma edge is dominant at a certain stage
of the nonlinear evolution. During this stage, we can suppose the characteristic

length of the perturbed density and potential is small, i.e.

dinén

| dlnéep
dr

dr

_, dlnn, |_1 '

-1
| n = dr

741

In this case, equations (I1.44) abd (I1.45) reduce to

8%  ¢T. 1 dn, 8¢  cT.. . -
5 " Ben, or 186~ Be? (V.24)
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1, T 10me 8 cag 0T 1 On,
we Be "0t myiwe n, Or rdd w.; Be n, Or rad
| 1, 5 on 1 T2 o~ Ty, :
— = V44 — V.2
T ) 5 = S E Bemy © PP T (V-29)
. bn ~ ebo
-wheren—m,qS— T,

Since the small-sized perturbations are localized around the edge of the plasma

the cylindrical geometry of the configuration is less important, and we can use

Cartesian coordinates:

Using a dimensionless time 7,

P T,

equations (V.24), (V.25) become
on 94 .
S+ 22— lid (v:26)

ar  dy

8 Tid._q- 8¢ on 25 % .
Rl M p vy — = b+ = V.
(57 Teay)V ¢+v v T Y95y V¢, ¢+ en] (V.27)

where

0%r,r rag(r A .
)
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v is Coriolis drift, v, represents the centrifugal and gravitational drift. We take

. -the-localized value of vy as constant- in-further calculations. Also-

Vg

Te L
Vg = (—_')27 Ps = .
my Weq

The eqﬁations (5.26) and (V.27) are the nonlinear equations for which we seek the
solitary vortex solution. Before proceeding to the solution it might be worthwhile
to mention that:

(i) Equation (V.26) and (V.27) are very similar to the equations derived by Rah-
man and Weiland | 1984 | for high # plasma, except for the second term of
(V.27)which comes from the Coriolis force in the rotating frame. Heuristi-
cally, since plasma in toroidal devices experiences poloidal rotation in certain
situations, the analysis of our problem may give some insight into that case
as well.

(ii) Compared with the equations given by Pavlenko and Petviashivili [1983], our
equations differ from theirs by two terms: the first one is the Coriolis term in-
trinsic to the rotating frame while the second one is the second nonlinear term
in equation (V,27) which they missed by error as pointed out by Mikhailovskii

et [1984].
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V.3 . Solitary Flute-Vortex In The Rotating Plasma

" We seek a stationary solution of (V.26) and (V.27) in the form of

#(z,y,t) = i(z,y')

) 3 (V.28)
¢(z,y,t) = é(z,y')
where y' = y — ur, u = const. is a free parameter.
Substituting (V.28) into (V.26), (V.27), we have
o -~ . _
5076 = ui) = [, (v-29)
T;,. 0 ~ o¢ on - o T
- Yy v? e — =[V? 7). V.30
(u+Te)ay/ ¢+v ayl+vgay/ [ ¢7¢+ Ten ( )

In the remainder of this chapter we drop the tildes on n and ¢ for convenience. -

To solve (V.29), (V.30), we divide the z — y’ plane into two regions
Region I: 22 +y'* < r,2

Region II: 22 + ¢/ > r,2

where r, is a constant parameter characterizing the size of the vortex. We look

for solutions which satisfy the following conditions:
(1) In Region I, n and ¢ must be finite at r = (z2 + y'*)% = 0.
(2) In Region II, when r — oo, n and ¢ must decay to zero.

- (3) On the border between Regioﬁ I and Region II, where r = r,:




- (a) The stream function must be continuous, (¢)r = (4)11.
- (b) The velocity field must be continuous, Z X (V¢); =2 x (Vé);;. |

(c) The vorticity must be continuous, (V2¢); = (V2¢)

149

(d) The density perturbation must be continuous, (n); = (n)sr, where sub-

scripts I, II denote the corresponding quantities in Region I and Region II.

After some algebra very similar to these in Section V.1 we find that to satisfy

conditions (1),(2), the simplest solutions n, ¢ should satisfy following equations

In RegionI (r <1, )

n=d¢+(1—du)z
V¢ = —p’¢+Cx
C = (ve + dvy) + p2u

In Region II (r > r,)

¢

n=—

U
V3¢ = k%
2 VU F g

ufu+ T:/T.)’

(V.31)

(V.32)

(v.33)

(V.34)

(5.35)

(V.36)

Here k,p,d and C also are real constants related by equations (V.33),(V.36).

Solving equations (V.31)-(V.36), and imposing the matching conditions 3(a),(b),:

(c),(d), we obtain the solutions
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¢ 2 ’C2
[_k To Jl(PT) +(1+ —)]urcos8 (r <r,) .
_ p2r Ji(pro) p?
. (V.37)
ur M cosf (r>r,)
L ?_Kl(kro) °
¢ 1.2 2 _
[ic_iu_(u_k_vc)(l — M) +1jrcosf (r<r,)
. p (' rJy (pro) (V 38)
—K—l(lc—ir cosf (r>r,) |
Kl(kro) ° ?

where § = tan™! y;l, k is a real parameter defined by (V.36). The parameters k

and p are related by
1 Ky(kro) _ 1 Ja(pro) (V.39)

k_roKl(k?'o) — pro Ji(pro)
where J,” K are Bessel and McDonald functions.

From (V.37)-(V.38) we can see that both n and ¢ have the form of a vortex
pair moving with constant velocity u in the y direction, i.e. in the azimuthal
direction around the edge of the pl%sma column. In Fig. 5.2, we give a contour
plot of our vortex. The radial size of the core of each vortex is characterized by
parameter r,, and the strength is a complicated function of two independent free
parameters u and r,. In the exterior region (r > r,) the vortices decay to zero
as e /rz. All these features are identical to the vortex solution given in the

Section V.1 for the nonlinear Rossby wave equation.
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V.4 Solitary Flute-Vortéx Modified By the Passing Electrons In The

Rotating Plasma

In this section we briefly present a modified version of the results given in
Section V.3. If we consider the rotating plasma in the central cell of the Tandem
Mirror and include the charge uncovering effect of small amount of passing elec-
trons in the quasineutrality equation (I11.40), and suppose that the plasma rotating
is uniform, then equations (I1.39)-(II-40) are modified by the passing electron cur-
rent. After the similar procedure of making equations dimensionless under the

same assumptions as we did in Section V.2, the dimensionless nonlinear equations

become
I Y S |
— V.
o} Ti 27 (9(5 aé; an 27 7 Ti ~ 3 -
— - = — — 4 - e ) =|V* + —ni, (V.

where A, has the same definition as in Chapter 4 and v.. is the electron drift
velocity other notations have the same definitions given in Section V.2. We no-
tice that including the passing electrons does not modify the continuity equation,
(V.40) is exactly the same as (V.26) but the quasineutrality equation is modified.
Considerihg the FLR ordering we used to derive the nonlinear equation the con-
tinuity equation is two order lower than the quasineutrality equation, the way by
which this small amount of electron modifies the equations is justified.

After repeating every step we did in Section V.3, a vortex solution of equations
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(V:40) and (V.41) is obtained. The expression of the solutions is exactly the same
_as the.solution. we gave in.Section V.3 for n, and ¢ as we expected. To avoid
- repetition, we will not-write them here. The new physics in this modified flute-
. vortex solution is shown by the nonlinear dispersion relation which is very different

from the one given by equation (V.36)

o _ vt Aplu vl by a2
u(u + T:)

From this dispersion relation we see that this modified flute-vortex mixes the

properties of the rotating flute-vortex and the electron drift vortex. The property

of the electron drift vortex is brought in by the passing electrons. This can be

seen more clearly in a limiting case. If we let A, — 1,% — 0,v, =V, =0, (no

rotation, no gravity, and cold ion plasma), The nonlinear dispersion relation (V.42)

becomes the nonlinear dispersion relation for the electron drift vortex [Meiss and

Horton 1983|

kgzu'“v*e

U

. If we set A, = 0, then the dispersion relation (V.36) for rotating flute-vortex

appears as one expected.
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V.5 . Properties of the Vortices

In this section we consider (A) the nonlinear dispersion relation, (B) the
bounds of propagation speeds, (C) the complementary phase velocities of the linear
modes, and (D) the spatial structure of the vortex flows for the vortex solution
given in Section V.3.

V.5.A The Nonlinear dispersion relation

The vortices derived in section 3 are a two parameter family of exact solutions
to the field equations. The free parameters are taken either as the core size r, and
speed u, or r, and exterior scale size k. Equation (V.36) relates the two alternative
choices of parameters u or k, conventionally we c_all it nonlinear dispersion relation.
The requirement that the vortex decays to zero in the exterior region constraints

the speed u of the vortices to be within the bounds determined by k?(u) > 0, i.e.

uve + vy

k2= —2 9
u(u + T,'/Te)

> 0. : (V.43)

For this reason we find it more convenient to parameterize the vortex as shown in
Fig.5.1 with the core size r, and exterior decay rate k.

The solutions are computed by specifying the plasma parameters (1,g,T:/T.
and r,, k. The relation (V.39)which relates p to k is solved for the principal branch-
of pro = f(kr,) defined by 1 < pr, < ~v2 where 4 is the first nonzero root of Ji(z)
and v, is the first root of J;(z). For each k the two branches of the solutions-of

‘equation (V.43) for vortex velocities u (k%,T;/T.,v.,vy) are computed and then
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the vortex fields (V.37) and (V.38) are determined.
AV.5.B~Propagation speeds of the vortices

- .. The vortices obtained in Section V.3 can only propagate in certain bands of
speeds that are determined by the plasma parameters {1, g and T;/T..

The limits on the vortex propagation bands are determined by inequality

(V.43) which is equivalent to the inequalities

T;
we+vy >0 and u(u+ —T—) >0 (V.44)
or
T;
uv,+vy <0 and u(u+ i’-) <0 (V.45)
€

For different directions of plasma rotation the conditions (V.44) and (V.45)
give different propagation bands which are shown in Fig.5.3.

(i) Inward equilibrium electric field

For radially inward equilibrium electric fields (2 > 0), zero or bad curvature

v. > 0 and vy > 0. The regions of vortex propagation are '

u>0 (V.46)

and
T, v
1 g . 2 g
LN -4 < = V.47
e > vc, Zf T, Ve ( )
or
T, T, v
g i . : g :
L su>-=, s £ V.48
mad Eda R A ey (V.48)
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(i1) Outward equilibrium electric field
.. For.radially. outward. equilibrium electric fields (2 < 0)and .bad curvature

v, <0,v, > 0,the vortex propagation bands are
9

Y s uso0 (V.49)
vC
and
T;
< L V.50
v< - (V.50)

From equations (V.46-V.50) we see that there is wide region of propagation in
the direction of the plasma rotafion, but only a limited region in which the vortices
may travel in the opposite direction. This behavior of the plasma vortices is similar
to the situation observed in the rotating shallow fluid experiments [Antipov et
al 1982, 1983; Flierl et al 1983].

V.5.C The complementary regions of linear modes

In the gaps where vortices do not propagate, the linear wave modes of the
system propagate with the phase velocity v, = w/(kyVae) = rw/(mVy.).

Returning to the field equations (V.26) and (V.27) and looking for the linear

modes in form of e(tk=2+ikyy—iwt) "we obtain the dispersion relation
k2 cp(cp + T /Te) + veep + vy =0 (V.51)

where ¢, = w/(kyVge) and k3 = k2 + kz > 0. Alternatively, one may re-

© . turn to the full radial equations (II.39) and (I1.40) and solve for the eigenmodes
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 bm(r)eli™P=it) for the rigid rotor equilibrium as we did in Section II1.3. In this
- case one also obtains equation (V.51) with ¢, = aw/(mVg), k2 — v(m,n,b/a)
where vy, , are eigenvalues defined by equation (III.45) The eigenvalues vy, , are
discrete and positive definite so that in this case the phase velocities ¢, lie in the
continuum between the vortex propagation bands. Thus, equations (V.43) for the
vortices and (V.51) for the waves cover all values of external wave number or decay
scale as shown in Figs. 5.3.

The wave dispersion relation (V.51) predicts exponential growth for parame-
ters 2, g, T} /T. which make a negative discriminant B2—4AC < 0 for the quadratic
equation AcZ + Be, 4 C = 0, where A = ki% B =k, *T;/T. +v.,C = v,. In the
unstable parameter region the phase velocity is ¢, = —B/2A.

V.5.D The spatial structure of the vortices

We now consider the variati;n in the vortex fields with the vortex parame-
ters. We show that the vortices propagating in the electron or ion diamagnetic
direction have different behavior (for convenience we call them electron or ion
diamagnetic vortex respectively). The ion diamagnetic vortex requires consider-
ably larger energy for excitation than the electron diamagnetic one for comparable
vortex parameters r, and k.

‘As a reference system we consider a plasma column rotating in the ion dia-
magnetic direction with a speed twice the ion diamagnetic speed, § = 1, and a

core size 1/5 the density gradient scale length r, with T; = T, = T. The speed of .
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. propagation of the two branches is shown in Fig. 5.4. For comparison, we also give
.. a similar Fig.-5.5 for a plasma column fotating in electron diamagnetic direction
with the same speed.

For vortices with external scale sizes, 1/k, comparable to the density gradient
scale length r,, the speeds of propagation are large compared with the diamagnetic
drift speeds. Strictly speaking, due to the conditions we gave in the derivation of
equations (V.26) and (V.27), our analytic solutions are not valid

for these large vortices. For vortices with small external scale sizes compared
to r,, the speeds of propagation are close to those of the linear modes of the
system. At large k the speeds approach the limiting speeds as 1/ k2.

In Figs.5.6 and 5.7 we show the variation of the electron and ion diamagnetic
vortex fields with k for the reference parameters used in Fig.5.4.

The electron diamagnetic vortex has a maximum of the electrostatic potential
at r =~ 1,/2 with e@maz/T ~ 2.3r,/k for k = k r, > 1. This maximum of the
potential is consistent with the mixing length for modes for E x B convective
saturation, Vg =~ Vg, or e¢/T, ~ 1/(k.r,), which we know to apply to drift waves
and their turbulent spectra.

The ion diamagnetic vortices have larger electrostatic fields than the elec-
tron diamagnetic vortices for comparable r, and k as shown by the compari-
son of Fig. 5.7 and 5.6. The electrostatic potentials have maxima at roughly

lemaz/Te| = 127,/k, and thus have |edmoz| > T, for k = k7, < 12r,. The en-
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ergy required to excite the ion vortex is large. The polarization of the ion vortex

. is characteristic of MHD motions with [e¢/‘T| > |én/n|. As the exterior scale of

the ion. vortex decreases, the maximum potential decreases until reaching a min-

imum value |e¢min/T| =~ 2 or 3r,. The value of k at which this minimum occurs,

decreases from k ~ 14.5 for r, = .05 to k ~ 6.5 for r, = 0.3. The saturation of ¢
at @min implies that there is minimum excitation energy E,,;n for creation of an

ion diamagnetic vortex.
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Vortex Parameters

k, o

Plasma Parameters

A A
Q, g, T;/Te

Speeds

AA
Ui = Ui(k,n,g,Ti/Te)

«

p = p(kry)

Interior Structure

Vortex Fields

Eqs. (V.37) and (V.38)

Fig.5.1 Schematic diagram of the parameter representation of the vortices.
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2.1 4=0.25

1. Ti/Te¥1

N

Fig,5.3 Propagation regions of vortices and linear wave modes. Vortices occur in the
unhatched regions, and wave modes occur in the hatched regions of the param-

eter space. The boundary curves are u = —vy /v, v = ~T;/T,, and u =0. .
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Fig.5.4 The vortex propagation speed versus inverse external scale size for 1 <o,

T:/Te=1,§=1,and ro/rn = 1/5.
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Fig.5.5 The vortex propagation speed versus inverse external scale size for ( > 0; other

parameters are the same as Fig.5.4.
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Electron Diamagnetic Vortices

(a)

0.4

(e)

Fig.5.8 The radial structure of electron diamagnetic vortices (v > 0): (a) potential,

(b) electric field, (c) vorticity. (The parameters are the same as Fig.5.4.)
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lon Diamagnetic Vortices

Fig.5.7 The radial structure of ion diamagnetic vortices (¢ < 0): (a) potential, (b)

electric field. (c) vorticity. (The parameters are the same as Fig.544)
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V.6 Summary and conclusions

In summary, in this chapter we have reducéd the nonlinear equation for the
uniformly rotating plasma to a proper form for pursuit of the solitary vortex solu-
tion. We obtained-two localized solutions of two equations cdrresponding to soli-
tary dipolar vortices. We discussed the nonlinear dispersion relation, the allowed
regions of propagation speeds, the structure of the vortices, and the complemen-
tary regions of linear modes.

The vortex solutions given here describe the convection of density and vortic-
ity of background plasma on space scales small compared with the radius of the
plasma column. The electron motion in these vortex solutions is basically flute-like
compared with those given earlier by Meiss and Horton [1983] and Makino et al
[1981] which considered adiabatic electrons (kv > k1u), but in the second soli-
tary vortex solution we considered the effect of small amount of these adiabatic
electrons . A principal difference is that for the drift wave vortex the electron
diamagnetic drift velocity vg4. determines the speed of propagation, whereas for
the dipolar vortex it is the Coriolis force 2m;V x @ and the finite jon Larmor
radius drift velocity that determine the speed of propagation of the vortex. For
small ion-to-electron temperature ratios the speed of propagation in the direction
of plasma rotation is given approximately by u = ZQ/k_ZLrn.

The dominant direction of flute vortex propagation is in the direction of the

plasma rotation although counter streaming solutions also occur.
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- -- We show that the scale of the maximum potential ¢,, in the vortex scales
-as ey /T ~ 1/(kLry) consistent with the usual estimate for nonlinear E x B
convective motion in an inhomogeneous plasma. We show that vortices propa-
. gating in the ion diamagnetic direction have a larger maximum potential (by a
factor ~ 5) and a much larger vorticity than those propagating in the electron -
diamagnetic direction. The difference in the strength of the vorticity arises from
the partial cancellation of the convective derivative proportional to u + T; /T, for
the ion diamagnetic vortices.

Finally, we remark that although the nature of the vortex-wave interaction
dynamics remains to be investigated theoretically, the experimental evidence [An-
tipov et al 1982, 1983; Antonova et al 1983; Flier et al 1983] as well as
the computer simulation$ in [Makino et al 1981; McWilliams and Zabusky
1982;Zabusky and McWilliam 1982] show the importance of the interactions
between these two components of the field. A vortex with its four parameters
Zo, Yo, (Initial position of the vortex core) amplitude and speed contain an infinite
spectrum of coherent k modes. We suggest that a theoretical description based on
field containing both vortices and wave modes may be more nearly diagonal than

a pure modal description.
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Chapter V1

CONCLUSIONS

In this thesis we have studied the linear stability and the nonlinear motion of
magnetically confined rotating plasma..

By using a two fluid model including gyroviscosity, two coupled nonlinear
equations which describe the low frequency flute dynamics of a low 3, collisionless,
isothermal, inhomogeneous plasma column confined in a constant axial magnetic
field in the presence of a radial equilibrium electric field are derived. The equations
include an effective gravity term to model magnetic field line curvature or RF
pondermotive force effect. For a closed system the total mass , entropy, energy,
and angular momentum are conserved by the coupled nonlinear equations.

The cor'lclusions drawn from the linear stability analysis carried out in Chapter

III and Chapter IV follow.

A new sufficient condition of stability for the rotating systern against the flute
perturbation is obtained. We find that as long as the equilibrium proﬁ'les satisfy

the condition
¢T; 1dlnn(r)

>
Ber dr |2 af)

0,

3V,

| waifm |=]
the rotating system is stable. In low 3 plasma, this new stability condition gen-
eralizes the one given by Freidberg and Pearstein [1978] for the constant w.; and
1 case. The new condition is valid for both constant and radially dependent
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-diamagnetic drift frequency and plasma rotation frequency.

- An-analytic solution of the linear stability equation for a plasma column with
- Gaussian-density profile, constant -rotation.frequency, effective gravity linear in
the radius, and bounded by a conducting wall at finite distance, is obtained.
Analysis of this model reveals several important aspects of the sta‘t;ility of rotating
plasma. (1). Due to the combination effect of the Coriolis force and FLR, the
stability of the system strongly depends on the' rotation direction. For the plasma
column with negative radial density gradient, the positive rotation state is more
stable than the negative one, provided other relevant parameters are the same.
This result suggests that modeling a rotational stability problem as a gravity
stability problem by simply taking the centrifugal force as an effective gravity
in principle is not correct, and will lead to error. This result also indicates that
controlling the direction of the radial electric field inward to the plasma is a possible
means to stabilizing the rotational flute instability. (2) The FLR stabilizing
eflect, unlike the gravity stability problem, FLR contribution is not absolutely
stabilizing in rotating problem. Depending on the direction of rotation and the
magnitude of w.; and (1, the FLR can stabilize or destabilize the system. (3) The
location of the conducting wall effects the (1,0) mode differently from the other
modes.- While decreasing the wall distance always stabilizes the mode with m >

1,n > 0, beyond a characteristic distance determined by equilibrium parameters
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- .- it.destabilizes the (1,0) mode. We also found that the well-known result about the

marginal instability of the (1,0) mode for this model profile is actually correct in
= the limiting case of putting the-boundary at infinity, as is the conventional belief

of (1,0) mode being rigid.

The analysis of sheared rotation stability for three simple equilibrium density
and rotation frequency profiles indicates the analogy between the shear rotational
stability problem and the parallel shear flow stability problem in a perfect fluid.
This resemblance suggest applying the results of the relatively well studied latter

problem to understand better the former. one.

The investigation  of-the flute-like rotational trapped particle modes for a three
cell axisymmetric Tandem mirror system provides some useful quantitative and
qualitative knowledge about this mode. (1) By modifying the équation we used
in section II1.3, considering the flute-like mode, we obtain an analytically solv-
able stability equation for the trapped particle modes in a model Tandem mirror
system, and the solution of this equation quantitatively gives the radial struc-
ture, oscillation frequency, and growth rate of the modes. These results should
be considered as the quantitative counterpart of the qualitative analysis of the ro-
tational trapped particle mode reported recently [Kesner and Lane, 1985]. (2)
The analytic dispersion relation obtained in section IV.2 shows the fact that the

effect of the passing electrons is always canceling the FLR effect, hence when the
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two effects have comparable magnitude this system is more unstable than the one
we discussed in section ITI.8. When the passing electron fraCtioﬁ is larger than
---some critical value, given by Eq.. (TV.34), then the FLR effect is negligible and
‘the system can be stabilized. (3) The numerical results presented in section IV.3
-give us much new information about the stability of systems with sheared rotation
frequency and sheared diamagnetic frequency profiles. Comparison between. the
analytic and numerical results seem to suggest that the results for the Gaussian
density and unif/orm rotation model overestimate the instability of the real system.
Although some possible explanations of the numerical results were suggested, we

feel that to get a better understanding of this new topic more works are needed.

The nonlinear analysis carried out in Chapter V gives two exact localized
solutions of the nonlinear equations, the solitary flute-vortex in rotating plasma

and the similar one modified by including the passing electron population.

These vortices are two-dimensional, localized, and travel in the azimuthal di-
rectjon with speeds limited by the relevant equilibrium plasma parameters. Most
interesting, the allowed region for the travelling speeds of these vortices is com-
plementary to the allowed region of the phase velocity of the corresponding linear
moaes. All these features of our solitary voriex solution are common to the ones

‘obtained from the nonlinear Rosshy wave equation in planetary atmosphere studies

.. and the drift vortex from the nonlinear drift wave equation in magnetized plasma.
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For the latter two vortices, there are numerical simulations which indicate their
. robustness under collisions as well as evidence from laboratory experiments which
-~shows their existence in-nature. In addition,.further.investigations about the spec-
-trum.and other properties of the-drift vortex also have been carried out [Meiss
and Horton, 1982; Meiss, 1984].

The. existence of these vortex solutions to the nonlinear equations describing
flute dynamics of low J rotating plasma and the complementary relation between
the vortices and the phase velocity of the linear modes suggest a possible new
picture of the dynamics: the’ comp]ei;e description of the fluctuations in low f
rotating plasma should include both the coherent vortices component and the

.conventional modes.




Appendix A

Derivation of Equation (II1.9)

In this appendix we derive the linear stability equation (II1.9) from Egs. (IIL5)
and (I11.6).

Substituting normal mode of perturbation
6¢m(r,0,1) = 5¢m(r)ei(m9—"’t), bnm(r,0,t) = 5nm(r)ei(me_“t)

into Eq. (I11.5), we have

. .cdp,m .¢c mdn,
zw&nm-}—zB 5 onm —ig ¢, =0 (A‘l)
d
Remember {1 = 1e %o , W= w — mf], immediatly we have
r B dr
cm 1
dnm(r) = ——=6 . A.
n (T) BTW ¢m(r) ( 2)

Substituting the normal mode 6¢,,(r,0,1),6n,,(r,8,t) into Eq. (I1I1.6) yields

c 0 1o}
o : '7_v m m oy <]
.BV (n. 3 6@ + bn athb )+

(£)2V - (bnmldo , Vol + nol6bm , Vol +nlds , Vébm])+

(--)2-Te-’f\7 (67 s Vool + [0 » V6bm]) + [6nm U(r)]

¢ ) 3y ¢y
Vn, - atwqu + no Btv 6dm) + (B) Vne ([¢o » VéPm|+
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(66m » Vo)) + (5)2no([66m » V268m])+

c T;
(5)2V6nrm 6o, Vool +(5) 2 (Vbrm , Vool + [ ,

(Vo , Védm] + [no , VZ60m)) + [6nm , U(r)] =0

Notice that

E; . dn, d6¢,,

31 V0P = T T

Vn, -
o 5t

;tw%m = —iwn,V26d,,,

c < dno
—.B—VTZO . [Qbo 3 V5¢m] = [¢o ) V6¢m]
.m __dn, dbédm
—ZTQ dr (=66m + 7 dr ),

c dno

=Vno - [66m , Véol = 5 —=2168m , Vools
' .mdn, d
_27 dr dr( D)8ém
m d . 1d

no[6¢m s V2¢0] = "“37”0_{"_( 29)}5¢m

Fnoldo s V26¢m] = imnoQV2 64,

V2¢o]+
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(A.3)

(A.4)

(A.5)

(A.6)

(4.7)

(A.8)

(4.9)




i,
dr
dQl  dén,, bn,,
dr r )

%[V&nm , Vo] = —| V6nm)

4 251 _,md 1d o
.B[énm,V $o) = —1 . dr(rdr (r°Q))onm,

dn, ,
?r s Védm]

dbdm  Odpm
_r—(dr? u;dr)( dr 7 ),

[Vn, , Védn] =]

_m d*n, 1ldn,

.mdn,

Vs =i——V%6¢n
[ro ) V26) =i =2 V26¢,

r

' (—%)ZVZSnm [do , Vo] = imQ26n,m,

Substituting (A.4)-(A.15) into (A.3) yields

dn, dédm,
dr dr

(& = wig)no V26 + &

{(2mﬂ +m.d_ﬂ)dno md. 1d ,

r dr’ dr

Ty d*n, ldn,, d 6¢n,
B Tre w

(4.10)

(4.11)

(4.12)

(4.13)

(A.14)

(4.15)




Bm o2 T, dQ d bnp,
= (r0% + g)bnm + “m—r— (=) =0 (A.16)
Notice that
0 ~ .dn, dé
V . [(w - w*;)noV5¢m] = (w — w*i)novz5¢m + o dTO dq:m_
dQ ° dé¢,, d 6B,
T - 3 *1) T3 17
o e ™ (A.17)

and
T d?n, 1dn,. d 64,  d db4m
-Bem( dr?2 7 dr )Z ro _E;(now”) dr (now*,)égbm. (4.18)

Substituting (A.2) into the terms with én,, in (A.16), eliminating én,,, and

notice that

T; dQ d  én,, cT; 1 m? dn, dQ dﬂ d W
= 60, (
dr dr

nobdm),  (A.19)

B 1 ld 0
T U Qi = Zm (@ 4 0/r)

2 5m, (A.20)

Limd 1d 0 __ﬁwﬂ AR
e r dr[r dr(r D))orm = r °dr'dr dr( D)6 frm. (4.21)

Substituting (A.17)-(A.21) into (A.16), arranging each term properly, we ob-

tain
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dQl d Wi

V. [0 (@ — wai) V.1 6Gm] + m= (o1 = 2) 8¢

m2(Q%2 +g/r)  m2eT; dz(rﬂ)) ldn,
. wBe dr? 'r dr

+{[2m0 +

P (2 i(rzﬂ)) + ;é‘i’f(now*i)}5¢m = 0. (I11.9)

Tra G
Notice That

d? d df)
'C—lr—z('rﬂ) = __(7.2___)_




Appendix B

Derivation of Equation (III.10)

In this appendix we give the derivation of equation (II.10).

Rewrite the linearized equation (A.16) as

(& = wir)no V2 6dm + w‘ﬁ" difr’m
+? d;r" (20 + r%g-)éém + ?nogdr— —i—dir(rzﬂ)]&qﬁm
Sl £ (28 (%0 - Zn(@2 + Lyn,

Introduce radial Lagrangian displacement &,,(r, 8,t) corresponding to the nor-

mal mode 8¢, (r,0,t), 6nm(r,8,t) such that

b

dEm .cm »
= = -1 = m- B'2
7 ve(r, 8,1) ZB . ¢ (B.2) |

Solving equation (B.2) we have

cm ) —wt
6771(770=t) = Eﬁégsm(r)ez(me f)' (33)
Substituting (B.3) into (A.2) gives
dn,
S = — ;’; Sém. (B.4)
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Now we intend to express equation (B.1) in terms of £,,,. Substituting the relation

B
6¢m = —rwém
cm

into each term of equation (B.1), we obtain

o )
Ro@Vi66m = {22 [(rd? +3r20 57 + 12 S )6 + 3157 2
m\r s r

R0 Em —aﬂr@ﬁ-‘gﬁ}, (B.5)

jdnodbbm _ B\ pdnodn oo i, dng

wdr dr  em dr dr Em]’ (B'G)

dn, an B 1 dn, . . dw
% (Z (2ﬂ+r—d—;)5¢m = — o (2mrzﬂw—r3w—£)£m./ (B.7)

emr? dr

in derivation of (B.7) the reltion

dr dr’

is used.




180

m d.1d,, Bn,, ,.dv 4.d*@
M L2 L r20) 160, = —— 2 aand ev
rnodr[rdr(r 166m cmr2(3rw r—{—rw

Summing up the results obtained, after many cancelations

(B.5) + (B.6) + (B.7) + (B.8) + (B.9) = (—) 5 {—(@*r*n,——)

+[(1 = m*)rnod? & +

1 dn,

?fm (B.11)

_gm(ﬂz—l-g/r)&nm = [m T (”2"'9/’)]

E:Q(aﬂno B 1an) d (5¢m
Be' dr? rdr’dr r
cl; d 1dn,, d 6,

B Bedr(r dr dr( r )
__B drw.) d (GEm)

cm dr dr

—m

)

e ), (B.12)

Tim d 1d,,
A Gt it 61y,
€ r{dr rdr( Q)]} "

_Limdn,d 1d

e r dr {dr r-dr(rzn)]}gm
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B dfl d*9)
=g (3g 157 )
B d d*®
= oW (32; + r~dr—2> €m (B.13)
T; dﬂ d oén,, B dw d
? dr dr( 7 )= Erﬁ?d <n°w“6m)
B dw dws; do  dén dn, do
= — o —— Wi T %1 14
cm{ °dr dr &m + 71 drw dr tr dr d w {m} (B.14)
%i d2
oW V26, = _E{now [”gm + 3r——§m §m+
cm T
dEm 2 W dw d&m 2~ d? Em m2no ~
Srw dr T dr dr W dr? ] r ww.,ﬁm}
B (1 d . 3dém .
= ——{ 20 — (no@w.ir® 5 ) + —[ (1 - m?)Dwei€m-+
0 dW 3 420 sdo  d&m
3r? drw*,ﬁm—i—r o 2w“§m +r —d—r—w” — ]_
. [dn, ) 3d£m 3 dw.; dém
r2 [dr Yl + dr dr ]} (B.15)
Summig up Egs (B.12)-(B.15) gives
(B.12) + (B.13) + (B.14) + (B.15) =
B 1gd 3d&m N~
=—— { o (w Writtor ™~ ) +n,(l—m )rww*-,fm} (B.16)

Finally, addiﬁg Egs. (B.10), (B.11), and (B.16) yields

i[aﬂ(l— “’*i)r%odj—ﬂ + [(1—m2)¢:)2(1~ : Dor 4 r2(w? +g/r) ]5m_o
(I11.10)




Appendix C

Derivation of Equation (III.11)

In this Appendix we give the derivation of Eq.(IIL11).

From (A.1), we have

¢Te 1dds T 1dn, '
—6 = .
mBe rdr T " Ber dr 69m = wnm, (€1)
where we denote gg = ;—gﬁ.
Notice that
T, 1dg,
Ber dr a(r),
and
D11 dng _
Be rn, dr N

Eq.(C.1) can be written as
MMy + MW, bGm = wiérzm. (C.2)
Linearizing Eq.(I11.38) yields

ﬁ;énm + Lz&&m = w(Lgénm -+ ]:45Q3m) (03)

., fTi 1ddo 1d%¢o d 1 dgo., T: 1d3%,
Ly = (zm){Te r2 dr r dr? dr+[r2( dr) ol T, r drd ]} (C4)
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£ = imno (015 + 03 + 6s)
2 = 1Mo\ Y15 2 3
~ 1ld¢, T;idlnn,
O, = - —io
r dr T.r dr

T.rn, dr?

A ldggo 1 dlnn, T; 1 d*n,
Oy = = -
2Ty dr (7' dr )+

_ldzqzo(l_*_dlnno) 1 dqzo(l_ dlnno)_
o dr? ty dr “r2 dr r dr

: _1id2n(J 1—m2dlnno)
r2n, dr? r3 dr

d? +(],+dlnno) d mzl
dr?2  ‘r  dr ‘dr r2 J

.f/4 = ino{

Taking dimentionless quantaties

57, = OMm

no(r)
TR

("2 :Q/(pSUS)
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(C.5)

(C.8)
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where a?

is radial scale length of plasma, and

Egs. (C.2) and (C.3) have the forms of

A11(2)67m () + A12(2)6m(z) = w(Bi1(z)67(z) + B12z5g?5m(:n)) (C.11)

A1 (2)67m (z) + Aga(2)6¢m(z) = w(B21(2)67m(z) + Baa(2)6dm(z)) (C.12)

where

All = mfl(x),

(C.13)

A1p = mw..(z), (C.14)
By =1, (C.15)
B, =0 (C.16)
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Ti 1 d dﬂ dﬂdlnno
e[\fdx( )+ dz  dz ]} A(C'”)
T; dn,, d* -1 d T; 1 d, dno,, d
Az = m{alfl+ 27 72) 27+ 0= amo) 27 2 (e
1d dlnn, d , - m2. Ty 1 d%n, lm2 dn,
B Eﬂ(x E:;)—*— dz dz:( Q)ftl_ﬂ Fn_(al:z2 2 T dz )]}’ (C':18)
BZ] ZO, (Clg)
d? d
B22—II' 1 4 1m (0.20)

pri el G i e

Writing Eqgs.(C.11) and (C.12) together gives a matrix form of equation

SFim 8%
A < égm> = wB < 5gm> (I171.11)

where




Appendix D

The Nonlinear Dispersion Relations

of Solitary Vortices in Magnetized Plasma

For fecent few yeérs, various solitary vortex solutions have been obtained
in magnetized plasma and the number of publications on this topic is growing.
In this Appendix we intend to list these solutions for reference. Since all these
solutions have the same localized dipolar structure as the one obtained in nonlinear
Rossby wave equation, here we é]assify these solutions according to their nonlinear
dispersion relations.

1. Solitary Drift Vortex
Single field,¢(z,y,t) = ¢(z,y — ut).

Nonlinear Dispersion Relation:

(T. Taniuti and A.Hasegawa, 1982)
2. Solitary Electron-Drift and Ion-Acoustic Vortex
Single field,¢(z,y, 2,t) = ¢(z,y + oz — ut)
Nonlinear Dispersion Relation:
e w(u — vg) — o?
u2
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(J.Meiss and W.Horton, 1983)
3. Solitary Flute Vortex
Two fields,n(z,y — ut) ,¢(z,y — ut)

Nonlinear Dispersion relation:

v s .
k* = W@ t1)’ (v =gra/vi;)

(V.Pavlenko and V.Petviashvili, 1983)
4.Ballooning Vortex
Single field, ¢(z,y + az — ut)

Nonlinear Dispersion Relation:

—g/Tn
A

( A.Mikhailovskii et al., 1984)
5.Alfven Vortex
Two fields, ¢(z,y + az — ut),¥(z,y + az — ut)

Nonlinear Dispersion Relation:

o 012c2A —y?
k™ = a2c2 p?
AP

(A.Mikhailovskii et al., 1984)
6.Short-Wavelength Drift Vortex

Single field, ¢(z,y + az — ut)




Nonlinear Dispersion Relation:

L2 1—vd1/u—a /u (0es = /Ti 2 =
pes ’ “ Me e mew?e

(A.Mikhailovskii et al., 1984)

7.Electron Gradient Vortex
Single field, ¢(z,y + az — ut)

Nonlinear Dispersion Relation:

g2 o b = — 1)
(1 + wze/w ) B 7'nwce‘352

(G.Aburdzhaniya et al., 1984)
8. Convective Cell Vortex
Three fields,n, ¢, and v = f(z,y + az — ut)

Nonlinear Dispersion Relations:

B2 = o
a? — u?

(P.Shukla et al., 1985)
9. Shear AlfVen Vortex in Very Low [ Plasma
Two fields, ¢(z,y + az — ut), A(z,y + az — ut)

Nonlinear Dispersion Relation:

8Tnol e

1—a?/u?
B? )

el
zme/miﬁ

(8=
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(P.Shukla et al., 1985)

10. Drift-Alfven Vortex

Three Fields, ¢, A),andn = f(z,y + az — ut)

Nonlinear Dispersion Relation:

(v — vae)(u? — uvg; — a?)

k? = —
(u — 'Udi)Oé2

(P.Shukla, M.Yu, and R.Varma, 1985)

11. Kinetic Alfven Vortex

12.

13.

Three fields, as in 10.

Nonlinear Dispersion Relation:
k* =1—u?/o?

(P.Shukla, Y.Yu, and R.Varma, 1985)"
Flute Vortex in Rotating Plasma |
Two flelds, n(z,y - ut), d(z,y — ut)

3

Nonlinear Dispersion Relation:

2 UV, T vg'
u(u + T;/T,)

(W.Horton, J.Liu, J.Meiss, and J.Sedlak, 1985)

Modified Flute Vortex in Rotating Plasma

Two fields, same as in 12.

189




Nonlinear Dispersion Relation:

k2 = ufve + Ap(u — vae)] + vy

u(u+ Ti/Te)

(3.Liu, 1985)
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