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Abstract - - »

The integral equation for the magnetic combressiona,l mode, accounting for geo-
metrical effects along the field line and using the eikonal approximation across the field
line, is solved numerically for the eigenvalues and eigenfunctions. These results Tepro-
duce the analytic estimates when there is strong drift reversal. The’ representation of
the eigenfunction of the form E|| = (C(¥) /B)i%'ﬁfL is found to give accurate growth

rates over a large range of parameter values. For typical EBT-S parameters, instabil-

ity is observed for all pressure scale lengths just below those needed for drift reversal,

i.e. |RO(P, + P.;)/2B%3r| > 1 (where P is the particle pressure, ¢ and k refer to cold -

and hot components, B is the midplane magnetic field, and R is the midplane radius of

curvature). If larger core densities are present, a wave-particle resonance arises when the

particle drifts are not reversed, causing instability up to much larger pressure scale lengths. -

Stability for all values of the ratio of hot electr'on;density to core density is obtained with

lRaPc/B26r| > 14+ P|]h/P.Lh-




I. Introduction

Systems in which the magnetic driffg frequencies are large compared to those en-
countered in magnetohydrodynamic (MHD) theory may be susceptible to a magnetic com-
pressional instability. In particular, this would be the case if one attempted to stabilize
otherwise MHD unstable systems by introducing a super-hot component.??®* The exam-
ple which we will study here is of the trapped particles forming the hot electron rings in
the Elmo Bumpy Torus (EBT) device. This mode is also of great interest in symmetric
tandem mirrors employing a super—hot_ component in a similar role. In eifher case, it is

hoped that the system is stabilized by the minimum-B of the diamagnetic well formed

by -the -anisotropic pressure of these energetic :pa,rtic]es, which -are trapped in regions of -

unfavorable curvature. However, the reversal of the vacuum grad-B in the bad curvature ‘

areas can lead to a magnetic instability having the polarization of a compressional Alfvén

wave, i.e., with the perturbed magnetic field, ﬁ” | Bo. In EBT such a mode can arise if .

the background density is too high. This mode is just one aspect of the hof particle sta-
bility picture; even if this mode is stable, the system may still be susceptible to MHD-li-ke
instabilities, such as the interacting pressure-&riven interchange mode,? and precessional
modes.*® | .
Here, we consider the numerical solﬁtionof the integral equation describing this
.  mode for a single cell of an axisymmetric multi-mirror system. In general, a Ii)a,ir‘of_ équpled

- equations involving B”, the perturbéd magheticv field, and 3, the perturbed electrostatic

‘potential, must be solved simultaneously. Due to the 'large.differen‘ce in frequency between -

the magnetic compressional mode and the interchahge mode arising out of the ¢ equation,
we do not expect this coupling to strongly affect the magnetic compressional mode. Thus,
we solve here only one equation in f3”, and will study the coupled system in subsequent
work. The integral equation arises from the bigh bounce frequency of the trapped hot
electrons. We assume that the perturbation has an eikonal behavior in the direction per-
pendicular to Bg. A relatively simple solution arises in a deep diamagnetic well. ‘However,
for a moderate well, the sirhple solution is unjustified and a numerical solution of the inte-
gral equation is necessary. We find that more pessimistic results arise than from the simple

theory. Study of the solutions leads one to believe that a description of the mode with the
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assumption that BII = (C’ (¢) /B)dP L n/di is accurate for growth rates if the subsequent
integrals are not épproximated further.

In Sec. II, the numerical model is developed from the governing equations. Section
III presents some eigenvalues and eigenfunctions obtained from its sélution. bF inally, a

summary of these results is given in Sec. IV.

II. Numerical Model

The general equations describing the response of a plasma containing a highly
energetic species to a perturbation of arbitrary polarization in a multi-cell, bumpy cylinder
geometry have been derived elsewhere.%7 Tré'atin'gbthe hot electrons with a drift-kinetic
description, and employing an MHD response for the core plasma, these equations retain
ﬁﬁite Larmor radius (FLR) effects and allow frequencies comparable to the ion cyclotron
frequency. Here, we seek a much simpler system to solve and neglect the FLR terms, as
well as taking the limit w/wy << 1; wy is the hot electron bounce frequency. The resulting

equation describes the perturbed parallel magnetic field when written in the form -
B“(x) = B”(s) exp[i8(¢, 0)],

with k| = f@ —l— ngg—i. We find that the amplitude satisfies

B 9B |¢+ﬂ°—k2 2

= m /dEdl'LB 2 wae (6,,[1,, )‘|’mqf:—eaa—'z:bi
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deduB?
Pip= mh/ LA!,IJ"'h(E,/iﬂﬁ)

o]
22 as
ki:r < ) V|2
thXﬂ:rB
LT ﬂ 2
V|2 — dy 4B|,
ﬂc=2Pc/B2.

m; and g; are the particle mass and charge, respectively. The subscripts ~ and ¢ then refer
to thg hot and background species. Note that the core plasma is assumed to be isotropic.

" In the limit that [(l/B)BPLh/azﬁ] >> |&/r|, this equation can be readily solved.
In fact, to lowest order in «, it can‘be shown® that E’” =] (C’(z,b)’/B) dP_Lh/dgb. Expanding

. the resonant denominator of Eq. (1) with w << Whh, Wich leads to a dispersion relation,

Y% ds[dPiy d (P.\ . gwwp d
/0 [d@b d¢< )+ ) dv,b( ) Bd¢(PLh+PIIh)

w? 1 dP;y _ '
Tk (3 2 ) }‘0' )

The integral is carried out from the midplane of the cell to the mirror throat.
- Of course, when [1/BdP,/dy| = |k/r|, this solution is inappropriate and we
must solve the equation numerically. For this purpose, we expand E"” in a complete set of

functions, fn, of s, the length along a field line from midplane,

‘ B|| Z anfn(s

* The solution yields a value for w and gives the constant coefficients, an.

When there is no coupling to the perturbed electrostatic potential, as is the case
here, 3” vanishes outside of the hot electron region. We assume BII to be e;ven in s;
the symmetry of the system allows eigenfunctions which are even or odd. Then, it is
reasonable to choose even _functions which go th'roughvzero at the edge of the annulus and

vanish outside of it: _
Se - = . (3)

(n—lz2)s !

cos | 0<s<s

fn(s): { [ ] c
0 s <s< L,




where B(s;) = B.. For comparison purposes, two other representations of B” are investi-
gated. The single term representation,
‘ A 1 dP,,
By =a0= ——

| = @o B dy ’
is clearly valid when w/(w;) << 1, since B” = (C(z,b)/B) dPy1/di in that case. We will
- assess the accuracy of this approach for larger values of w/(wy).

Also, a Gaussian test function,

will be employed._ So is fixed and Ag, a cqmp}ex number in general, is varied so as to
minimize the quadratic form.
In order to obtain the eigenvalue, w, we first multiply Eq. (1) by B“ /B(s) and -
. integrate along the field line. Using the above expansion for B”, we then have
. . ‘
Z akankj(w) =0,
kyj=1

where

1%A

Lz g 1 9P ' 2
QMM=A jghﬁm@(u7§a;u+m—§ﬁ>]_

. < OF, + myl 8F,
J¢

- L2 gs dedp . it 0%,
—m i - 2B. .
h/O B / o] ¥ W — (wa)

><fk><fj>-
Va,ryin_g_‘this expression with respect to a;, we find

N ,

Z%’Qij(w) =0,

j=1 '

for 1 = 1,00. Then, w is determined by requiring that these equations have a non-trivial
solution. That is, |

det|Qu(w)| = o. A )

Specifically, we take

[1_ (¢—¢n)2] (4B —e)e=</T

4P, a2 £ < U< €
Fy, = mpV2rT7/2 (1=Buin/B.)3/2(1+4B;/Buin) Be Bin (6)
: €
0 _ O<u< B,




where Bnin = min[B(s)] < B; < Bmax = max|[B(s)]. Doing the appropriate integrals, the

hot electron density and pressure can be obtained:

o 2P, (1 - Y28l . (1— B/B,)¥?
R myT B (1 — Buin/B.)?/?(1 + 4B,/ Buin)

10n, _ —2P1, L @W-9)?1B. (1 ~ B/B.)Y*(1+ 1B/B.)
B 3B  miT AY? | B® (1 — Bmin/B:)3?(1 + 4B./Bmin)

P —.f’ [1— (‘P—%bo)zJ (I_B/Bc)3/2(1+4Bc/B)
LTI YT T AYT T | (T - Boin/Bo)¥2(1 + 4B, /Bain)
L (1/}__¢0)2 B, (1—B/Bc)5/2
Fiin = 2P1n [1 C Ay }3 (1 = Bnia/Bc)*/(1 + 4Bc/ Brin)
18Py 2P [1 (¢—¢o)2J (1—B/B.)Y/*($B* + BB. +2B?)
B 8B ‘"["7 AY? | B.B3(1- Bumwn/B.)¥?(1 + 4Bo/Boi)

10Bm _ Y-S PR ¢0)2}& (1 - B/B.)*?(1+2B/B.)
v‘ B‘ 9B - - A¢2 B3 ('1 - Bmin/Bc)3/2 (1 -+ 4Bc/Bmin') -

The core pressure is assumed to be constant along a field line with the radial

dependence written as

A2

Pe(y) =

A

Pc | ¢<¢O-

Finally, we express the vacuum magnetic field as a function of sin the form

{Pc[l_w] ¥ > o

By (s) = va?x [(1%— 2¢€) + ¢(1 — cos -2%) — | o (7)

If r(s) describes the position vector of a point on a field line, the curvature is

- given by & = d%r/ds?’. In a cylindrically symmetrib geometry, (r,0,z2), this becomes
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k = d®r/ds®? + d®z/ds?s. We will assume a long-thin system, r/L << 1, and note that

z=s+ O(r/L)?. So, it is Teasonable to take

d’r
ds?’

(8)

|| =
Furthermore, the long-thin equilibrium condition can-be written as
B2(s) = B(s) — 2[PL(s) + Pi].

This implies that the finite pressure equilibrium does not change the curvature much from
its vacuum value. Then, the magnetic flux is given by

B,r?

5 T O(BrAy).

P

. By conservation of flux along a field line, we can then infer that
r2(s) = rZ By min/By(9), (9)

where ro = r(s = 0) and By, i, = By(s =0). Thus, Egs. 7, 8 and 9 yield

K e47r2 r\? 2rs 3 € r\° o 278 :
Ay R - = — in* — . 10
r 2L2(1 — 2¢) (ro) [cos L 21—2e(ro> s L I (10)

IR

Using perpendicular pressure balance, these quantities give a value for the radial

gradient of the field strength,

(14 gl

18P 18P,
@:"E_é'z’/?hzs_ﬁa_zp“s"'%
W 1+ 558"y

Finally, the expression for ki given below Eq. (1) can now be written as

£2 B'U(S) 22 a5 2B2(3) vain ~ 1.2 B2(3) vain :
=35 TOBmin a7 > = k_j_o““"'—2 - s
3%) B2 B,(s) OB B,(s)

min

KL ()

2 .
o By min min

when (r&/£2)(88/84)2 B2, >> 1.

‘min

Normalizing the frequency, we can write the matrix elements of Eq. (5) as

Qii(¥) = @ (W) + @Y (v), | (11)
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fi(s)f;(s) (11a)
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o [ sy
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where we define

a=cz/cy
7(A)y4,
€2 = ——Fp
. 'Ro
_AY 1d%r PJ_h—P”h_ ‘ 1d%r (B, 1dP,;, 1dP,
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amnfZ Pu
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Qth min

Wemin =

mp
, A
=220
'» min’'0
and Ry is the radius of curvature at s =0, Ry = —[k(s = 0)] 7.

Once y is determined, the eigenfunctions can be found by fixing one of the coeffi-

- cients and inverting the hon-vanishing matrix to obtain the a,’s. Note that the sign of a/2
appearing in the integrals I(!) and I(?) is set such that its imaginary part is non-negative
when Imw > 0; this is in keeping with the definition of the plasma dispersioh function used

in obtaining the above expressions.

"III. Results

Relevant values of the dimensionless quantities needed here are calculated using .

EBT-S parameters.® We take By min = 5kG (at the annulus location), and By, max = 10kG
to get a mirror ratio of 2. This corresponds to using ¢ = 1/4 in Eq, (7). The length of
a mirror cell is L ~ 40cm., and the f'adius of the hot electron ring is 7o ~ 10cm; thus,
ro/L = 1/4. We can then calculate Ry = 16cm. from Eq. (10). Assuming P, /B2 _. = .2
yields a maximum ), ~ 40%. The hot electron riné is presumed to extend halfway from
midplane to the mirror throat, i.e., sc/L = 1/4. In determining a vahie‘ for Qiho /K3 ov% (0),

the azimuthal and radial mode numbers must be fixed. Following Ref. 2, we assume

k3 ord =400 (corresponding to k1o = 2/A, at A, = lcm.). The hot electron temperature,

T, is set equal to 500keV. We will consider:

( ) wzho ( ) w2h0
i) —f=— =2, and 1) ——tr=— = .014.
k% ov%(0) k2 ov (0)

If we use £ = 3 for the azimuthal mode number, these values correspond to core densities,

n; = 2x10%cm. =% and 1.3 x 10*2cm. 3, respectively. The latter figure is typical of EBT-S

experiments, while the former represents a reasonable regime for a more advanced device. -

Note that even if we fix n; = 1.3 x 1012¢m.~3, we can still obtain

—2“"2“’2‘—0 =2 i  £=1L
k10v24(0)




Regardless of the interpretation of the parameters in case (i), we will see that the mode is
far from marginal stability, and will give rise to some Very interesting behavior when the
particle drifts are reversed. Finally, we take 1 = 1)+ %‘é in order to examine the behavior
of the system in the middle of the pressure gradient region.

-~ Since Eq-(2)-provides a good-approximation-to the eigenvalue for wk(wd) << 1,
it is used to obtain a starting point for other calculations. The value of (wg) can be
varied by altering the annulus thickness via the parameter A,,, = A, [ro; in perticular,
“w/{wg) << 1 when A,, << 1. Following experimental estimates, previous theoretical

investigations used A, = 1 — 2cm. (i.e., 4,,, = .1 —.2); more recent measurements show

- that Ay may be as large as 5cm.%10:11 - ‘
_K_h_O_ 2 —
Figures 1 ( kK2, v3(0) ) and 2 (—ﬂhﬂ———(o) 014) show the imaginary part of

the eigenvalue as the parameter A,,, is scanned. Both of these ﬁgures contain curves
- generated by using the asymptotic expansion, Eq. (2), and in each case, the resultsimatch

quite well with complete solution for A,y S .1, but differ significantly for larger ring

widths. The errors increase as the scan proceeds due to a gradual decrease in the validity

of theexpansion of the resonant denominator. Also, it is apparent that Eq. (2) yields
stable solutions for greater pressure gradients than the integral equation. Thus, we see
that the integral equation gives more pessimistic results.

Since Tﬁ% is proportional to n;; the solutions of the integral equation indicate
that a smaller core density will allow a larger pressure gradient before the magnetic com-
pressional mode is destabilized. In particuler, Fig. 2 suggests that A,/ro 2 .2 is needed
for the system to be stable. The ,{rery high density case, represented by Fig. 1, requires

a considerably wider ring to be stable, A, 2 7o/2. There are other interesting effects

2

occurring in thls case; all of the calculations to follow assume ——3”*—9@— 2.
Lo A

Now, we fix the value of A,,, and scan over the core pressure, P, (Bc ~ 2Pc /BZ_.).

Figure 3 shows the imaginary part of the eigenvalue for A,,, = .3. In the plot, three curves

appear, representing the results of using: B|| C_](;/;z %h, ten term cosine series, and
the asymptotic expansion. All three of these methods indicate stability for 8. 2 17%.
From the results of Refs. 2, 6 and 12, it is known that the magnetic compressional mode is

stable for all values of ny/n; if B.Ro/24, > 1+ P,/ Py But, since we consider here one
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particular nonzero value of nj/n;, the restriction on . is less severe, about half of what
is required by 5 M > 1. |

An analytlc_ approach which is valid for arbitrary values of A,,, can be obtained
in the manner described by Berk, et al.? The authors employ a delta function distribution

for the-hot- electrons in a local (no bounce averages) WKB approximation. If we take

Fr(p), 1) o 6(p) — pno)5(ﬁ — o),

with B, ~ P, /Pin < 1, we obtain a cubic dispersion relation for the magnetic compres-

sional mode (we evaluate all quantities at midplane, s = 0)

y® + azy® + a1y +ap = 0, - (12)

where

By mi dB
Qg = _co_z)BrI:; <7’0Ro@ "P“h/PJ_h)

= —(1+ Be+Bin )ﬂ—Q”—A—)
wnhO_

Bomin k15v4(0) | d (P
=- P/ P Buin — | 53 ) |5
@0 COBmln : iho ! + ”h/ LhF ROrO dtﬁ B2

and co is a numerical factor relating po to the parameter T used in Eq. (6).

It is a straightforward‘ procedure tovca‘lcula,te the marginally stable value of Pc
for a given value of Ar;n. A calculation with the paramefers used in Fig. 3 gives a value
within 10% of that seen in the plot. Discrepancies of this' size can then be attributed to
the lack of field line averages and to differences in the distribution function. Note also that
when M becomes larger than 1+ 5 f“i , @g changes sign and 'force"s the roots obtained by
'balancmg the last three terms in Eq. (13) to be real for any value of m:_f(—oi' This is the
origin of the criterion d1scussed in Refs. 2, 6 and 12.

Returning now to Fig. 3, we note that the results obtained from using> B” =
J';l d—P-'-lL differ by less than 10% from those calculated with the ten term cosine series.
The asymptotlc expansion is considerably less accurate, as would be expected for such

a large value of A,,,. However, these differences get smaller as P, increases, becoming
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negligible as marginal stability is approached. Similar behavior is observed at other values
of App,.

Figures 4 and 5 show the field line dependence of B” in two céses. This is
determined by the method described in Sec. II. For comparison, we include a plot of
- (1/B)dP 1 /dy as a function of s.- We then see that the reason for the above trend is that
El,(s) converges toward (1/B)dP.p/dy(s) as the core pressure gets larger. Note that the

single term result yields a good 'eigenvalue for 213 <— = .002 even though the eigenfunction

¥ min

differs considerably from the correct result. _
We note that the degree of validity of B” = (C(y)/B)dPp/dy is dependent on
the extent to which® - ' o - ' ‘ o
1dP,y
B dy

ko 1 dP,

T B dy

. | (13)

- Then it is clear that this approximate form of B||, as well as the expansion of the resonant
denominator in Eq. (2), will become more accurate as the core pressure is increased. This
explains the decreases in the errors seen in Figs. 3-5.

When the above inequality is well satisﬁed, the hot particle drifts are reversed from
their vacuum values. For ]5,: = 0, this is th‘eAcase for A,m S .25. However, A,,, = .3 yields
drifts in the same direction as in vaéuum. But, it is clear from Eq. (11) that larger core
pressures may also bring about drift reversal. This 6écurs in Fig. 3 before the marginally
stable point is reéched; that is, Eq. (13) is then well safisfied.

‘Using the calculated coefficients, a,,, and eigenvalue, w, both sides of Eq. (1) can
be coniputed as a function of the number of terms in the series, N. In Fig. 6 we plot
the negative logarithm of §, defined as the absolute value of the difference between the
right and left-hand sides of Eq. (1) for N = 2 — 10, and A, = .1, .2, .3, and .4. This
is a measure of how well the expansion worked at each N. Clearly,-N = 10 represents
an effectively converged series for A,,, = .1 and 2, but not for A,Tmb = .3 and .4. For
Arm: > .4, ten terms soon become insﬁﬂicient to represent the eigenfunction, and v§e are
not able to deterine the marginally stable point at large core densities using this method.
The single term représentation, B | = 97(3@ 4P also becomes ineffective at this point. For

dy
example, Fig. 7 shows the eigenfunction calculated using the ten terms with A,,, = .4435
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and Pc / BU min = -002. The peak near sy = .07 requires a more rapid variation along the
field line than f¢ is capable of providing. As a result, there is quite a bit of overshoot at
large s where B” should be smoothly approaching zero.

At this point, the Gaﬁssia,n test function of Eq. (4) proves very useful. The curve
in Fig. 1-1s extended pastv Appm =4 by this approach. Matching results at A,,, = .4 as
- closely as possible suggests setting so = .04. We then observe that the mode stabilizes
when A,,, 2 .5, and is damped from there on. Apparently, the change in sign of Im w
results from a change in the relative sizes of the w&E 6 and ng/; terms in the kinetic integral.
This behavior can be explained as follows. First, we note that Re y = Re(w/wxho) < 0
in all cases. - When -the average drift frequency, (w;) (a function of pitch ’angie‘, :A)‘, is
-normalized in the same manner, it is positive for drift reversed particles (small Arp). In
'thls case, if Im w = 0, I(!) and I of Eq. (11b) are real, and it is possible to have purely
—oscillatory solutlons as in Fig. 2 for A,,, < .2. Here, the decreases in a ¢ F and (wa)? arlsmg
from the increase in 4,,, gradually reduce the effect of the hot electrons, and, hence, -lower
the growth rate. |

However, (wg) < 0 for large, Arm, and there is a possibility ‘of. having par-fi‘cles
resonate with the wave, Re w = (wg). Due to the fact that all particle energies are allowe..d

by the chosen hot electron dlstrlbutlon functlon, there is always a fraction of particles

for which this is approximately true and for thls reason, there is always some lmaglnary_

contribution made by I(1) and I(®). To obtain marglnal-stabﬂlty now, the ‘g—f; term must
be small enough to exactly cancel w %= in the kinetic integral, e.g., for 4,,, £ .5 in Flg 1.
Unlike the case in Fig. 2, the solutlons at larger A,,, are not oscillatory, but da.rnped

The pea,k observed in Figs. 4 and 7 is a characteristic of the resonance. Apparently,

" the eigenfunction reaches a maximum value at a position along the field line near the.

turning point, s7(A), of the pitch angle, A, which yields the average drift, (wq)x, closest
to being resonant with the wave frequency, w. As Im w decreases, the peak becomes more
pronounced. Thus, we expect the convergence of the cosine series to get worse as the

mode stabilizes. The Gaussian test function was chosen to circumvent this problem and

- appears to do so effectively. As was mentioned before, increasing the core pressure towards

marginal stability for A,,, = .3 and .4 also gives rise to drift reversal. In that case, the
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resonance is removed, and convergence should improve.

IV. Summary
We have numerically solved the integral equation to determine the eigenvalues
and eigenfunctions of the magnetic compressional mode; the results match those of the

asymptotic expansion in the case of a deep diamagnetic well. The use of a trial function,

B) = Q’.('ﬁl %ﬁ is found to give accurate eigenvalues over a large range of parameter

values (Fig. 3), although % %ﬂ can at times differ considerably from the actual B“
(Fig. 4). B

In those cases where there is no drift reversal, and large core densities are present,

‘a wave-particle resonance appears and causes the mode to be unstable unless the ring

- half-width is some significant fraction of the annulus radius. Numerically, it has the effect

of reducing the rate of convergence of the expansion, Eq. (3) (Fig. 6); eventually, it. makes
solutions via that method impractical. Use of the Gaussian test function, Eq. (4), proves

very helpful in following the mode to marginal stability in this case.

~ Small values of the ring half-width, 4, < 2cm., indicaf;e instability for values of
the core density, n; (Fig. 2) achieved experimentally. The real part of the frequency near
marginal stability is on .tvhe order of the curvature drift frequency of the hot elect'ronszl w ~
2wgro in Fig. 1, and w ~ dwepo in Fig. 2. With the parameters used in Sé’c._ IH‘,_ we can
calculate corresponding oscillation frequencies, 3> ~ 60 and 120 MHz, respeqti{fely, Hiroe.
et al.!® recently reported experimental observations of instabilities with frequencies around
100 MHz as the ambient pressure was reduced from the T-mode regime; further reductions
of the ambient pressﬁre were accompanied by a drop in this frequency, peaking near 20
MHz at the T-M transition. Although the magnetic compressional mode cannot be clearly

identified as the source of these ﬂucfuations, it should not be ruled out as a possible source.

Recent experimental determinations of radial width indica,té that the radial scale
lengths are considerbly larger than 2cm. in EBT-S.910:11 On face value, this would in-
dicate that the magnetic compressional mode should not be excited. However, it is still

a possibility that the nonlinear properties of the mode are causing the observed radial
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spreading of what would otherwise be a sharp distribution.

Finally, an analytic approach emplbying a delta function distribution for the.hot
electron,?% is used to provide values of the core pressure and density at marginal stability.
The results of the calculations are in good agreement with the numerical computations
in-the drift reversed situations. The condition for stability of the magnetic compressional
mode with an arbitrary value of nj/n; then appears to be that B:R/24A, > 1+ P”h/PJ_h,
even when ,BhR/ 2A, is not large. Of course, if this were the case, more familiar MHD
modes could be unstable. In particular, note that this criterion requires a value of Be
above the Lee-Van Dam limit for stability of the interacting pressure-driven interchange.
--More generally, it is seen that a giveﬁ value of ny/n; can be stable if the pressure scale -

~length, A,, is large enough.
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Figures Captions

1.

Imaginary part of the eigenvalue plotted as a function of the parameter A,,, with
w2,0/k3,v4(0) = .2. Curves representing a calculation with a ten term series
expansion for B”, and one with the asyxﬁptotic expansion, Eq. (2), and a Gaussian
test function (Eq. (4), with so = .04), appear.

Imaginary part of the eigenvalue plotted as a function of the parameter 4., wifh
w2,0/k% ,v%(0) = .014. Curves represenfing a calculation with a seven term series
expansion for B”, and one With the asymptotic expansion, Eq. (2), appear.

~

Imaginary part of the eigenvalue plotted as a function of the parameter, 52&———

v min

with A,, = .3. Three curves appear: = one term re_presentat,io‘n,,B” =

(C(¥)/B)dPin/ dv,bé ten term cosine series; and the asymptotic expansion, Eq. (2).

Eigenfunction plotted as a function of the distance along the field line, s, for

Arp = .3 and Bgﬁ = =-002. Two curves appear; one is the result of the ten

v min

term cosine series calculation; the other is a plot of (1/B)dP,/dy provided for

comparison.

. Eigenfunction plotted as a function of the distance along the field line, s, for

A,y = .3 and 3—va = .084. Two curves appear; one is the result of the ten

v min

termi cosine series calculation; the other is a plot of (1/B)dP, /dy provided for
comparison. R '

Negative logarithm of 6, the difference between right and left-hand sides of Eq(l),

‘evaluated with the values of w and B” obtained by using an N term cosine series

v'expressio'n for B“. Separate curves appear for A, = .1, .2, .3 and .4.

Eigenfunction plotted as a function of the distance along the field line, s, for A,,, =

.4435 and 213 «— = .002. The ten term cosine series is used in the calculation.

v min
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