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Abstract

The magnetohydrodynamic particle code has been developed to three dimensions

in a cylindrical coordinate system in order to describe the plasma in a torus. Toikeep -

the noise level down, the finite differences are defined halfway between grid points and the
magnetic force is defined in a non-conservative manner, i.e., Fas = (1/4) (V x B)x B. Two
practical examples of using such a code for physics applications are reported: simulations
of high amplitude Global Alfvén Eigenmodes and stabilization of flute modes by a hot

electron ring.

1 To appear in “Algorithms, Archltectures and the Future of Sc1ent1ﬁc Computa—
tion”, edited by T. Tajima and F.A. Matsen, The University of Texas Press.
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Canada K1AORS.




I. Introduction ‘

The fnagnetohydrodyna,mic (MHD) partfcle codes, which use a particle method to
- follow the plasma motion on the MHD time scale, have already been extensively developed
in earlier works.!>2 In these codes, the particles represent elements of a fluid in a Lagrangian
fashion and their orbits are solved using the MHD force. In return, the fluid moments,
such as the mass density and fluid vélocities, can be evalﬁated on a grid by using the
particle velocities, in order to advance the magnetic field in an Eulerian way. -

In this article, we report on the extension of such codes to the full 3 dimensions
and also the ektension to the cylindrical coordinate system in order to describe a plasma

in a torus. We also report on the required improvement of the numerical techniques.

- The main advantage of such a code is that the continuity equation is automatically -
sa.tisﬁed and we do not have to solve any of the fluid advective terms since we follow the _

characteristics of motion. These advantages are clearly seen in the examples given here.

Since we do not use any artificial viscosity, we are able to follow the evolution of .giobal
Alfvén eigenmodes (which have a very small damping, i.e., v/w =~ 1 — 3%) to a very
high amplitude level in a diffuse plasma column. Among other improvements, we show

in another example how a hot electron plasma can be added to the model in order to

describe the stabilization of flute modes due to a hot electron ring in the Elmo Bumpy

Torus (EBT).

II. Numerical Highlights .
In a cylindrical coordinate system (r,¢,2) described in Fig. 1 with ¢ = rof, the

equations_of motion for the fluid particles become

pl = h2Fs, Bty
pé:Fz-_

The terms F* (when ¢ denotes the r,¢, or z direction) are the contravariant components of
the MHD force F= ]4:';, + Fy=—Vp+ (4_;7r)‘1(€7' X E) x B, while the subscripts pertain
to covariant quantities. We use the following metric d2 = h2 dr + h? d¢ + h2dz, where

hr = hy =1 and h; =r/ro. We define an angular mbmentum = h? ¢ which allows us to
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advance the particles in time using a simple second order accurate (time cen_tered) explicit
scheme

The pressure force term becomes simply F* = 2 6P where z* = r,¢ or z. How-
ever, note that the magnetic term can be expressed in many different ways. An ordinary
proce&ure would be to evaluate it in a form that is conservative in a cartesian coordinate
sy'stem, ie. Fyp= —6(3 2/8m)+ V.BB /4m. But, in the cylindrical coordinate system, this
advantage is lost due to the apparition of new terms containing the Christoffel symbols, so
that this F, M is not conservative any more.® If we try to implement Fas in this form, we
find an unacceptably high level of noise. A possible exp]anation is that our code is very
sensitive to the type of interpolation used between the grid and particles, in addition to
how we define our finite differences.? We can exactly satisfy V-B=0 only in the finite -
difference sense. However in a cylindrical coordinate system, the second term in F M 1.€.
V-BEB generates a term V - B which does not vanish exactly anymore in a finite difference
sense. This and the addition of new terms due to the presence of Christoffel symbols may
generate more errors in the force term, thus enhancing the noise. This problem is not
present in cartesian coordinates.

This problem is however circumvented by evaluating the magnetic force as Fos =
(47)~1(V x B) x B. This becomes in tensoral notation

. 1 (B, &, . B | :
V- B — —f_—_ 2
FM 47rhf { hx a7k (thz) hi 8zt (thk)}a ( )

where we have a summation over k and t'hevec'tor.c.omponents B;, Bk denote the usual

physical components of the magnetic field with ¢, £'= r,¢ or z. With this arrangement,
we have achieved a noise level as low as in the cartesian system.
‘We find no numerical problem associated with the magnetic field equation, i.e.

8B/8t = V x (¢ x B) —nV x (V x B) expressed in cylindrical coordinates as®

(9B¢_ 1 0 he lo} . ad
at hiheaxﬂ'{he(szy B>+"hh <aacfhsz Eyil B>} 6

where we have a summaﬁon‘over J with 7 # ¢ and £ # 1,7. Equation 3 is advenced as
before using the Lax-Wendroff scheme for the advective term (first term on the rlght) and
a first order explicit scheme for the dlﬁuswe term (second term on the right.)

In cyhndncal coordinates, we find it is also necessary to define all finite differences

at a position halfway between grid points as done previously with the pressure term.? For
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any quantity A;;x we then have

o 1
(@%‘k) =1 {Ai+1,j,k — Ak
i+1/2,5+1/2,k+1/2

T Aitrj41,k = Aigrts b+ Aipgkern — Aig k1 + Airj41,k41 “-Ai,f+1,k+1}- (4)

Here the main purpose is to improve the accuracy of the derivative in the description
of short wavelength modes since the new finite differences span over the grid spacing
only instead of 24, as is the case when the differences are evaluated at the grid points

themselves.

Since we do not describe the point r = 0 (see Fig. 1), it is possible to pus'h_ the _

.particlé's in cjlindrical coordinates using Eq 1. The velocities are pushed as follows
. 0 . .
¥ = [T(n—l/z) + %}e(n—l/ﬂz _I_Fr(n):l At/2,
r n

o(n+1/2) _ fn—1/2) L P A, e
2 ‘ '
F(n+1/2) — gy [—%z(““/”g + F}”)} Atf2.
_ r
Similarly for the positions, with £ = (r/ro)%¢{, we have

rg ﬂ

* _ .(n) 4 p(n+1/2)
¢ ¢ +£ r(n)2 9 °

r(n+1) . T(n) + :,‘(n+1/2)At, . (6)

2
(n+1) _ o5, plnt1/2)__To At
g g +e T(n+1)2 2 b

‘where the superscript n represents the time step, i.e. ¢ = nAt. We push the z component-

with the usual leapfrog method. Equations 5 and 6 represent a simple explicit time-
centered numerical scheme which is stable as long as vAt S A,r which means that the
point r =0 must be excluded. |

For the boundary conditions, our system is' p_eriodic in ¢ and bounded in r and-é
with perfect conducting boundaries where the fluid particles are reflected. In the bounded

directions guard grid points are used.




II1. Nonlinear Global Alfvén Eigenmodes
Global or discrete Alfvén waves (GAE) are a set of the MHD eigenmodes of a

current-carrying inhomogeneous confined plasma. Their eigenfrequencies lie below the
minimum of kj(r)V4(r), where  is the direction of inhomogeneity, k| is the wavenumber
along the ambient magnetic field By, V4 = By/(47p)'/? the Alfvén speed and p the
- plasma density. These modes are different from the so-called “MHD continuﬁm” which

are characterized by w > (k|V4)min-

Computer simulations are carried out with our 3D MHD particle code for a square
cross-section cylindrical plasma, \column with its axis along the z-direction.? The éyiinder
is bounded in z and y with perfect conductors and is periodic in z. We use a 16 x 16 X 16
grid. The equilibrium is described by..go' = €,B, + V_7"¢ X &, with flux function ¥ =
(BLo/k) cos(kz) cos(ky), pressure profile P(¢)) = fk*y?* + Py and Bz(z/)) =2(1 —,3)192@/)2 +
B2, with k = 81p |

We first run the MHD particle code with a thermal level of fluctuations to study

the linear regime. A stable equilibrium is found for B, = 3B, f = 02,L, =Ly =
L, = ma so that on axis ¢ = 2.07. In Fig. 2a our profile of ¢ is shown. The density p
decreases as a function of z imaking V, increase towards the boundary. In Fig. 2a we also
plot the important quantity kW4 = (27/L.)(£+m/q) as a function of z for our equilibrium
and different valﬁes of poloidal mode number m and toroidal mode number £. At each |
time step the z-transformed magnetic field data (k, = 27£/L,, £ = 0,1,2,...) for the full
:z:A—l y cross-section are stored for 0 < ¢ < T. An interferogram is obtained by performing -
the following integral By(z,y,w) = T7! fo dt Be(z,y,t)cos(wt). The fréquency is varied
-over the complete spectrum and for w correspondmg to an eigenfrequency, the eigenmode
structure appears in Bé(z, y,w). The real part of the eigenmode m =4, £ = 1 is displayed
in Fig. 2b. The imaginé,ry part is rotated with respect to the real part and from the sense
of rotation, we determine that it has.the inverse helicity with respect to the magnetic field.
The eigenmode is found for w = 1.32 < (%) V4) min = 1.43 from Flg 2a. The GAE are then

spatially nonresonant and have w < (k;Va)min-

To investigate the nonlinear behavior of GAE, an helical anteﬁna is>int1joduced
in the plasma cavity at 1 — % grid point from the wall: the helicity (m = 4,£ = 1) and
the pump frequency (v = 1.32) is chosen to coincide with that of the eigenmode we want
to excite. For a strong antenna signal we show in Fig. 3a the plot of magnetic energy

versus time for the m = 4, £ = 1 antenna. Since the mode is broad and extends to the




outside region, it couples strongly to the antenna. In the linear part of its history, ¢ < 56,
the mode behaves like a forced harmonic oscillator. The peak magnetic'energy reached at
t = 56 is very high and corresponds to 6§ B/ By ~ 10% where By is the total magnetic field
strength. The saturation mechanism is that of a damped harmonic oscillator. We show in
Fig. 3b a plot of the mode energy for £ = 0,1, and 2. Even though the average magnetic
energy in Fig. 3a remains fairly constant after reaching its maximum value, the magnetic
energy in the £ = 1 mode (the driven mode) damps away. The energy must go to the other
£ modes. '

Even though the peak magnetic energy reached is very high, we see no evidence of

either a strong global MHD or other disruption process. The plasma remains well confined
-throughout the run and retains its original profile. - The plasma equilibrium seems to be

able to withstand rather high levels of GAE.

- IV. Simulations of the Interchange Instability

The Elmo Bumpy Torus (EBT) device is composed of a series of mirror cells linked
into a torus. A hot electron ring resides in each mirror cell. Without the rings, the plasma
is unstable against the interchange MHD mode. The diamagnetic well created by the ring
can stabilize this instability. '

Computer simulations of ring stabilization of the intérchange instability are cafried
out using a 2 — % version of the particle MHD code.® The Vertical_cross—section of a single_

mirror cell is considered with a radial gravity as the mirror cﬁryature. The hot electrons

‘characteristic of EBT are modeled by a rigid non—interacting current ring immersed in the’

main plasma,® its effect enters as a J-;L x B (Jn the ring current, B the total magnetic ﬁeld) | ,

term in the MHD force on the particles. The force on each j-th particle is written as . -

=

dv;/dt = p~' (Ja x B— VP +p§) = p~*[(V x B) x B/an — VP + p§ — J, x B]

since J = (V x B)/4n = J, + Jh.

The following equilibrium is established initially.n The pressure profile is chosen to

be :
1 r<ro
P(r) = Po { e—(r=m0)? JAr? >

Phot(r) = ﬂhf’i"%e—“—mf/mz
47
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where P(r) = p{i..;(r), Br is the beta of the ring centered at ro with width Ar. The
particles are placed so that Pactual(T,¥) — Pideal(r) 22 0. The equilibrium magnetic field is
obtained by integration from %(Bﬁ /87 + Pactual + Phot) = pideal(r)g(r). The current Jj,
is constant in time and set equal to: fh = B ld%Photﬁ_'. The accuracy of the equilibrium
depends on the size of pactual — Pidea) Which is minimized with a Gaussian profile and a
larger number of particles, typically 64 x 128 on our 32 X 32 z — y grid. A representative
equilibrium is illustrated in Fig. 4 when the maghetic field B,(z,y) is plotted in Fig. 4a,
the pressure Pyctuai(2,y) in Fig. 4b and the gravity g(z) in Fig. 4c for 8, = 0.9, go = 0.03,
and V4 /es = 5.0. o ' ' | |

Typical results are that for ¢ = 0 and. Br = 0, the system is stable as eipected.
For g = 0-and Bhr # 0, the plasma is also stable, again as expected. For g # 0 and -,8;,‘: 0,

however, the interchange instability sets in and exponential growth results. The instability:

is characterized by large vortices at the edge of the pressure gradient. A theoretical analysis

of the system with ring yields a growth rate

o (&enBo - 14en P) ( JhBo,Bc>
w? = — . 1+ ——
1+ 8. Py

with 8. = 2P/B2. Stability is achieved if 85 S a%, with R, the radius of cur_vatureiﬂd

o a constant of order 1. Comparison between theory and simulations is shown in Fig. 5 for

the case without ring; the growth rates are both computed and measured at r = ro+3Ar /4.

- In the presence of a ring (8 # 0, and g # 0), stabilization of the instability is observed

for r < ro +3Ar/4 but not for r > ro+ 5Ar/4.' In this case, the instability observed in the

simulation is nonlocal while the theoretical stability analysis has been done locélly. Foi‘
g>0and By > 0,w? <0for r < remy and w? > 0 for r > Tcrit, Where repy is some Critiéal
radius. This is the behavior observed in the simulations with 7.4 =~ 7o + Ar.

In summary, the interchange mode isv stabilized by a rigid rin_g»,- as éxpected. The
MHD particle code has been used to'shvolw this. Extensions of the code to include ring

interactiohs and 3D effects are desirable for future ‘investig‘ations.

V. Summary
The MHD particle code has been extended to three dimensions and toroidal geom-

etry. It has shown its versatility in its applications to nonlinear Global Alfvén Eigenmodes

in a plasma column and to the interchange instability in a mirror cell of the Elmo Bumpy

7




Torus device. This shows that strongly nonuniform plasmas can be successfully simulated
with the MHD particle code. '
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Figure Captions

Fig. 1 Schematic illustration of the geometry.

Fig. 2 Gobal Alfvén Eigenmode: a) ¢ and k) V4 profiles; b) m = 4, £ = 1 eigenmode with
w = 1.32. , A '

Fig. 3- Global Alfvén Eigenmodeé. Time evolution of: a) the total magnetic field energy
and b) the energy in various £ modes. - _ ’

Fig. 4 Interchange instability in EBT: a) Magnetic field, b) pressure and c) gravity
profiles. '

Fig. 5 Interchange instability in EBT. Comparison of theory (sdlid curve) and simulations

(circles and triangles).
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