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Abstract

Two and three dimensional particle simulation models suitable for the study of

low frequency instabilities in inhomogeneous magnetized plasmas are described. Using -

the guiding center approximation for electrons transverse to the magnetic field and:exact' ..

electron dynamics parallel, as well as full ion dynamics, the necessary physics is included to

study a class of microinstabilities known as drift waves (the universal mode). Applications

of the model to studies of drift wave stability in sheared fields with single and multiple

rational surfaces are discussed.

* To appear in “Algorithms, Architectures and the Future of Scientific Computa-

tion”, edited by T. Tajima and F.A. Matsen, The University of Texas Press.
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1. Introduction and Motivation

The most versatile and reliable tools for the study of the many-body properties
associated with plasma dynamics and kinetic plasma behavior are the particle simulation

techniques.! In a conventional particle simulation the Newton-Lorentz equatidns of motion

are advanced in self-consistent fields to obtain velocity and position data from which charge -

and current densities are collected on a spatial mesh. These densities are then used as
sources in Maxwell’s equations which determine the self-consistent electric and magnetic
fields. The conventional method requires resolution of the fundamental plasma time scale,

an electron plasma oscillation and length scale, the Debye length.

In real plasmas phenomena can occur over a wide range of time scales. First a

- plasma consists of electrons and ions whose time scales are quite different. Secondly, the’

application of a magnetic field breaks symmetry and introduces anisotropy and separa-

tion of time and space scales. For example, low frequency modes primarily propagate in

the direction perpendicular to the magnetic field because plasma electrons are more:con- .

strained in the perpendicular direction but move freély in the parallel one. In order to
enter the r‘egime where low frequency fluctuations dominate the microscopic processes it

is necessary to adopt several hybrid approaches. Although the type of model:preéentéd ih
| this paper is rather specia,l'ized, the approach to modelling.otherv dynamicai processes in

physical systems may be generalized.

In efficiently describing a magnetized plasma consisting of electrons and ions, it

. is necessary to modify the electron dynamics if one wishes to study+the evolution of the

plasma on the ion time scale. One approach? is to describe the perpendicular electron *

dynamics using the guiding-center approximation. Exact dynamics of the electrons is kept
parallel to the magnetic field in order to retain wave-particle resonance effects. Full ion
dynamics is used in order to include finite ion inertia as well as wave-particle interactions.

These have important consequences for low frequency fluctuation stability.

In a three-dimensional plasma model the third dimension along the magnetic field
must be included in the equations of motion and in Maxwell’s equations. In experimental
devices for controlled fusion research such a.é the tokamak, the axial length is much longer
than the transverse dimension (2 10 timeé). If the same resolution along the mégnétic field
is required as across, no computer, presently, could model the plasma. Fortunately, the
important collective oscillations associated with plasma confinement have very long wave-

lengths along the magnetic field line compared to the short wavelengths across. Therefore,
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if we perform Fourier expansions in both directions, a fewer number of modes need to be
kept in the parallel direction in order to describe the necessary physms By employing a
hybrid approach of eigenfunction expansion along the magnetic field and Fourier expansion

on a spatial grid across the magnetic field,® we eliminate the problems of aliasing arising

from the finite grid length in the parallel direction. This method was first used by Chéng

and Okuda in 1977 for modelling drift instabilities in cylindrical and toroidal models.

In the following sections the description of the guiding center particle simulation
model used for the study of low frequency microinstabilities is presented. The model is
used to investigate low frequency waves excited by plasma inhomogeneities such as drift

waves? and interchange modes.? In toroidal confinement devices the magnetic field lines

are twisted or sheared by;currents_induced.iﬁ the plasma and this complicates the,analysis ,

of these fluctuations. The model presented emphasizes the local global plasma profile. This
local approach makes it possible to simulate the structure, perpendicular to the magnetic
field, of the microinstabilities. The method of mode selection is used in order to give the
correct parity of the fluctuations with respect to the mode rational surfaces (k) =0). In
the three dimensional model mode selection, in the z-direction, is used in order to “fit’ the
eigenmodes, localized about many different. ratlonal surfaces (k) = 0, k” =0, Ic” ced)s

within the simulation domain.

I1. Particle Simulation Model

For the two-and-one-half (2 — D) and three-dimensional (3D) slab models con-

sidered here, the magnetic field is oriented in the z-direction with a small y component.
Since the low frequency oscillations of interest propagate nearly perpendicular to the mag-
- netic field (k L >> k”), the particle motion can be decoupled into components parallel and

perpendicular to the magnetic field
dXJ_/dt=VJ_=CEJ_XB/BZ, ' (1)

dv”/dt = an”/ma ; -dx”/dt - V|- : (2)

Hence, for the electrons, a combination of the second order, time centered, leapfrog scheme
for the parallel velocity and displacement and predictor-corrector method for the perpen-

dicular velocities and displacements is used?

(v ﬁﬂ —vﬁ)/At:—|e|EﬁL+1/2(Xn+1/2)/me, o | (3)
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vjb_+1/2 _ C(En+1/2 % B)/BZ, (4)

(cred * = x"71%) [2t = (0 + o) /28 + VI, (5)
v = C(EZQ';Z’/ * x B)/B?, (6)
(x2k®/2 - x"FU2) AL = ooy + (B"TY? x B+ BLLY? x B)/2B%. (1)

Poisson’s equation is solved twice per time step to obtain the electric field. »
The jon dynamics can be treated in a similar manner. However, in order to
preserve the finite ion Larmor radius effects, the full Newton-Lorentz equation of motion

is solved using the leapfrog scheme

(™ =) At = (el [BPVE 4 (7H v 2 x B,

(Xn+3/2 _ Xn+1/2)/At — vn—i—l' . | (9)

'The overall scheme proves to be stable for max(wpe sin @, wpe) At < 1, where 8 is the angle

between the mode propagation and magnetic field directions.
The electric field needed to push the partides is calculated as follows. Consider
the three-dimensional slab model shown in Fig. 1. We assume the three—dlmensmnal box

is ﬁlled with partlcles of finite size havmg a Gaussmn—shaped form factor

S(x—x;) = [(27)*?aza,a,] T X e("“‘_"‘f)z/zai e_(y_yj).z/z‘afle__(?_zj~)2/2a§, (10)
where (z;,y;, 2;) is the chargé center location and ag,y,, is the particle size in each direction.

The charge density is given by
Z,Y,2 Z Z QJa X - X]'a), (11)

where o denotes the particle species. The finite size particles allow us to sirmulate colli-
sionless phenomena within realistic computational resources.!®

The normal mode expansion method is applied in the z direction by Fourier an-
alyzing the charge density and poﬁentia,l with respect to z. For the charge density this

gives
N

p(5:9:2) = Y. palzy)et?, - (12)

n=—N
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where
prl(z,y) = [27 'axayLz]_;e_k”“i/z X
XY N giaem (@ m) /200 em (vmvin) /20, om (2o z) 2T (13)
(" 7 ‘

with L. the system length in the z-direction (L, >> L, ~ L,) and k, = 27n/L,, n = 0,
*1, ..., £N. Typically N = 5 — 20 is satisfactory for the present problem. The charge
. density is computed on the two-dimensional spatial grid by using the subtracted dipole
scheme (SUDS) of Kruer, Dawson and Rosen.” The phase factor, e~**¥=%i= with the exact
particle position is left unexpanded because there is no grid in the z-direction.

Mode expanding the potential in the z-direction - -

_ (¢(-$,y,2)= _z: ¢n(fv,fv)6i‘k”‘”‘>,

Poisson’s equation (V2¢ = —47p) becomes

[vgy._ (2;”> Jqsn(z y) = —47rpn(z,y). | Y

This is a two-dimensional Poisson’s equation to be solved for each mode number in the .

‘z-direction. It is done by use of fast Fourier transform (FFT) techniques. Further, the

electric ﬁel_d'fo_r each mode number n is given by

E, (ke ky) = ~ikey (kg ky) =_'—47}z'(1§ /kz-) pn gy ky). | (15) |

The electrlc force on a finite size particle needed to update the partlcle Veloc1t1es
and posﬂ‘,lons is computed from '
"N

F(ks by z) = (a7/mg) D e F 2 4B, (ky, ky)eFe0 Ze Mo/, (16)
n=—N . .

F(z,y, z;) is calculated from the inverse Fourier transform of Eq. (16) and intérp'olated to

the particle position (z;,y;) by' using SUDS. v
In the 3D and 2 — % D(k, = 0 limit of the algorithm outlined earlier) 'models, the
slab is bounded in the z-direction and periodic in y and z. The particles are reintroduced in

a periodic fashion in the y and z directions and reflected at the boundaries in = according to
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the prescription of Naitou et al.® The boundary conditions on the charge density, potential
and electric fields are handled by the image charge method over twice the system length

in the z direction (2L,) by setting
pn(2Ls — 2,y) = tpn(2,y) | (17)

with the (+) sign dictated by %% =0at £ =0 and z = L, and the (-) sign by ¢ =0 at
z =0 and z = L,. The potential and electric fields with the proper périty are directly
_6btained,from Egs. (14) and (15) with Fourier transform performed over the double
system of size (2L, Ly). For ¢ = 0 at the end points, the potential normal modes are
~ expressed as q~5( ) =2 gbe s1n(em ) for ¢' = 0 at the endpoints, they are expressed at

3(z) = 4 becos(4=).

For simulations of drift waves in a sheared magnetic field written . as B =

(O,Bo zzf” ) Bo) with L, the shear Iéngth, careful consideration has to be given to the

- parity of the eigenmodes with respect to the rational surface position zy (in 2D)..Com- -
parison of simulations with theory further requires that the wave-particle resonanc'e.region‘
zo of each species ( = e,7) defined by w,, ~ k|| (za)vta, with electron diamagnetic drift

frequency w., = (ky/L,)cTe/eB, and L, the density gradient scale length, be within the

system and sufficiently away from the endpoints. For ¢ = 0 at the endpoints and zo =0,

the drift eigenmodes will have odd parity with respect to the rational surface; for ¢/ =0

at the endpoints and zg = 0, ithe‘y will have éven parity. For ¢ = 0 or ¢’ = 0 at the end-
_points and zo = L. /2, they would have mixed parity. The relevant parity can however be .
recovered by selecting only the even or.odd modes with resp'ect_ to zo = Ly /2 in the shape
factor S(ky, ky,k,). For instance ¢ = 0 at the endpoints, so that gg(:z:) = Ze be sin(%"f),
will yield even parity with respect to zo if only the odd £ numbers are kept and odd parity
with respect to zo if only the even £ numbers are kept. In 3D, with multiple rational
surfaces at Z,,, = To — ngf -, the parity is necessarily mixed and all £’s are kept with
zo = L;/2 and ¢ = 0 at the endpoints.

To insure that the ion resonance layers are within the system, the natural cut-off

- in the shape factor due to the finite particle size at kya, = kyay = kra, 2 1 is used to
convemently suppress the modes which would. violate the z; < L, condition. Therefore,
the size of the particles can be adjusted to perform mode selection. Alternatively, mode
selection in the z-direction, by limiting the number of modés retained in the Fourier sums,

can be performed to limit the rational surface distribution.
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ITI. Applications to Drift Waves
The 2 — % D and 3D guiding-center electrons, full dynamics ions codes have been
applied to a detailed study of drift wave stability in a sheared magnetic field in the presence

of a single rational surface (2— 1 D) and multiple rational surfaces (3D). The single rational

surface simulations are carried out to ascertain that linear drift wave eigenmodes are

absolutely stable in a magnetic field with shear.® The multiple rational surface simulations

are performed to test the hypothesis that nonlinear destabilization!® of drift waves could _

occur. The electron response is altered by turbulent diffusion of the electrons across.

multiple rational surfaces due to a combination of shear and random E x B fluctuations.
This results in an effective value for ky which destroys the stabilizing influence of the
. _nonresonant electrons in the immediate. vicinity of the rational surface.. ...

For the case of a single rational surface, the 2 — % D code is run with the following

parameters: L, X Ly =64A X324, with A the unit grid spacing; average density ng =16

particles of each species per unit cell; temperature ration T /T; = 1; mass ratio M;[/me =
100; magnetic field strength By such that wee/wpe = 10. A density gradient n(z) =

noe~** with xk = L' = 0.07 is imposed in the z-direction; the plasma is uniform in y.

The magnetic field, tilted in the y — 2z plane, is_expreSsed at B = ‘(O,Bo zz:” , Bo-)- with’
Lg/L, = 28 and o = 0 1n the present case. Boundary conditions such ~tha1; g% =0 at

z=0and z = L, are imposed to insure even parity of the drift‘e‘ig_énmodés with respect
to the rational surface. The system supports discrete wavenumbers kyps = 0.49m, m = 0,
+1, ..., :‘:Ly / 2; with the ion sound Larmor radius ps = 2.5A. v Thé electron diamagnetic
frequency is w./ wpev.% 0.0086m and the simulations are Tun up to w,t = 70.

~ According to linear theory (with our simulation parameters), the drift eigenmodes
should be stable. Indeed, the time histories of the total electrostatic energy and the
energies per each relevant kyp, modes do not show any increase above the initial thermal
level over the length of the run. To determine whether eigenmodes (which have the same
frequency at every point in space) do exist in the simulations, we perform an interferogram
of the potential fluctuations. First, the potential fluctuations at every grid point in z and
for a few kyps modes are stored at each time step of the simulation. Then the followirig

correlation is evaluated
1 T . :
b(z, ky,wo) = T/o é(z, ky, 1) sinwotdt. o _ (18)

The frequency wg is varied in intervals of 0.01w, between 0 and ws. The interferogram

of the potential fluctuations with kyps = 0.49 at wo/w. = 0.43 is displayed in Fig. 2
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along with the eigenfunction from linear theory obtained with a shooting code which finds
vthe' eigenfrequency to be w Jws« = 0.33. Good agreement is found for both the real and
imaginary parts of the potential wavefunction. Stable eigenmodes have-also been found to
agree with linear theory in the simulations for the cases of rational surface xo = L / 2 and
both even and odd parity with respect to zo.%

The three-dimensional results reported here are run with the following parame-
ters: system size L, X Ly X L, =644 x 324 x 6400A with £5 modes retained in the z -
direction; wee /wpe = 35, M;/m, = 500, T, /T; = 1; sound Larmor radius p, = 1.6 A so that
kyps = 0.31m; n(z) = noe ** with ng = 16/A? and k = L;! = 0.07; L,/L, = 28 and

Wy /wpe = 0.0042m. The 51mulations are run up to w.(m = 1) x t = 30.

. The multiple rational surfaces Zpmn = 2o — II:;J;: 7%, superimposed ori the density. -
profile, are displayed in Fig. 3; only modes with " (w.) < L, are retained. A criterion °
for nonlinear destabilization is that the re‘sonanf surfaces be so elosely packed (hence the
strong shear) so that the trapping width of the drift modes centered at Ty, measured at .
the thermal level, be larger than their separation. Stochastic diffusion of the electrons then
results and destabilization is possible. Our measurerhents of the thermal level indicate that
resonance overlap is easily satisfied. A shooting code solution of the nonlinear eigenmode
equatioﬁlo indicates that modes with m = 3,4 and 5 can be destabilized whereas modes
with m = 1 and 2 are stable.

The behavior of the electrons is probedAin the following ways. Electron test parti-
cles are selected randomly in the vicinity of the mede rational surfaces. Their positions and
“velocities are stored at each time step. First, the dlffusmn coefficient of the test pa,rtlcles

is measured from their guiding center dlspla,cements as

N )2

imoo £~ 2Nt 0
=1

(19)

where Az; is the change in position of the guiding center for the 5t* particle in time ¢ and
N is the number of 'tes'ﬁ electroﬁs, The guiding center displacement as a function of time
is displayed in Fig. 4. A linear increase indicates diffusion with diffusion coeflicient- equal
- to the slope. Second, electron orbits in (z, v”) space are constructed. They are displayed
in Fig. 5 with the open circles representmg their initial location and the dotted curves
their subsequent location in time. It is clear that particles encountering the overlapping
resonances region can excurse large distances in the z direction as shown in Fig.‘ 5a, b,

c and e. Particles selected initially outside the overlap region as in Figs. 5d and f show
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very little diffusion in z. These particle diagnostics clearly demonstrate that electrons in
the vicinity of the mode rational surfaces exhibit the stochastic behavior across rational
surfaces needed for destabilization. ' .

Mode analysis has been performed in the following ways. Firsf, the potential

fluctuations ¢(x, ky, k) are stored at each time step of the simulation. The time- history

of the fluctuations for a particular (m,n) mode is recorded after filtering out frequencies

w > w,. Correlations of the fluctuations (without filtering) are carried out as follows

. | e
Crn(@7) = 7 /O bimn (2, 1) 0 (3,8 + 7)dE (20)

and the power spectrum obtained from the Fourier transform of the autocorrelation func-

tion C‘;.m(a:,r) is giveﬁ -’by

T.

Pron(2,0) = / Conn(2, 7)€" dr. BE

0

Interferograms are also performed according to Eq. 18.

A typical result for modem = 1, n = 0 with kyp, = 0.32 is displayed in Fig.ﬁ: the

ainplitude of the fluctuation versus time 1n F ig; 6a, real and imaginary parts versus timeiin

Fig. 6b, power spectrum in Fig. 6c and interferogram with eigenfrequency wo /Wi =0.7in

Fig. 6d. The real frequency and mode structure in z agree with the nonlinear eigéenmode

_equation solution. From Figs. 6a and b, it is clear that the mode is stable. All other - -
(m, n) pairs retained in the simulation dre_also stable in this case, whereas theory p_.r‘édicts )

' ‘that modes with m = 3,4 and 5 can become unstable. The apparent discrepancy be'tween: o

the simulation and theory arises as follows. The stable long wavelength modes (m = 1 aﬁd

m = 2) are less affected by the nonlinear electron dynamics and provide a sink of energ’y.' for ‘

- the more unstable shorter wavelengths. Simulations with parameters such that the longest

~ wavelength modes are in the unstable regime do indeed show nonlinear instability!! arising ‘ )

- from the nonlinear electron behavior in the resonance overlap region.

IV. Conclusions

Explicit, bounded, electrostatic, ‘ﬁliite si.zedA particle simuldtion models with
guiding-center electrons and full dynamics ions have been developed. in two and three
dimensions to study phenomena in Ith'e drift frequency range in slab geometry and with

sheared magnetic fields. The 2D models have been successful in recovering the stable drift
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eigenmodes predicted by linear theory with a single rational surface. The 3D models ex-
~hibit many of the effects of multiple rational surfaces on the electron dynamics needed for
nonlinear destabilization of drift waves.!! |

Variants of these codes have also been applied to resistive interchange modes® and

are currently being used to study current driven drift waves and the ion m‘ixing.,mode with

electron and ion temperature gradients as well as density gradienté.
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Figure Captions
Fig. 1 Three-dimensional slab model.
Fig. 2 Density profile and mode rational surface positions.
Fig. 3 Stable 2D linear eigenmode at wq/w. = 0.43.
Fig. 4 Guiding-center displacemen,t'and diffusion coefficient of resonant electrons. ‘
Fig. 5 Test orbits of the resonant electrons. Strong diffusion: a), b), c) and e). Weak
diffusion: -d) and f). | | ' |

Fig. 6 Test wave diagnostics.
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