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Abstract: Transport in an area preserving map with a mixture of

regular and chaotic regions is described in terms of the flux through
invariant cantor sets called cantori. A model retaining a discrete
set of cantori approaching a boundary circle gives the Markov chain
description of Hanson, Cary and Meiss. The inclusion of cantori
surrounding island chains, and islands about islands, etc. gives a
Markov tree model with a slower decay rate. The - survival
probability distribution is shown to decay asymptotically as a
power law. The decay exponent agrees reasonalbly well with the
computations of Karney and of Chirikov and Shepelyanski.
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§1. Introduction
Transport as a result of chaotic motion in Hamiltonian systems has been the

subject of much recent interest!™. This interest is stimulated both by
fundamental implications (such as those for statistical mechanics®), as well as
practical applications (such as particle heating and confinement in fusion plasma
devices?). In this paper we discuss the transport properties of area-preserving
maps, which can be thought of as resulting from a two-degree-of-freedom
Hamiltonian system by surface-of-section.

Typically the phase space of such a map has both regular and chaotic
trajectories. Chaotic motion is characterized by exponential instability that
precludes any description based on individual orbits; one can at best hope for a
statistical description of families of orbits. Yet because of the mixture of
regular and chaotic motion, the simplest statistical approximations are bound to
fail. Indeed, recent numerical experiments by Karney®, and Chirikov and
- Shepelyanski? show that motion-in the chaotic region exhibits long-correlations—
whenever the phase space has a regular component.

Chirikov and Shepelyanski study a map for which the parameters are chosen
so that the chaotic region is bounded by a KAM surface which has golden mean
rotation number. They compute what we will call the survival probability, F(t),
which is the probability that a particle initially "near” the KAM surface, will |
still be "near” that surface at time t (up to normalization this is the Poincaré
recurrance distribution of Ref. [9]). They find

F(t) = t™ (1)
where z& 1.34, for 1<< t <105, Karney studies the quadratic map, initializing
particles in the chaotic region outside the stable island for this system. Here
long correlations are induced by the outermost KAM surface surrounding the
island, which does not have the golden rotation number. A roughly power-law
decay was again obtained (albeit with additional substructure) with a similar
exponent zx 1.45 for 1<< t €108 The explanation of this slow (i.e. algebraic
rather than exponential) decay is the subject of this paper.

One model!!? for explaining this behavior is that of a continuous diffusion
coefficient that approaches zero as (9—90)8 where y, represents the position of

the boundary KAM surface. Algebraic decay results from the small diffusion in
the neighborhood of the KAM surface. In contrast to this smoothly varying




diffusion coefficient, numerical experiments show that transport tends to occur
in steps as the particle suddenly crosses certain leaky barriers! (called cantori)
across which the transport is particularly slow. The quasi-discrete nature of
transport is the basis for the model of Hanson et al!!, which was also discussed
by Greene'2. In this model, knowledge of the flux across individual cantori®14 is
combined with an assumption of loss of memory between crossing times to give a
one-dimensional Markov chain. For the case of a critical golden circle the
scaling results of the renormalization theory'S imply that the transition
probabilities of the Markov chain are self-similar.

The solution of the self-similar chain gives a power law decay, in agreement
with numerial experiments; however, the exponent obtained (z~3.05) is too large
by about a factor of two when compared with the numerically obtained values.

In this paper we present an improved model, which was suggested in Ref. 1,
and examine its predictions. Specifically, note that between barrier cantori
there are island chains, and that particles which come near the KAM surfaces
surrounding one of these islands can get stuck there for a long time as well.

_. Futhermore, for every island, there are islands .sur.ro'u'nding it. Clearly this
situation cannot be described by a purely one-dimensional chain model.  To take
the essential features into account, we discuss in §3 and §4, a model based on a
self-similar random walk on a tree.! Roughly speaking, branching in the tree
model corresponds to a particle’s "decision” whether to cross the next cantorus
barrier (as in the one-dimensional case) or to become trapped around an island
situated between the two cantori. The solution of the tree model is given in §4,
while futher discussion and conclusions are given in §5. The obtained exponent -
agrees reasonably well with the value found in the numerical experiments.

§_2. Properties of Area Preserving Maps

In this section we briefly discuss some properties of area-preserving maps,
without taking care to be especially rigorous. It is convenient to think of maps
on a cylindrical phase space, the vertical coordinate y represents momentum and
the angle is x with period 1. We denote such maps T:(x,y}x'.y"). T is assumed
to be a twist map: it causes rotation at different rates at different vertical
positions on the cylinder. More formally the twist condition is ax'/ang >0. An

orbit of the map is a sequence {xt,gt}; t represents time and takes integer values.




A useful example, which apparently has the properties of a typical twist map, is
the standard map,

Ut+1 = Ut -k sin(Z'Irxt)/Z'n.’,
Xts] = Xt * Upey mod(1), (2)

with the single parameter k. The standard map will be used for illustration, but
everything in the model holds for any one parameter family of twist maps.

§2.1 Rotation Numbers, Diffusion and Correlation

As was already known by Poincaré, the phase space of a typical area
preserving map is filled with a complicated mixture of regular and irregular (or
chaotic) orbits. Regular orbits are invariant curves on which the motion has a
definite rotation frequency. There are two types of regular orbits on the

cylinder, those which encircle the cylinder, and those which do not. The
encurclmg curves are the survivors of the invariant circles of the mtegrable
twist map at k=0. We will call these "orbits of class zero.” The rotation
frequency of a class zero orbit is defined by

v=1lim  (x®-xp)/t ,
{400

where x* is a "lift" of the x-orbit (i.e., do not take the mod 1 in Eq. (1)). Whenk
is small enough, the KAM theorem implies that the class zero regular orbits
occupy a finite measure on the cylinder. Other, "nonzero class,” regular orbits
are found in the neighborhood of elliptic periodic orbits. They surround the
periodic orbit, forming "island chains.” A second version of the KAM theorem
shows that the measure of the regular orbits near an elliptic orbit, is finite. The
irregular motion is "generated” by transversal intersections of the stable and
unstable manifolds of hyperbolic orbits. Such intersections guarantee that there
are no global, smooth, invariant manifolds near the hyperbolic orbits. As k
increases the apparent area occupied by the irregular orbits increases, though it
is not known whether this area is actually nonzero.

There have been many numerical studies of irregular motion, and attempts
to describe it as "random” in some sense. The most widely used construct is a




- diffusion coefficient.2 For the standard map a formal series for the y-diffusion
coefficient can be obtained using an ensemble average over phase space.®* This
coefficient can be written as a sum of correlation functions:

00
D= lim<{(yt - yp)2> /2t =Cy/2 + Z Cj.
tdoo =1

The last equality is valid only if the force correlation functions,

Cj= k2<{sin(2rtxy j)sin(zmt» /412

- : and
fall off fast enough for convergence. The series. for C j and D the agree well with

numerical studies for k>>1 providing there are no apparent islands in the phase
space. By contrast, islands cause an enhanced correlation, leading to a long time
tail, ancl brlng into doubt even the convergence of the sum.for the the diffusion

§.2.2 Flux, Cantori, and Boundary Circles

To develop a theory for situations with both regular and chaotic motions, the
notion of uniform diffusion is abandoned in favor of a more local description.
Here we describe irregular motion in terms of the flux of orbits through curves
in phase space."'* In particular the enhanced correlation due to a reqular region
may be attributed to the existence of remnants of invariant circles which have a
small flux through them. These remnants are called cantori:13 they are cantor
sets with a given irrational rotation number. Mather, Aubry, and Katok 6 prove
the existence of an invariant set, which is either a circle or a cantorus, for every
irrational frequency v (providing the map satisfies the twist condition about the
periodic orbit under consideration and the frequency is in the range of twist).

Cantori can be visualized as circles with an infinity of gaps caused by the nearby:

island chains attempting to overiap.

Motion in an irregular region can be separated into motion along the cantori
and leakage through their gaps. The leakage can be computed by the flux of
orbits, defined as the area which leaks one way through the cantorus on one
iteration of the map'. One way to determine it, is to draw some curve




connecting all the gaps.of the cantorus. Iterating this curve once yields another -
curve which also fills in the gaps of the cantorus. The upward flux, is defined as
the area above the first and below the second curve. By area preservation there
is an equal downward flux: the net flux is zero. Another construction of two
curves involves using the stable and unstable manifolds of the cantorus.! In this
case they differ only in one gap of the cantorus; and form a figure-of-eight
structure called the turnstile;! however, it is not hard to see that the value of
the flux is independent of the choice of curve, providing. it fills the gaps and does
not intersect itself. In fact, using the action variational principle for the map,
one can show! that the flux is equal to AW=W,~W, where W, is the action of the

cantorus. and. Wy, is the action of the orbit homoclinic to the cantorus (e.g. the
orbit which asymptotes to the cantorus in both directions of time). This shows
that AW depends only on the cantorus and its homoclinic orbit. The only caveat

in this result is that AW is the algebraic area of the turnstile. This equals the
geometric area crossing the cantorus if the turnstile has the figure-of-eight

 topology.  In every example we have tried this is true, though it is possible that
some exceptions could be constructed. In conclusion, Mather proves the existence

of the cantorus, and its homoclinic orbit, as well as the finiteness of AW. The
result of Ref. 1 is that AW has the interpretation of flux.

While AW exactly gives the flux crossing a cantorus on each iteration of the
map, the subsequent motion of this area is very complicated: after several
iterations the curve defined above stretches and wiggles along unstable
manifolds, and can recross the cantorus. To develop a model for long time
transport, we need to understand the subsequent motion.of these orbits. One
aspect of this problem is that there are many cantori in the irregular region: in
fact one for every irrational frequency.

It is clear that the most important cantori will be those with small flux.
Mather has shown!? that AW is identically zero for an invariant circle (which is
clear from our interpretation of AW as a flux) and is a continuous function on the
irrationals; therefore, cantori very close to invariant circles have fluxes which
can be arbitrarily small. This implies that orbits. in the neighborhood of such
invariant circles will be stuck in this region for long periods of time. The
invariant cirles which form the boundary of an irregular region are called
“boundary circles.”

Boundary circles have some special properties.'® |t is believed that they
are critical invariant curves: they are at the threshold of destruction, in the




sense that there is a neighborhood of the parameter k for which an invariant
circle with the given winding number does not exist. The argument for this is as
follows. By the KAM theorem we know that the interval of the parameter for
which an invariant circle of sufficiently irrational frequency is smooth, is open.
Furthermore Birkoff's theorem!3 implies that the interval for which it doesn’t
exist is also open. It is conjectured that the boundary of these two intervals is
the same point: an invariant curve looses its smoothness just at the threshold of
its destruction. It is known that smooth circles have other invariant circles in
every.neighborhood (this is obtained by the renormalization theory combined with
the KAM theorem?9). Circles that have a neighborhood containing no other circles,
such as boundary circles which have none on one side, must therefore be critical.
In general the boundary of the irregular region consists of an infinite number

of boundary circles. These can be separated into classes. The zerot class are
those that encircle the cylinder. Consider for definiteness a region bounded. from

above by. one such circle, of frequency vg. Typically there will be elliptic, class .

zero, periodic orbits in the stochastic region below vg, e.g. with rotation

- numbers pg/qg-< vg.- Encircling-these- orbits are the-island-chains, these we call
class one-orbits. The rotation frequency of a class one orbit is defined as the
average number of rotations about the elliptic fixed point, per qg iterations of
the map:

py = lim  {elTl(x y)-elx,yll/2mt,
t-so0

wherg © is the angle of rotation about one of the points on the pg/qg orbit.
Invariant circles around py/qp actually are qp separate circles which are iterates
of each other. The outermost class one invariant circle is the boundary circle of
the island; call its irrational rotation number v,. Outside of this boundary circle
there are elliptic class one periodic orbits with frequencies p;/q, < vy. The
outermost curves of the island chains surrounding these (the islands about
islands) form boundary circles of class two, and so forth.

There are other orbits which are not included in the class heirarchy, which
however, can be stable and form island chains. An example is periodic orbits
born by tangent bifurcation. Formally, these islands can be included in the model
developed below if their properties are known. In practice we neglect them.




§ 3. The Tree Model

§ 3.1 Tree States

Figure 1 shows a schematic illustration of the situation just described. The
uppermost circle represents a class zero boundary circle. Above the class zero
circle is a region, shown cross hatched, not accessible from below. The
stickiness of the vy boundary circle can be attributed, in part, to the cantori
with v<v,. Below the boundary circle, all the irrational orbits are cantori, since
the boundary is by definition the lowest frequency non-destroyed circle. The
most important cantori in any frequency interval will be those with the minimum
value of AW in that interval; we call these the "minimizing” cantori. To the
extent that AW, as shown in Fig. 2, has sharp local minima, it is a reasonable
approximation to neglect all cantori but the locally minimizing ones. There are
an infinity of such minimizing cantori as vg is approached: they correspond to
- rational approximations of the continued fraction for vq (see §4). We refer to
this sequence of cantori as class zero "levels,” with level+ indicating approach
to the boundary circle.

Between any two adjacent minimizing class zero cantori there are, in
general, many class zero periodic orbits, some of which are elliptic in character.
The cross-hatched regions in Fig. 1 represent areas (or "islands”) that are
completely enclosed by boundary circles encircling elliptic periodic orbits. For
most of our subsequent considerations we shall assume that between any two
adjacent flux minimizing class zero cantori only one such island chain is
"significant” and neglect all others. The most significant chain will be that with
the largest area between the adjacent minimizing cantori. We emphasize,
however, that this assumption is merely for convenience and simplicity of
presentation; our analysis is easily extended to an arbitrary number of
significant chains (see §5.3).

A class one boundary circle, v, forms the outer boundary of the island chain.
Since the rotation frequency about an island goes to zero at the island separatrix
(which, however, is broken and contains a turnstile!), there are an inf inity of
class one cantori outside this boundary circle, corresponding to all irrational
numbers in the interval 0 < v < »,. In accord with our modeling we retainonly a -
discrete set of these cantori: those which are local minima of the flux. These
cantori form a sequence of levels at class one.




- Between each pair of successive class one cantori there is again one most
significant, class one periodic orbit whose situation (although on a smatller scale)
can be regarded as analagous to those of lower class: it has a sequence of class
two cantori approaching its boundary circle, and so on ad infinitum.

Since the leakage through the minimizing cantori is slow, it is useful to
distinguish the areas they bound. We call such areas "states,” and we now
describe a convenient method of labeling these states. First choose some
reference class zero state and call it the null state, or "8.” In Fig. 1 the lowest
visible state is labeled 8. Other states are identified by a symbol sequence
specifying their location relative to @ (States "outside” the lower cantorus
bounding @ do not enter ‘our consideration; we suppose the particle is lost forever
when it traverses this cantorus). In particular, a state, S, is specified by a
sequence of two symbols, say "1"’s and "2"'s:

S= {dl’ dz, cery UN} (3)

‘Here-04=1 if the first step in the direct path from 8 to'S increases the level by
one; e.g. it is a move toward vy by crossing the upper class zero cantorus |
bounding @. If instead the step increases the class by one; e.g. it is a move ' 1
toward the class one boundary circle v4 by crossing its outermost, class one
cantorus (see Fig. 1), then oy= 2. To determine oy, we now view the current ‘
state, {0y}, just as we viewed state @ before: if &4=1 then another increase in |
level gives 0,=1 as well, while crossing the-level zero, class two cantorus
around the class one-island chain in state {1} would give 0,=2. Thus the states
can be viewed as being located on a binary tree, or "Bethe lattice,” as shown in
Fig. 3.

Some additional notation will be useful below. Let DS be the symbol
sequence obtained by deleting the last entry of S. Hence, if S has N components,
as in £q. (3), then

DS = {0'1, Oz, ..y GN‘I}' (‘4)

Thus DS deotes the state just "outside” S in Fig. 1, or just "below” S on the tree.
Each state has a unique predecessor, DS, but two daughters, which are the two
states just above S on the tree (Fig. 3); we denote the daughters of S by
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51 = {O’;, O, ..., O’N,l}; 52 = {01, Oy, ..., CN,Z}. ’ (5)

In terms of Fig. 1, the numerical experiments described in §1 are performed
by initializing a. large number of points in {1} and then asking what fraction F(t)
of these has never entered @ after t iterates of the map. If a particle is
regarded as being "killed” when it enters @, F,(t) represents the fraction that are
"alive” at time t. Clearly to determine information pertaining to Fy we need
information on how often particles make transitions between adjacent states on
the tree. This is the subject of the next subsection.

§3.2 Transistion Probabilities

Because the motion in a given state is chaotic between transitions, and
because the transitions are assumed rare (i.e., the minimum flux cantori are not
too leaky), we can characterize particle motions by a transition probability
~ Pg4g Which is the "probability” that a particle in S will be in S’ after one

iterate of the map. We assume here that exponential divergence of orbits (at the
rate given by a local Lyapunov exponent) causes memory loss on a time scale
short compared to the transistion time (this has not yet been verified in detail).
Complete loss of memory implies that the motion can be described by Markov
transition probabilities: they depend only on the current state, and not on the
complete motion history. Furthermore we assume that the transition
probabilities per step are small: in particular the total probability for leaving
state S5

Ps = 2. Psas << 1. (6)
S'=3
This implies that.the Markov system can be treated using a continuous time

description.
Consider two adjacent states on the tree, and denote them S and DS. Let Ag

and Apg be the phase space areas of the accessible chaotic regions enclosed by

these states (we assume this is not zero!). Now iterate these areas once under
the map. As mentioned in §2 some of Ag will be mapped into DS, and vice versa;
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these two areas will be of equal size. We denote this transfered area by
AWpg 5. The transition probabilities are

Ps+ps = AWps s/Ag,
Ppss = AWpg 5/Aps - (7)

As we will see in §4, these probabilites obey approximate scaling relations
on the tree due to the self-similarity of the dynamical system in the
neighborhood of critical invariant curves. We denote the scaling factors by

3y =Agy/Ag 3, = Agy/As (8a)
Wi = AWS,SI/AWDS,S Wo = AWS,SZ/AWDS,S ' (SD)
gy = w,/a, € W2/82 ' (8c)

where the a's,w’s and £'s are scaling constants to be obtained in §4. The
~_coefficient a, represents the ratio of areas of successive level states with the
same class, while a, represents the ratio of neighboring states of successive
classes. To determine the flux and area at S, let

AlS] = (the number of 1's in the symbol sequence of S),
plS] = (the number of 2's in the symbol sequence of S).

Thus p[S] is the "class” of state S. Then from (8) we obtain-

AWDS,S = Wy W;MSIWZPIS] ,

where Wy and Ag are constants that depend on the choice of the reference state,
@. Using (7) the transition probabilities are

Psps = Po 51?\[5]529[3] ,

Psas1 = W1 Psaps »
Ps 152 = W2 Psps » (9)
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where pg.= Wy/Ag. Equations () and Fig. 3 define a self-similar random walk on
a tree and constitute the basic model of this paper.

In previous models of transport, such as that of Hanson et al.,!! islands were
not taken into account. In our notation this means that states with any "2" in
their symbol sequence were neglected. Thus in this case all states are of the
form S={1,1,1,...1} and the tree degenerates into a chain. The chain transition
probabilities are then given by Eq. (9) with wp=p=0.

If, on the other hand, M class ¢ islands between two adjacent class ¢
minimizing cantori are taken into account (see §5.3), then states are still
defined by symbol sequences as in £q.(3), but the o; would range though the M+|

values, 1,2,..M+1.

§ 4. Self-Similarity and Boundary Circles

In this section we describe how renormalization theory can be used to obtain
the scaling coefficients in Eq. (3). We will just require a few simple properties
of this rescaling transformation, and refer to Refs. 13, 18, 21, and 22 for more
convincing and detailed discussions.

§ 4.1 Level Scaling

To understand the structure of the phase space of a map in the neighborhood
of an invariant circle, consider the continued fraction expansion for its
frequency:

vP=ngt 1/(“1 + 1/(”2 + L= [ng,n|,n2,...]. (10)

where the partial quotients, n;, are positive integers. Recall that for an

irrational number, the continued fraction has an infinite set of partial quotients.
Truncating the expansion at some finite order, m, gives a rational approximation
tov

Pm/m = [Mg.ny....Npp)- (11)
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These "convergents” are alternately larger than and smaller than v. Since we are
interested in approaching-a boundary circle from the "chaotic® side (say the low
frequency side), we consider only every other convergent, and refer to these as
the levels of approximation (1=m/2).

The most remarkable recent advance in dynamics is the discovery of
renormalization properties of dynamical systems. A renormalization
- transformation is a rescaling of phase space and time. For the case of area
preserving maps in the neighborhood of critical circles the 1th application of this
transformation is defined so that points on the (¢+1)St (elliptic and hyperbolic)
convergent orbits are mapped onto the ¢th, and one iteration of the rescaled.map
corresponds to nqy iterations of the original.

For special frequencies, in particular those whose partial quotients are
periodic for large i, the rescaling also approaches a periodic limit: the map in the
neigborhood of such a critical circle is self-similar. The most important case is
-..that of the so-called "noble” frequencies; these are defined as.numbers with
continued fraction representations ending in an infinite sequence of ones,

Ynoble = | nu,n,,...nj,l,l,l,l...] .

In this case the scaling theory implies the ratio of the area of one island of the
Qg component chain at level 1+1, to one at at level § (for 20>>j) is given by!3

wy % 0.053112 . (12)

Nobles are important because they appear to form the most robust invariant
circles in phase space.

The scaling of islands is also reflected in the scaling of the cantori between
them. In particular, between the level § and #+1 island chains, there are an
infinity of cantori of the same class. Of those, we identify the one with the
smallest value of AW as the minimizing cantorus which separates the two levels.
Near a critical noble circle this cantorus has the frequency

(Poy + BPgpan)/ (agp * Bapy.2)
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where ¥ is the golden mean, ¥= (1+,/5)/2. Thus, a "state” is the connected
chaotic region surrounding the island at one level between the minimizing cantori
on each side. Since under the rescaling transformation the minimizing cantorus
separating levels { and 8+1, is mapped onto the one separating 0-1 and ¢, the flux
through the minimizing cantori (which is an area) scales with the same
coefficient, wy.

Another important scaling is the rate at which denominators of the
successive convergent frequencies approach infinity. For a noble frequency this
is

lim (qggep/qg) = €171 = %2 % 2.6180 (13)
oo

Thus the number of islands in the island chain corresponding to level § increases

as %2, For our purposes, the important implication of this is that the total area

in the level 0 state scales as the number of islands in the chain, times the area
. of one island.or:. . ..

a, = Wy /g; ~ 0.13905 - (14)

The self-similarity is not exact in general because boundary circles are not
typically noble. In fact, boundary circle rotation numbers typically take the
form18

[ ...I,nzn..‘,l,nzn,,.l-,],...] (‘5)

in which the odd partial quotients are not always one but vary between one and
five in an apparently random way (90% of the time it isa 1, 2, or 3 and 10% of
the time there is a 4 or 5; futhermore, 10% of the even quotients are 2's). The
convergents on the chaotic side of the boundary circle are those which (most of
the time) end in a one, and hence "look noble” in some sense. On the other side of
the boundary circle there may be other circles arbitrarily close.

Boundary circle frequencies can be determined using the "residue” criterion
of Greene'S; it is a refinement of Chirikov's overlap criterion. To apply this one
computes the residue of various periodic orbits encircling the island. According
to the criterion, if the residue of a periodic orbit is significantly larger than 1/4
it is typically outside the island boundary circle, while if it is significantly
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smaller than 1/4 it is inside. (The residue for convergent orbits to the boundary
circle approaches the critical value 0.250089 in the noble case). Using the Farey
tree procedure to construct rationals one can obtain the continued fraction
representation for the boundary frequency. '8

Greene, Stark and MacKay'® obtain a generalized notion of scaling for
boundary circles

AWy % Clag) %

This can be rewritten to obtain a relation between €,, defined as a ratio of ¢'s as
in(13), and w;, defined as a ratio of AW's as in (8b),

wy =g,305 (18)

It is surprising that even though the partial quotients vary between 1 and 5, the

scaling exponent in (16) holds to within a few percent. Note that the generalized

- scaling reduces to the noble case when £, = ¥ 2. In general, however, £, and
consequently wy and &, will Tluctuate with level as the n; vary. Roughly
speaking, €4 fluctuates about its mean by about 30%. To actually treat the
general boundary circle case, the pg_,q: should be given with-a probability
distribution, corresponding to that of the partial quotients in the continued
fraction expansion. We make the approximation in this paper that £, is constant
and leave the treatment of these fluctuations to a future paper.

§ 4.2 Class Scaling

The largest island chain between two levels of class ¢ minimizing cantori is
that chain with frequency poy/qyy, corresponding to the convergent of the

boundary circle. The boundary circle of this island chain will also have, in
general, a frequency with a continued fraction of the form given by Eq. (15).
Noting that islands are typically destroyed by period-doubling bifurcation when
their central rotation frequency reaches 1/2, the boundary circle frequency will
be considerably less than 1/2, e.g., the second partial quotiant will larger than
one. Each orbit corresponding to a convergent of the continued fraction forms a
higher level island chain encircling the class ¢ island. The outermost convergent
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has the frequency [0,n,1] = 1/q (unless the third partial quotient is 2; then the
outermost convergent has the form 2/q, with q odd).

The-obvious question arises as to the relation between the structure of the
outermost class c+1 island to the class c island it encircles. One can define a
"class renormalization” analagous to that for levels discussed in the previous
section. This rescaling transformation is a generalization of the period doubling
bifurcation case.2! For period doubling.one considers the bifurcation of period 2
orbits from a fixed point, or in our notation g=2. More generally one can consider
period p/q-tupling bifurcations corresponding to the birth of a frequency p/q
orbit. A renormalized map is defined as

N(T) = B T9B-1
where B is a coordinate change which moves the origin to a point on the higher.

class orbit of frequency p/q and rescales phase space areas. In the period
doubling case it is well known that the renormalization transformation has a

~-critical fixed point corresponding to a self-similar class-sequence of period two - -

orbits. For this critical fixed point the Jacobian of B~!, which determines the
area scaling of the transformation, is 0.015209. At the fixed point the period
two orbits are all unstable, and so do not correspond to island chains, and give no
contribution to the transport model.

However, higher order bifurcations can lead to fixed points where all the
members of the bifurcation sequence are stable. For example consider the class
zero, frequency 1/3 island of the standard map. The critical fixed point of
septupling occurs at k®1.0420961. Here the 1/7 =[0,6,1] class one-island chain
is the outermost convergent of the boundary circle of the class zero chain; it has
residue 0.2755. Similarly the 1/7 class two orbit encircling this class one chain
is the outermost convergent to the class one boundary circle, with residue
0.2677. The residues of the higher class 1/7 orbits approach the value 0.26580,
which is slightly above the boundary circle value. One finds the boundary. circle
has the continued fraction expansion [0,6,1,4,1,5,1,...] for the universal map at
the septupling. fixed point.

The area scaling of an island can be computed by considering AW of the
periodic orbit, defined as the difference in action between the-elliptic and
hyperbolic orbits. This is equivalent to the Jacobian of the coordinate change B.
The ratio of island areas scales as the ratio of the AW's. We find that at the
1/7 fixed point the.area of a higher class island is smaller than the area of the
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- island. it encircles by the asympotically constant factor
wo & 0.014158 (18)

This scaling factor can also be identified as the flux ratio, Eq.(3.6d): the ratio of
~ the AW for crossing the "outermost” class c+1 minimizing cantorus, to that for
crossing the lower bounding class ¢ cantorus of the state S. This is true by
self-similarity at the fixed point: the phase space surrounding the class ¢ island
is identical to that surrounding the class c+1 island under rescaling.

To determine the ratio of areas of the class c+1 state to the class ¢ state,
this ratio should be muitiplied by the ratio of number of islands at class c+1 to
class ¢, which for this fixed point is exactly 7:

€2~ 1/7 (19)
which gives the remaining scaling coefficient a,:
as = Wo/E5 = 0.099105 (20)

In general, any particular island is not at the parameter value which is a
fixed point of class renormalization, e.g. q is not constant for higher
renormalizations. Remarkably a version of self-similarity still survives with
good accuracy. We find that the integer q which defines the first convergent to
the boundary circle typically varies between S and 8, but the area of the class ¢
island always decreases according to the relation:

AW = C(q) 219

where q is the length of the level zero, class ¢ orbit, and AW is the area of one
of the class c islands. The exponent is, to within a few percent, the same for all
islands and parameter values providing 1/q is the frequency of the outermost
convergent to the boundary circle. This equation gives a relationship between &,
and wy:

Wy = g2 19 (21)

As in the level renormalization, the variation of q implies that the
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self-similarity we assume is not exact, rather the coefficients w, and €, vary
with class.

§ 5. Distribution of First Return Times

As mentioned in §3.1 the numerical experiments effectively measure the
quantity Fd|(t)' the fraction of particles starting in state S={oy} which are still

"alive” (i.e., have never entered @ ) at time t. Here it will be convenient to study.
a slightly different quantity, RS_,S.(t), defined as the probability that a particle

in state S at time t=0 first reaches S’ at time t. It is easy to see that R is
related to F through

Ry og(t) = OF 5 /at . (22)

~where we make the-continuous time-approximation-implied by (6)." Thus; if 'F"d', o
decays algebraicatly with exponent z, Eq.(1), then

R g ~ t2*1). (23)

§ 5.1 Fundamental Integral Equation for Rd,—bﬂ
It is also convenient to introduce another quantity Rds_,s-(t), which is the

probability that a particle in state S at time zero reaches state 5’ at time t
withouth having been in any other state between. Following Hanson et al.,'! we
call Rg,g» the "first passage time distribution,” and Rds_,s» the direct first

passage time distribution. Clearly Hds—»s’ is zero unless S’ is either DS, S1 or
52. In particular, |

Rds—vS' *Pgg exp(-pst) , (24)

where ps, Eq.(6), is the probability that a particle leaves S on one iterate
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PS = P5-p5 * PS+51 * P552 - (23

The first passage.time distribution Ry_g(t) obeys

Ri—’ﬁ(t) = Rd 1,_’0(1:) +

Itdt' (R 12t Ry ppglt-t) + Ry ((OIR) gt-t)} (26)
0

This equation follows from the fact that particles arriving in @ can do so either
directly (the term Rd] g(t)) or else by first making an "up transition” from {1}
to {12} or to {11}. In the this latter case, the contribution to- Ry 4(t) is given

--by an-integral over the time t*-at which the first up transition out of {1} is made. -~

Similarly, we have

rt
R}Q_,g(t) =1 dt” R12_,](t") R]_,g(t't") ,

rt

R“_,(t) = b ‘dt" RI 1_”(11") Rl_,@(t‘t")' . (27)

Equations (26) and (27) follow from the definition of Markovian dynamics on the
Bethe lattice.

The scaling relations, Eqs. (9), can be used to obtain relations between the
different first passage distributions. In particular, we see that the transition
probabilities governing Ry, are the same as those governing Risg I the

latter are muitiplied by €,. That is, time is stretched by the factor €,”!, or
RI ]_ﬂ(t)=81R]_'g(81t) . (28)

Similarly,
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RIZ'PI(U = SQR’_,Q(Egt) . ; ' ' (29)

Finally we can express Ry_,g in terms of Ry_,g. Note from Eq.(9) that

P(1,51+(1,51 £4

P{2,5)+(2,51 &2

Thus
Rz_,g (t) = Er Rl_'g (Ezt/El)/E| . (30)

and hence from (29)

RIQ"‘ (t) =&z R]_.g (Egt) . (31)

Now consider the direct first passage time distributions appearing in
Eq.(26). From Egs. (24) and (25) and. again utilizing (9) we obtain

Rd]_,g(t) = Dig eXp(-pyt) =pge; exp(-opge t)

RdH,z(t) = D117 eXp(-pt) = poE Wy expl-opgegt) ,

RY, 41 1(t)=Pypqq €XD(-Dyt) =PgE,W; expl-oPeet) ,

0= 1+Wy+ Wy, (32)
From Eq.(30), we see that it suffices to find either Ry, O Ro.,5 Since one

may be obtained from the other. For the sake of making the symmetry 1¢—2
mainfest, we introduce a function h(t) given by

RI_,g(t) = Doy h(0<P081t) . (33)

which from Eq.(30) implies
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Rz_'g(t) = ppEahl(opgest) . (34)

Letting © = gt t, be a scaled time variable, and inserting Egs. (27)-(34) into
Eq. (26), we obtain the fundamental integral equation for the tree model,

h(z) =e T + Jwgt—t’ e~ T k(") hiz-7'-2")de'de” (35)
0
k() = [wgyh(g ) + WoEa h(EoT)] 72 . (36)

Note that the kernel, k, is symmetric under the interchangel«—2. Alternatively
we may write (35) as

where @ signifies the convolution operation. Equation (35) is a quadratically
nonlinear integral equation for-h. In the case of the one-dimensional chain
model, ! only one of the two terms in (36) is present. Then k reduces to

k(T) = wigqec2 h(gyT) (38)

Surprisingly, Hanson et al.!! were able to obtain a general solution to (35) in this
case. We shall net be able to do the same for the tree. However, our interest is
in extracting the characteristic long-time asymptotic behavior of h(t), and, as
shown in the next section, this can be done, modulo some reasonable assumptions
on the character of the solution.

§ 5.2 Dispersion Relation
Since the integral equation (37) has a convolution structure, it is clearly

simplified by Laplace transform:

H(s) = £lh(z)] = IM exp(-st) h(z) dv .
0
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Noting the identity £[n(ez)] = £~ H(s/€), Eq. (35) becomes upon application of £
H(s){ 5+1 - o2 wiH(s/e,) + woH(s/e} = 1 . | (39)

The long time behavior of h(t) is determined by the singluarity of H(s) with the
smallest real part. In particular, a power law dependence, as in Fq.(23) is
obtained from a branch point of H(s) at s=0. For example, if H(s) has an
expansion-near s=0 of the form

H(s) = 1(s) + s%g(s) , (40)

where f and g are analytic at s=0 (g(0)=0 by definition), then the asymptotic
evalution of £L7[H] yields Eq.(23). We now assume (30) and determine the
_exponent z. Evidence for the validity of (30).is obtained from_the . _
one-dimensional case, where the exact solution expanded around s=0 does mdeed
have this form. Futhermore one can use (30) to generate power series for f and
g, in the present case, as was done in the one-dimensional case. Unfortunately,
these series are complicated, and so we are content to find only the coefficients
of s and sZ.

Substituting (30) into (29) and setting s=0, we obtain a quadratic equation
for fq = (0), viz.,

fg“"O(-z(Wr"Wz)fu] =1.
Noting that «=1+w+w,, we may express the two solutions for fy as

fg'-' 1"‘W1"W2 = o, (41)
fg = I*‘(Wf"Wg)_’ . (42)

Noting that w+w,<1 for the map, we will see that £q.(42) yields a solution for H
which does not decay with time (z<0) and hence is not physically relevant (the
physical solution for h, must be normalizable since it is a probability).

Using (30) in (29), the coefficient of sZ can be written
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oo 2AW 12 + Wagp 2] + [1 - (Witwp)od 2l = 0.
Substituting for fy from Eq.(31), we obtain a "dispersion relation’ for z,

WiET 2+ Wty 22 1 . (43)
This relation is the primary result of our analysis.

§ 5.3 Multiply Branched Trees

InFig. 1 we have only shown one island family between adjacent minimizing
cantori. Our subsequent analysis has been limited to this case. To include M
relevant island families between adjacent cantori, one must use M+1 symbols for
the state labels, e.g. 0; = 1,2,..M*1. Correspondingly the number of branches at

each node of the tree increases. All of the analysis of the previous sections goes
through for general M. The result is that the dispersion relation (43) becomes

M+1
Z wiejZ=1. (44)
=1

§ 5.4 Long-Time Behavior

Equation (43) and correspondingly (44) have a single purely real root for z
and, in addition, an infinity of complex roots. The uniqueness of the real root
follows from the fact that the left hand side of (44) increases monotonically
with z from zero at z=-e to infinity at z=eo (this only requires £ j<l).

For the one-dimensional chain model (M=0 in Eq. (44)), solution of the
dispersion relation is

z =2z, = (Inwy + 27tik)/Ing (45)

where k is an integer. Using the numerical values of w, and &, Egs. (12)-(13),
the real root for the chain model is
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Z=2= Inwy/Ing; = 3.05 . (46)

Since (43) is related to the dispersion relation for the chain by the addition of

the positive term, wye, 2, we see that zg is necessarily smaller when islands
are included. Indeed using the numerical values, Eqs.(18)-(19), gives

Zp % 1.96, (47)

which is considerably closer to the value (1.3-1.5) obtained numerically.
Futhermore, inclusion of more island families would result in a smaller z; value.
This is physically reasonable since the island cantori make an island effectively
"sticky” (c.f. §2). That is, if a particle is very close to a critical curve, it takes
a long time to get away from it. In other words, introduction of another island
family into the model opens up more possible places for the particle to go before
entering the state @.

-~ Computation of the complex roots of Eq. (44) is more difficult when'M0. To-

illustrate the situation for M=1, consider the case when the term W282—Z is small
compared to 1 (note that unfortunately this approximation is not valid for the
actual numerical values of w, and £5). In this case a simple perturbative
calculation yields

Z= 2% -r e ke,

r= “Wzﬁz-zoo/lnﬁq '
© = 270 Ingy/Ingy (48)

where 20, is the M=0 solution given inEq.(45). These roots are schematically

illustrated in Fig. 4. In general, the real root is also the root with the smallest
real part, though there are arbitrarily many roots with real parts arbitrarily
close to z,.

With an infinity of roots The Laplace transform of the first passage
distribution takes the form
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H(s) = 1(s) + 3. 5%k qy(s) . (49)
k
Evaluation of the long-time behavior from the inverse Laplace transform of H(s)

gives contributions to h(t) from z= z, which scale like

t-(“.zk) = t-(l+xk) e "il_-lklnt . (50)

where X, and Y, are the real and imaginary parts of z. In the M=0 case,
Yp=27k/(Iney) and x, = z5. This gives a solution of the form

h(t) ~ t~(*ZodE(int) .

where F is a periodic function with period In(1/g,). This is precisely the form

-of the exact solution obtained in Ref..11.. Ona log-log plot,- this solution. .. .- . . .

appears as a straight line decay with slope (1+2;) on which is superimposed
periodic oscillations in the distribution. |

In the more general case the log-periodicity of the oscillations would no
longer hold, however we still expect an overall decay with slope (1+25) on which
will be superimposed a component possessing a mixture of different periods.
Indeed in the numerical experiments of Karney such an irregular oscillatory
component is present.

§ 6.Conclusions

The primary result of this paper is that island chains reduce the decay rate
of correlation functions. In our model the probability a particle is sticks ina
certain region of phase space for a time t decays asymptotically as

t™2 x an oscillatory function of In(t) .

The exponent z is determined by equation (44). We define a probabilistic state,
S, as a region of phase space bounded by cantori enclosing an island chain which
is a continued fraction convergent to a critical invariant circle. The coefficient
w1y represents the relative area of an island in the state S1 which is a
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convergent one “level” closer to the critical circle, and €4~ represents the
number of islands in 51 relative to the number in 5. The coefficient w»
represents the relative area of the outermost higher "class” island encircling the
island chain in S and €,7! is the relative number of islands in this higher class
chain. The state which is the region around this higher class island we call 52.

Neglecting all islands, one obtains an exponent, z=3.05, which is larger than
the numerical experiments by a factor of two. Including the largest island chain
reduces this exponent to z=1.96 which is closer to the numerical value.

The are several approximations in the mode! which could be responsible foor
the remaining discrepancy between numerical experiments and theory. In order of
what we feel is decreasing importance these are:

1)There is more than one chain of islands (of the same class) in state S,
corresponding to the various rational frequencies between those of the bounding
cantori. These can be included with coefficients w i and € i which represent area

and time scaling factors for these chains. As shown in Eq. (44) inclusion of more
chains of islands will reduce the exponent z, and one could reasonably hope the

- importance of these island chains decreases sufficiently rapidly that the -

exponent converges to the numerically determined value of about 1.3-1.5.

2) Inclusion of the fluctuations of the scaling of Pgg Might be necessary.

These fluctuations are due to the fact that boundary frequencies are typically not
noble, and islands are typically not at the g-tupling fixed point. We don’t expect
this to greatly change z, because of the scaling relations (16) and (21) which
hold for arbitrary boundary circles and islands. In particular, for the
one-dimensional Markov chain, Eq. (44) implies that z depends only on the
exponent in Eq. (16) and not on w, and €, independently. Unfortunately, for a
several branched Markov tree, this is no longer true, and fluctuations in the £'s
may give a different average exponent.

3) Finally, our model takes into account only a discrete set of cantorus
frequencies, out of the existing continuum. Inclusion of more and more cantori
leads to breakdown of the Markov hypothesis since fluxes through neighboring
cantori are not independent. In fact since the quantity AW is a continuous
function on the irrationals, the "turnstiles” of close cantori overlap. This
suggests constructing a continuum model for transport, although we have not yet
been able to formulate this satisfactorily. The simplest continuum limit (in the
one-dimensional chain model) gives a diffusion equation with a spatially




27

dependent diffusion coefficient. This model gives exactly the same result for z
as the discrete model. One can further argue, that, even if the cluster of cantori
around-the minimizing one gives a significantly different effective transition
probability, this cluster will have the same scaling properties as a single
cantorus, and the result for z is unaffected.
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Fig. 1 Schematic of the connected stochastic region of an area preserving
map near a boundary circle. Inaccessible areas are shaded. Boundaries
of the labeled states are minimum flux cantori barriers, with their
turnstiles shown. Each class one island shown represents one member
of an island chain.

Fig 2. AW as a function of frequency for rationals near a critical circle of
frequency v=%"2 = 0.382. The rationals are on the Farey tree for [1/3,
1/2]. The lowest value of AW shown is for v=55/144, which is the

10th convergent to the critical frequency. AW for irrational v is
approximated by the lower envelope.

Fig 3. Tree associated with Fig. 1 up to the two symbol level.

. Fig 4. Roots of Eq. (48), showing the rates, z;, which contribute to the
decay of the first return distribution.



