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Abstract

© 7 ""Novel constraints on collisionless relaxation and transport in drift-Alfvén turbu- 7 7

lence are reported. These constraints arise due to the consideration of mode coupling
and incoherent fluctuations and the proper application of self-consisfency conditions. The
result that electrostatic fluctuations alone regulate transport in drift-Alfvén turbulence fol-

lows directly. Quasilinear transport predictions are discussed in light of these constraints.




Transport caused by turbulent magnetic fluctuations is considered to be an impor-
tant agent for relaxation and confinement degradation in magnetically. confined plasmas.
Previous investigations of turbulent magnetic transport t;rpically have: utilized quasilin-
ear models of fluctuation dynamics, and have neglected self-consistent field effects.!=2 In
this letter, novel constraints on magnetic transport in fully developed collisionless plasma
turbulence are described. These constraints arise from the role of self-consistency condi-
tions (i.e., quasi-neutrality and Ampere’s law) in .models of the dynamics of drift-Alfvén
microturbulence which are more complete than quasilinear theory. In particular, it is

argued that the self-consistency constraint imposed by Ampere’s law, along with proper

consideration of the role of mode coupling and incoherent fluctuations in the dynamics of

;éIIAXAti_é‘r-l., together]eadt&thec;)nclusmnthat trahsport“ and relaxation in drift-Alfvén

turbulence are regulated by the electrostatic fluctuations. Previous transport mddels, such
as that recently advanced by Kadomtsev and Pogutse,! are then reconsidered in light of
these. constraints. Throughout this letter, it is assumed that the drift kinetic equé,tion
(DKE) governs electron dynamics, and that ion dynamics, are described by a warmw, low
frequency response.

The DKE relates the dynamics of phase space density fluctuations (6f )
to the relaxation of the average distribution function ((f)) through the expression
[ dvydxd/8t(6f%) = - [ dv”dxa/at((f>2). Predictions of plasma transport and relaxation
are thus direct consequences of the nature of the fluctuation dynamics. In particular, it

is noteworthy that in fully developed Vlasov turbulence, shear stresses generate granular,

incoherent fluctuations which are macroparticle-like, localized phase space ‘blobs’, analo-
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gous to fluid eddys rather than to waves.?~% Under ce;tain rather general conditiqns, such
blobs can even support localized self-trapping potentials (i.e., positive for electrons) and
hence have lifetimes which exceed’the average correlation time.” In general, the incidence
 of incoherent fluctuations is indicative of the dynamical significance of mode coupling pro-
cesses. Thus, magnetic transport driven by fully developed turbulence cannot be described
by quasilinear theory, which intrinsipally neglects the effects of mode coupling and localizéd

fluctuations.

Here, two related models of incoherent drift-Alfvén fluctuation dynamics and in-

duced transport are described. The first is concerned with the evolution of an isolated

.—phase.space-blob. f.......in...a,..drift—Alfvén system. In the second model], _statistical averaging-is.. - - oo

used to construct a Lenard-Balescu turbulent collis?on integral for the relaxation. of (f)
due to ‘fully developed’ (i.e., Iﬁany blobs and collectiye resonances) drift-Alfvén microtur-
bulence. While the statistical model is moré represeptative of fully developed turbulence,
the isolated blob model helps develop physical intqition. Both yield qualitatively simi-
lar insights into self-consistency constraints on re]aé{ation and transport. In both cases,
the results are independent .of detailed approximations made in treating the turbulence

dynamics.

In the first model, an isolated, localized elecétron phase space density blob f with
velocity u|| at position xg is considered. The blob Has correlation length Ay in velocity
(of order the trapping width) and Az, Ay, Az in p'.osition space, where Az ~ L is the
parallel length scale for the system. For a backgrou;nd distribution (f) = ( f (v, :z:)), the
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DKE states that f evolves according to

/dv”/dx— - —Z/dv”dx— 7). (1)

Expanding (f) around zq ((f) = <f(:1:0,u”)> + (z — z0)d (f) /3z|zmu”> and noting that,

for drift-Alfvén turbulence, dz/dt = cEg /Bo + vy B,/ By, it follows that:

B.J -
a(f) c <AA> < r |16>b
/dv” / dx - oz ,x(,,u” Bg Eofe b B |€,Bo ' (2)
Here, Eg = '—ngAﬁ, B, = ngi”, where ngS and fi” are the electrostatic and the parallel
component of the vector potential, respectively. Also, 72, = fdv“f, J~”e = —’e]fdv”v“f,
( ), denotes an average over the blob volume, and energy scattering has been ignored for

~ convenience. Equation (2) thus implies that:

af? a o ¢ /o <BrJne>
PT i) TR NP ad U ;
/d’U” X ot oz |T“”“‘II Bo oTbe b 'C'BO ( CL)
and, with quasi-neutrality (%, = 7;) and Ampere’s law (j|'|e = —Vifi”, for negligible ion
current), that:
| . B, V2 A
9o ¢/ <B, + ”>b
oz :c(),u”. Bo o b * IC]BO ( )

Equation (3a) states that f evolves (and thus (f) relaxes) by cross-field convec-
tion and fluctuating currents flowing along magnetic perturbations, while Eq. (3b) indi-
cates how self-consistency constraints régulate the relaxation mechanisms. In particular,
since B = V/i” xnand V-B = 0, it follows that <B,Vifi“>b = - <8/8r(érég)>b,
which ultimately contributes only surface terms of 0(Az/L;) << 1. Hence, in this sim-

ple drift-Alfvén system, magnetic fluctuations do not result in evolution of  nor in the
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relaxation of (f). Physical insight into this rather counter-intuitive result may be gained
by 'noting the similarity of the above drgument to that used to establish the ambipolarity
of magnetic transport.® However, here Ampere’s law (with JA“i = 0) and ithe granular-
ity (i.e.; localization in phase space) of f imply that the transport processes associéted

with the relaxation of all moments of (f) are similarly constrained over scales of Az,
zo+Az

the radial correlation length, | i.e., Br.f e ) N — Brée = 0(Az/L,) . This
lle/,

$C()—A$Z:

in turn severely restricts the role of magnetic drift-Alfvén fluctuations in the dynamics
of transport and relaxation. It is also instructive to note that the familiar quasilinear

result [ dvdx 8/3t(6f*) = [ dvydxD(8fo/dz)* (here D is the quasilinear diffusion coef-

ficient for magnetic turbulence) can be recovered by discarding fluctuation granularity by

replacing f in the right-hand side of Eq. (1) with f¢, the linear coherent response: This

observation is further evidence that the constraint on magnetic transport and relaxation
discussed above arises as a consequence of self-consistency (Ampere’s law) and the gran-
ularity of f . Finally, it should be noted that the new constraint arises solely through the
presumption of granularity and Ampere’s law, and is insensitive to detailed consideration
of the structure and origin of f .

In the second model, relaxation and transport due to fully developed collisionless
drift-Alfvén turbulence is examined using statistical turbulence theory. The relaxation of
(f) is described by a Leﬁard-Balescu turbulent collision integral (LBTCI), which contains
a drag operator as well as the usual quasilinear diffusion term.“~® The drag operator rep-
resents the role of incoherent fluctuations in (f) relaxation. The relationship between co-

herent and incoherent fluctuations imposed by the self-consistency constraints profoundly
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affects the predicted transport and relaxation rates.

For drift-Alfvén turbulence, (f) evolves according to

;;pzgRe{%(w_w@(@_g,a[,)@kw}, ()

where h is the nonadiabatic piece of the distribution function and wi, 1s the (thermal)
diama.gnetic frequency. Note that the correlation <<q§ - %AIO iz>, which determines (f)
relaxation, is essentially that studied previously in Egs. (2), (3) for the case of an isolated
drift-blob. However, for fully-developed turbulence h = A + ;L, §vhere ke is the familiai
coherent response component. By definition, R can be written as A° = Af{,w = Rﬁ,wg;kyw +
Rf’ wfi”k,w, where R? and R# refer to the generalized nonlinear electron coherent response

a(f) N Zl €| T @ 22
ot g Re{ ?e(w —wie) || Br <¢ >k,w

Y pa /42 A [2z Yipe (4.2
_ 7Rk,w <A“>k ot Ry . <¢A||>k,w —,—C_Rk,w <A||¢>k’w>

(ORI | . g

where the first four terms constitute the usual quasilinear diffusion operator, containing
ma,gnetic,'electrostatic and off-diagonal, respectively. The last two terms constitute the
drag operator, and are induced by incoherent fluctuations. Note that the first quasilinear
term and ﬁrét drag term govern all transport moments arising from E x B motion (Ee
perturbations in correlation with moments of the distribution f), whereas the second
quasilinear term and second drag term govern all transport moments arising from magnetic

A,
-

flutter (B, in correlation with moments of v f)
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The fluctuations ﬁi’w and ;Lk,w are related by Ampere’s law and quasineutrality,
which respectively imply that dl’?’fﬁuk,w-l-df’fq;k,w = —4”T|e| f dv||v||l~7,k,w = —4—C7’J~”k,w and
that d’d du. + df i A = — [ dvjhaw = —fix,. Here dA’A,‘ d4% 344, and d%¢ are
dielec’.cric- tensor elements obtained from velocity moments of the electron and ion coherent

phase space density responses. It is thus possible to express fl” and qg in terms of j“ and

7, as:
A _ 47 - .
A||k,w = Ek,z [di’:z 7J|Ik,w - df,’fnk,w:| (6a)
- _ . 47 - : .
b = 5 | = 2 ] e

Setting £ = d$4d4¢ — d4Ad%¢® = 0 determines the eigenfrequencies of the system.

Equations (6a,b) indicate that the collective .plasma responéé shields incoherent density

and current fluctuations. This shielding mechanism underlies the relationship between iLi
and hx, which follows from Egs. (6a,b) and the definition of hg. Note Athat Egs. (6a,b)
assume that the collective resonances (where Relx ,, = 0) are nonlinearly over-saturated
or stable.

The.LBTCI can be simplified by substituting Eq. (6a,b) into Eq. (5) and assum-
ing moderate or weak spectral broadening (Aw < w). This allows the electron response
functions Rf‘b,w and Rf,w to be written in terms of the ballistic propagator 27m6({w — kyv)),
and the correlation function to be written as <i~z2> = 276 (w —kyjv))) <7L2>k. Using these
properties and multiplying fhe drag terms by the unit operator £L7'L = ﬁ_l(dA’¢d¢’A -
d%:¢d4+4), it follows that the magnetic ‘flutter’ diffusion term vﬁ <(BT/B0)2> 6(w—Fkjv|) of

the LBTCI is exactly cancelled by the electron-electron piece of the <A||i~7,> drag term (i.e.,
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that part proportional to the electron susceptibility contribution to Imd44 and Imd#4).
The elect;ostatic diffusion term is similarly cancelled by the electron-electron piece of
<q§;&> The surviving terms in the LBTCI include ‘cross’ diffusion and ‘nonresonant’ drag
. operators, both proportional to Re dy ,,, as well as electron-ion drag terms, proportional to

Imd?? . and Im d%¢,. Consistent with the assumption of moderate spectral broadening,

(1on) (ion)"

the collective resonance k = k(k)u||) dominates the integration over k. Thus, the suscep-

tibilities dy ., are evaluated on resonance, where their real parts are negligible. Therefore

only the electron-ion drag terms associated with E x B motion survive, and Eq. (5) reduces

straight-forwardly to

T
T

b)

where

Siw = Lics, (8h) x [dftrttmafd | (7b)

in the usual case of negligible ion current (fﬁ — 0, Imclk o (ion) 0). Finally, it should be
noted that the LBTCI reduces to previously derived results® in the electrostatic limit.
Equation (7a,b) indicates that the quasilinear magnetic flutter transport (~
vlzl <(Br/Bo)2>k 6(w — kyv)|)) does not contribute to the relaxation of (f), and thus does
not result in electron energy or momentum transport! Insight into fhis result can be
gained by noting that 9 (f.) /0t ~ d"S ¢(1 on)» Which ‘indicates that electron phase space
relaxation is proportional to the dissipative ion response to the electrostatic potential. In-
deed, if such dissipative ion coupling is absent, the LBTCI vanishes and (f) cannot relax.

This result is analogous to those obtained using collisional and collisionless Lenard-Balescu
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eqpations for a one-dimensional electron-ion plasma.® In that system, constraints of mo-
mentum and energy conservation oﬁ the interaction (collisional or collisionless) of localized
phase space fluctuations imply that like ‘particle collisions’ leave fhe final state identical
to the initial state, thus precluding relaxation of (f). This results in a similar cancellation
of electron-electron terms in the LBTCI, leaving 9 (f) /Ot proportional to Im Xi, where y;
is the ion susceptibility. Here, since.f ﬁ — 0 the only electron-ion coupling occurs thrpugh
Im dz:i(ion). Hence, it is not surprising that an analogous cancellation of the magnetic
flutter diffusion term (a purely electron-electron term) occurs, leaving (f) relaxation and

transport to be determined by electrostatic mechanisms.

The two mddels of collisionless drift-Alfvén dynamics, the isolated blob and fully-

developed turbulence models, respectively, give consistent, complementary insights into the
effects of the same self-consistently constraints on relaxation and transport. In the case.
of an isolated blob, Ampere’s law and the granularity (i.e., localization in phase space)
of f lead to the result that /ot <f2> ~ <B‘rj”e> ~ <8/3r(f391§’r)> — 0, to 0(Az/L,).
In the case of fully developed turbulence, Ampere’s law and the proper consideration of
granular, incoherent fluctuations in the dynamics of ( f) result in the cancellation of diffu-
sive magnetic flutter terms (in the LBTCI) by electron-electron drag terms (~ <.;1||l~7,>>
Both results indicate that transport and relazation in drift-Alfvén turbulence are regulated
by electrostatic fluctuations.

It is interesting to reconsider theories of anomalous transport due to magnetic flut-
ter in light of the discussion presented here. In particular, a recenf paper® by Kadomtsev
and Pogutse (K and P) treats transport caused by small scalé, high frequency (Az ~ ¢/wpe,
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w ~ vre/qR) electromagnetic turbulence. Tacitly assuming that the transport-causing
small scales are nonlinearly driven by larger scales via cascading, K .and P then use quasi-
linear theory (with dissipation due to electron Landau resonance) and mixing length esti-
mates to derive the thermal cpnductivity Xe ~ €(c?/ wf;e)vTe /qR. However, dissipative ion
coupling is ignored throughout their analysis. Thus, by way of contrast, a parallel calcula-
tion following the discussion presented here yields the result that y. vanishes! The discrep-
ancy is due to the fact that K and P invoke mode coupling fo drive the transport-causing
scales, but compute x. using quasilinear theory. This procedure ignores incoherent fluctu-
ations and thus clearly is not internally consistent. Thus, the discrepancy discussed here

dramatically underscores the importance of phase space granulation and self-consistency

constraints.
Finally, it is important to note that several restrictions apply to the discussion
presented here. First, these considerations apply only to collisionless Alfvénic microtur-
bulence, where the electron susceptibility is determined by collisionless, Parallel dynamics.
Hence, it is not surprising that dramatic differences between models incorporating par-
allel trapping and granulation, and those based on unperturbed orbits (i.e., quasi-linear
theory) are uncovered. However, these considerations do not apply to magnetic transport
resulting from collisional'? or macroscopic (i.e., resistive MHD) turbulence. In those cases,
the question of possible modiﬁcation to the Ohm’s law by magnetic turbulence (i.e., the
nature of the electron viscosity) must be addressed.® Furthermore, stationary turbulence
is assumed throughout. Nonstationary turbulence (such as in the case of growing waves)

permits the exchange of energy and momentum between waves and incoherent fluctua-
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tions, thus allowing different relaxation mechanisms. Finally, these considerations do not
straightforwardly lend themselves to the study of magnetic transport induced by external

perturbations, such as an applied helical coil.
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