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Abstract

The effect of toroidicity during lower hybrid mode conversion is examined by treating the

wave propagation in an inhomogeneous medium as an eigenvalue problem for w?(m,n),

m,n poloidal and toroidal wave numbers. Since the frequency regime near w? = wiy is
an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique
must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition

of monochromatic solutions with different poloidal dependence m, thus they generically

 exhibit a wide spectrum in ky for given fixed w? even for small inverse aspect ratioe. In

case that the average <k||> is in the neighborhood of kg, the minimum wave number

for accessibility of the mode conversion regime, it is possible that excitation of toroidal

modes rather than geometric optics may determine the wave coupling to the plasmé.. Our
results are not changed significantly by a small amount of dissipation. The level of density
fluctuations in modern tokamaks, on the other hand, may cause enough k| scattering to
mask the toroidicity effects. Nevertheless, it is shown that a wide k| spectrum excited by

a monochromatic pump will persist even with vanishing fluctuation level.

* Naval Research Laboratory, Washington, D. C. 20375
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I. Introduction

The wave propégation in the lower hybrid frequéncy regime across magﬁetized plasmas,
with all the related phenomena, has lately been the subject of extensive study*~% in con-
nection with plasma heating®” and current drive® during tokamak operation near ther-
monuclear conditions.  The long wavelength slow electromagnetic mode, also identified
as fas‘g magnetosonic or extraordinary X-mode in case k| = 0, is mode converted to a
short wavelength electrostatic mode near the layer zq such that w? = wﬁH (zo) where wry
defined by
wig = w? [1+w2, /0]

cofresponds to the lower hybrid resoﬁance encountered in the cold plasma description.

| The procedure is now well understood in case the inhomogeneity is limited in one-
dimension with the dielectric properties of the medium varying in a diréctidn perpendicular
‘to the magnetic field. The original analysis by Stix,* carried out by expanding the warm |
- plasma dielectric tensor to first order in k2 p3 and then simply replacing k, by —i(d/dz),
leads to a fourth order differential equation that demonstrates a complete mode conversion
of the incoming slow electromagnetic mode to a fast electrostatic (ES) lower hybrid mode,
the group velocity of which is directed back toward the low density regime. A more
systematic treatment of the inhomogeneity performed by Wong and Tang® by utilizing the
non-uniform medium dielectric response®~1° essentially confirms-the results of the previous -
simpler treatment. It was also shown by the same authors that somewhere between the
first mode conversion layer and the plasma boundary the fast ES mode encounters a second
regime of a complete mode conversion, emerging as a short wavelength slow ES mode with

a group velocity directed towards the plasma center (see Fig. 1).

The accessibility condition'*~1? for the lower hybrid mode conversion regime is
kﬁcz/w2 >1 —l—wze/ﬁfe. . (1)

For shorter parallel wavelengths k), the incoming slow electromagnetic wave is backscat-
tered into the fast electromagnetic branch and propagation towards the mode conversion

regime is prohibited. Both wave penetration and energy deposition in the plasma core
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depend on k|, therefore any changes in k| caused by toroidal effects will have an impact
on the two most important issues for lower hybrid heating. | |

One approach in modeling the toroidal effects is to examine the trajectory of a
wave package determined by the local group velocity V,(x) = (8D/8k)(8D/8w)~! with
D{(w,k;x) the local dispersion relation. The ray tracing method has been employed by
Bonoli and Ott!? in examining the wave propagation with toroidicity to address the ques- -
tion of accessibility of the lower hybrid mode conversion layer. It was found that even
for small values of € the onset of ergodic ray trajectories allows large changeé in k)| thus
converting originally inaccessible waves into ones that satisfy the éccessibility conditioﬁ.
However, the mode conversion process in itself cannot be studied using this method as the

4 near a mode conversion

WKB approximation on which ray tracing relies breaks down’
-regime. Furthermore, after a few wave reflections between cut-off and the plasma edge

the boundary effects come into play as the wave spreads through the plasma volume...In

_ this case it appears that excitation of global toroidal eigenmodes should be considered in

examining the coupling to the plasma.

When the plasma parameters change in the poloidal direction, the toroidal eigenmodes
are éxpected to be non-monochromatic in € due to the interaction among the different
poloidal Fourier harmonics of the wave and the dielectric and metric tensor. As k) depends
on both the poloidal and toroidal wave numbers m and n, the poloidal spectral width
Am generates a natural width Aky of a single frequency eigenmode that remains to be
examined. So far, the experimentally observed wide spectrum in & has been investigated
only in connection with wave scattering’®15-1® from density fluctuations.’”1® A solution
for the wave propagation equation with toroidal eﬁeéts is therefore necessary to address
both issues of the mode conversion and the natural spectral width for-a single mode of
frequency w = wyg.

The amount of mathematical complexity involved in the one-dimensional analysis is
indicative of the difficulty that one faces when the effects of the inhomogeneity in a second
direction, produced by toroidicity, have to be examined. In principle, the two-dimensional
solutions can be built around the one-dimensional ones using perturbation theory, where

from now on and for the sake of simplicity, the terms one- and two-dimensional will sig-
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nify the number of degrees of inhomogeneity. However, the usual calculation by means of
selving differential equé.tions’ to increasing order in the pertufbatioil para#meter gets im-
mediately complicated due to the large number of terms resulting from the dependence of
the differential coefficients on two variables. .

In this paper we use a perturbation technique!® that circumvents direct integration
by formulating the wave propagation equation as an eigenvalue problem

2,0
DE-2K E=o0 (2)
c”. .

where the 3 x 3 differential operator D incorporates the V x Vx operator as well as
the warm plasma effects, ?(0) is the cold plasma contribution to the dielectric tensor
and E is the vector eigenfunction for the eleetric field. Then if certain properties such as °
orthogonality and completeness are satisfied by the set of the one-dimensional solutions

and if the non-uniformity in the second direction is small, the two-dimensional solutions

..can be constructed by a linear superposition of the one-dimensional eigenmodes. The T

expansion coeflicients are determined by evaluat.ing the integral projections among the
known one-dimensional eigenmodes in respect to some weighting matrix determined by the
perturbation, thus our method is the electromagnetic analog of the quantum mechanical
perturbation theory.

The above techniques are applicable through the entife_ran_ge of the eigenvalue spec-
trum w? of Eq. (2). However, the regime near the lower hybrid frequency is of particular im-
portance as it contains very closely spaced eigenfreqliencies w?(m, n) with m,n the poloidal
and toroidal wave numbers, thus the subset of eigenmodes with
|w? (m,n) — wiy (zo)| /wiy (zo) < € where € is the inveree aspect ratio must be treated
according to the degenerate perturbation technique. It follows that although the resulting
correction in frequency Aw? is small 0(¢) the modification in the poloidal dependence is
large as the two-dimensional modes are constructed from a zeroth order mixing of almost
degenerate eigenmodes with different poloidal wave numbers. To put it differently, even
for ¢ very small, the new eigenmodes generically contain a strong spectral contribution
from a wide band of poloidal wave numbers m and therefore k. Given that the band of

the one-dimensional eigenmodes contributing into a single two-dimensional solution has a
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relative spectral width Aw? / w?; much less than ¢, say €2, an estimate for the spread in
the parallel wave number is | o
Aky o (wim 2 (U2h))
~ € _— :
l i

('Ugr)” .

S
Ok

~ €

Consequently, Ak can be large whenever the parallel group velocity falls much below .

the parallel phase velocity. This situation arises generally during linear mode conversion

~ characterized by dw / 0k = 0. We focus on the case of the lower hybrid mode conversion, |

but our method is also applicable to the case of the two-ion hybrid mode conversion?’

during ion cyclotron heating in plasmas with two-ion species. -
The structure of the toroidal modes as a linear superposition of one-dimensional modes

suggests that the accessibility and mode conversion are determined by the location of the

spectral band Ak centered around kﬁ relative to the minimum accessible wavelength

' Enin. For

kil — kmin

_ a partial conversion near the lower hybrid layer. Strictly speaking, complete accessibilityis. ... ... ..

unattainable as Ak may tend to infinity, however for practical energy absorption purposes
only the contribution Akﬁ from the degenerate modes into a toroidal mode ma,tfers and
must be considered.

The above conclusions have been drawn without the inclusion of dissipation or density
fluctuations. It will be seen that the inclusion of finite dissipation does not ‘cha;nge the
picture significantly as long as the damping rate v / wpy remains much smaller than the
inverse aspect ratio e. Of greater importance are the density.ﬂuctuations near the plasma

edge depending on whether the length of the turbulent layer is comparable to the scattering

length for k. The main outcome in our analysis is that even in a relatively quiet plasma of -

low level turbulence, a wide spectrum in k) will be naturally excited by a monochromatic
antenna. For relatively high levels of edge turbulence, the effect of degeneracy will be
masked by the broadening in the & spectrum due to scattering off fluctuations. waever,
the eigenmode approach remains relevant in any case that the launched waves eventually
occupy most of the plasma volume. The effect of fluctuations can be accounted for by
the introduction of stochastic terms in the deterministic wave equation (2) and solving a

stochastic eigenvalue problem for <w2> and <Ak”>. Although the methodology for solving
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stochastic eigenvalue equations (with stochastic boundary condition) exists, it is beyond
the scbpe of the present work. :

The rest of this paper is organized as follows: In Sec. II we establish the symmetry
of the propagation operator and the local orthogonality among nearby eigenmodes in case
of one-dimensional non-uniformity. A new set of completely orthonormal modes that
approximate the exact solutions in the frequency regime under consideration is selected
as the a,ppropriaté expansion basis. In Sec. III the effects of ‘toroidicity are introduced
to the lowest order in the wave propagation equation. The two-dimensional eigenmodes
are constructed by a linear superposition of the one-dimensional solutions applying the

degenerate perturbation technique. It is then shown that a wide spectrum in k) is a generic

characteristic of the toroidal modes due to frequency accumulation in the spectrum. We

conclude and summarize our results in Sec. IV.




II. Symmetry and Orthogonahty with Non—Umformlty in One Direction

We use slab geometry to model the 51tuat10n as the wavelength Als much shorter than
the minor radius » with z in the radial direction and the magnetic field B on the yz plane
making an angle o = €/q relative to the z direction, g the safety factor. Periodic boundary
conditions apply along v and z with periods Ly' = 2mr and L, = 27 R, implying k, = m/r
and k, = n/R. The wave propagation equation for the one-dimensional case with the .

non-uniformity along z is given by

2
w 0
DiE; — C—ZK;.)E,- =0 (3a)
mfd%+kﬁ%+Ky@} ~ (3p)

with K i(]? )(w, ky,k,;z) the elements of the non-uniform plasina dielectric -tensor given in
Ref. 5. Equation_ (3) is a slight modification of Eq. (A2) in the above reference in order
to include the finite shear angle a using the field aligned representation L of the Vix:Vx

O ET A O

Lij = [T(@)(V x VX)T(@)j, @

where T'(a) is the rotation matrix around the =z direction defining the new field aligned

basis vectors
é1 €z 1 0 0

é | =T(@)| é |, T(a)=|0 cosa —sina (5)
€3 €, 0 sina cosa

shown in Fig. 2. Note that é; = é;, é = é,1, é3 = € with €.,  the unit vectors on the

yz plane perpendicular and par'a]lel respectively to the local magnetic line direction. -
We order the small pa,rameters vife, n, = kyc/w, o = €/q, (me/mz) 17z 0(¢) < 1.

Then in the vicinity of the lower hybrid regime |w — wrg] / wryg ~ ( the wave propagatlon

equation is given to order (2 by
—, . w2\ ==
D () E- (%) K (@E=0 (6)

Utilizing the following relations among the warm plasma dielectric tensor components

K(l) [K(z)] ’ [Ki(f)] — g®

i

p=1,2 '
@ _ [x@ (1) (1) @] @
P =[kP]", KR =x3 +2[k],
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dropping terms ~ (v;/ 0)2 [w2(z)] "~o (¢?) and with |B| considered constant, <5)(w) takes

P

the form

Dy; = —8} - 83 — 8, K2 ()8,

D1z = 8,01 — |[K®P ()82 + KD ()8,

D13 = 8,38”

Do =010, + [02K3 (@) = K ()2,

Dz = —8F — 02 + (o) — |8 K3 ()2

D23 = _8J_8” -+ 205,6;3 —+ a"

D31 - a||a:z:

Dgy = 88, — (2')8, — "

Dys = 81 = 8% + (') = [0 K43 ()2
with

(8)

w2w 2 2
(2) VU,
Lt Z (w? — 92 (wz 4022) 2
@) (w? + 8022) w2 v2
Koy = Z (wz ) ( 492) —g'
2 2
(2) Ypa Vg
K3 —sz_pgzg
642 wwz '02
(2) _ . " pa Ya
Ky = Z'XG: (@2 — §22) (w? — 492) 2
KD _ Z w (“’ +2605) (wpa) vy
12 b2, (w2 — 22) (w2 — 4022) 2

The operators ), 91 act on the wave function
B = Ey(a)e(#v =)
Ey(z) = (Bo(z), EL(z), By(z))

éccordjng to Q| E = ikyE, O.E = ik E with kj(z) = cosaf + sina®,

cosa® —sinaZ.
r R

(10)
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We now review some properties of Eq. (6). As the wave propagates towards resonance
it becomes prc')gressivelyr electrostatic. The picture is simpliﬁed by assuming that k) <
k|, ko. Then ignoring all terms of order v? / c? except in K. ﬁ) and setting X = E,,Y = E|,
Z = B, the following equation results for the parallel component of the electrostatic field

@ (g
k@42 ) ey, Ko (52) | @2 042
11 dw? +2 11 + nz _ K(o) dw3 11 dw?
I 11 .
’ (11la)
nz (K(2)>
1\711 ) dz 2 @) :
+——& 5\ — K1 )Z=0
nﬁ _ KZEI) dw ( )
~ with n| = k”c/ w and w = 2z. Equation (1la) contains a resonance cut-off pair at zg,

[

z. respectively defined by Kﬁ)) [%mR} =0, Kﬁ) [Emc] = nﬁ [%mc] The region between
z. and zp is a non-propagation regime for z. located on the low density side of zpg.

Consequently, the resonant layer can be accessed if there is no cut-off between the plasma

““edge and z g guaranteed by the accessibility condition Eq. (1). Inthis case, the third'order 7

derivative is eliminated by a linear transformation of the dependent variable Z and a linear
expansion around the mode conversion point o near zg leads to the following differential
e

equation in { = (z — .'1:0) @

a4z 27 d7'
w2 i + |¢ +—=4vZ'| =0 (115)

dgz  d€

with o and v parameters, exhibiting a full mode conversion near ¢ = 0. The approximate
dispersion relation is obtained from the uniform medium electrostatic approximation Kﬁ) +
K =0,

3
P m) = g + 202 12 + 2]
2 (12)

k= (cos alt sina2>

+ r R~
It is reasonable to assume that Eq. (12) that does not include the effects of nonunifor-
mity still provides the approximate separation between nearby frequencies in the nonuni-
form case with density scale length much longer than the wavelength of lower hybrid waves.

Going back to the non-uniform plasmas, if wfy; in Eq. (12) is the lower hybrid frequency

at © = zg, wiy(z0) = w?, then each of the frequencies w?(m,n) also matches the local
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lower hybrid frequency at some nearby layer @ = Z,,, defined by wiy (zmn) = w?(m, n)
Therefore there is a sequence of closely spaced mode conversion layers each one associated
with some eigenvalue w? located within the band min {“’LI-I} < w? < max {“’LH}- Were
it not for the thermal effects that resolve the singularity at ¢ = 0 and quantize w?, this
set of lower hybrid modes would become a continuum similar in structure with the MHD
continuum, resulting from Eq. (11b) with u = 0.

We now want to obtain an orthonormal set of eigenmodes related to the solutions of

Eq. (13). The following relation holds between any two eigenfunctions of Eq. (6).

b Ly Lz '
— 3
/dm/dy/dz (EI DEZ—EZD*El) '
Sy - (13)

2 2 (©)
- ) ] ),

—(0)

K (wg) (w1)| By

 where the Hermiticity of the cold plasma diclectric tensor K© = (K{”) with K{¥ the

transpose of K (%), was used in shaping the rhs of Eq. (13) and the inner product is defined

by
<ﬁ1 > /dm/dy/d E: K (wz)E (14)

> :
The operator D is by definition symmetric if there exists a set of boundary conditions such

«—(0)

K (.U2)

that the lhs of Eq. (13) becomes zero. This is trivially proven for m; # mg or ny # n,. For
my1 = Mg, N1 = ng but w? # w2 it is straight forward to show after some lengthy algebra

that the integrand is an exact differential

“’CLZH dd { (XKD 0. X, - XK 0, X7)

+ (7 ER0.Y; - KD 8.y )

+ (z2xQ0.2, - ,K$0.7;)

i [y (XT 22+ 21 X2) + ko (XTYs + Y7 X3))
+2a (Y} Zy — Z3Y>)

+ K& (XY, + Y1 X,)
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+ KD (X38,Ys — Y28, X7)
+ 2(? (Yl*an2 - XzamYl*)} }>

and the integral on the lhs vanishes under a set of general boundary conditions that include

perfectly conducting boundaries as a special case, i.e.

Y, Z, wfm zero at z = b (boundary)

X,Y, Z zeroat z=a=0(“axis”).
For w; and wy very close to wy = wry (zg) setting K© (w1) = KO(w,) = K© (wp) in
Eq. (13) and using the Hermiticity of K(© leads to

2 - o) (B,

(0)

K (wo) E_2>z : (15)

—(0)
__Thus, given that the cold plasma dielectric tensor

operator D is the necessary and sufficient condition that eigénfunctions corresponding to
0
neighboring ws. are almost orthogonal. This motivates us to replace K (w) by K© =
()
R poyed A
K (wo) in Eq. (6) as the solutions F of the modified equation

2

€

DE-2EkOfB—0 | (1)

|

[&

constitute an exactly orthonormal set of eigenmodes that in the vicinity of w? & wiy (:éo)
are good approximations of the solutions E of the exact Eq. (6).

We assume completeness without proving it. It has been proved in the simple case of
wave propagation in the MHD regime with a linear density profile, when the behavior in the
z direction is determined by a modified Bessel equation.?! In the case under consideration,
the completeness will depend 'on the properties of the solutions of differential equations of
the type (11a), a subject left for further research. |

The Landau damping terms have been omitted from the beginning in our description
and both Eqgs. (6) and (16) describe wave propagation without dissipation, therefore they
can not admit complex eigenvalues for w. Thus we wish to point out that the symmetry

property of ‘D’ should be expected from physical reasoning since, according to Eq. (13)

11
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with w? = w3 and E, = Ey, it is a necessary condition for real eigenvalues w?. It is also a

(0

sufficient condition for real w? , provided El K |E, is non-zero. Had the dissipative

terms been kept, they would add a non-Hermitian contribution to the weighting matrix
K©), This in turn would allow complex w? for real k fegardless of the symmetry of (_1_)‘),
as in case of non-Hermitian K(®) oné can show that symmetry does not guarantee real
w?. It is also worth notiﬁg that the demonstrated symmetry is brought out by employing
the non-uniform plasma response in deriving (ﬁ while é mere substitution of —d? / dz? in
place of k2 leads to an asymmetric operator. |
Inclusion of dissipation while keeping w? real as in case of excitation by external

source would lead to an imaginary part in the wave number k. The exact symmetry of the

operator Jﬁ) would be violated resulting in violation of the exact orthogonality. However, it .

—(0)

can be shown using similar arguments as in Ref. 19 that the departure from orthogonality
—(0)
K K

scales as Im(k)/Re(k). Therefore, corrections due to dissipation do not modify the lowest
order result, provided Im(k)/Re(k) ~ 0 (€?) or higher. ,
Finally, it should be noted that the boundary effects that discretize the frequency

spéctrum becbme unimportant if the absorption length Lgps becomes much shorter thén
the distance between boundaries b—a, converting the spectrum in Eq. (12) into a continuum
set. As the incident magnetosonic mode is only weakly damped, this situation can arise
only in case of a close to 100% mode conversion of the incident wave to the short strongly
dzimped short Wavelength' ES mode. That, in turn, requires that the launched klcl) be much
higher than the: accessibﬂit_'}; threshold of Eq. (1) according to the new criterion for full
accessibility given in Sec. IV. Similar insensitivity to the boundary conditions may result
from scattering off density fluctuations at the plasma edge (case of “diffusive” boundaries)

if the turbulent layer width is larger than the scattering length.®-16
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ITII. Construction of eigenmodes including toroidal effects

We now proceed to introduce fhe toroidal effects into Eq. (6). We model the toroidal
perturbation by a periodic variation in the y direction of the density, the toroidal, and
the poloidal component of the magnetic ﬁeid p = p(z,ecos(y/r)), B, = B, (z,ecos(y/r)),
B, = By (z,ecos(y/r)). The elements L;; of the field aligned V X V x operator depend on
Y through the shear angle a ~ 0(¢) thus the effect of the toroidal perturbation is of order

The correction in K 1) and K;; (2) is of order (%e with ¢ the sma,ll parameter 1ntroduced
earlier, while the spectral decomp051t10n of K© (z,ecos(y/r)) leads to a Fourier series

with coefficients ordered in € (see Ref. ).

(0) — (0 >

i (z,ecos(y/r)) = Kv :c)—i— (~:ﬂ cos(ﬁy/v‘)

=1

Thus, omitting terms of order higher than €2 or (2e we obtain the lowest order toroidal

version of Eq. (6)

Ter 2[R >+eK§°)<w)éos(y/r>] g=0 ()
with
£ = £,ei(B=—w)
£ = (X(2,), ¥(2,9), Z(2,y)). (17

We are primarily interested in the narrow band of frequencies w around wo = wiy (o)

such that

lw — wo| /wo < e, (18)
as this part of the spectrum will furnish the dominant contribution in the expansion of £
into the eigenmodes E of Eq. (16). Let w? (m;,n), i=1,2...N be the set of the above
almost degenerate E (wz; my, n) ’

The first order expansion for E and w is

N
£ = Zci_E (wg;mi) +€ Z Zc(wz,m')E(wz,m')

= 2 2 m!
1 w?Fwl

(19)
w? = w(z, + eAw?
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where, because of inequality (18) we have set w? (m;,n) = w for all the almost degenerate
modes while n remains fixed and has been dropped as an index since the z-independent
perturbation does not mix different ns.

(0 +«—(0) )
By expanding the matrices K (w) and K, (w) around wy and exploiting the or-
thogonality of £ in respect to K (©) (wo) we find that the coeflicients ¢; are solutions of ‘the

uniform system

AQ+<B'—I>/\Q=O (20)

with

Bm)

By = (Bm)| (67 /80 lomunl Bm) )

while the first order frequency correction Aw? is determined by the eigenvalues \ of

e
et m(fﬁ_m' o (21)

In general there exist N coefficient vectors C*) = [¢y,¢s,... ,cN](k) k=1,2...N associ-
ated with N real eigenvalues for ,A“’?k) as the matrix A 4+ AB is Hermitian.
The diagonalization is particularly easy in case when K io) has only one spectral com-

ponent, %Kio) (z) [ei% + é“i%] as this yields the tridia,gdnal matrix
[A+ (B~ DMij = b:.j+14i; + 85 (Bij — 1) A+ 6114y (22)

with
b

- 1 PENG))
A = —§w§ /dmﬁo (mym;) K (2)Eq (z;m;)

x
b 8?(0)( )
_ 1 T
B;; = —§w3/dmﬂo (@;m;) ——5(02—@0 (z3m;).
[

Thus, owing to degeneracy, the spatial structure of a two-dimensional mode of sin-
gle frequency w? near wiy (wo) is obtained by a zeroth order superposition of the one-

dimensional modes E with frequencies w? near wf;(zo) and mode conversion layers z near
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zo. These modes £ , chosen for their orthonormality, are also good approximations to the
exact solutions E of equation (6) in the neighborhbod w? =2 w2 In conclusi‘on, the toroidal
modes are mainly composed by equal order contributions from the one-dimensional modes
of nearby frequencies and mode conversion layers. The modes “far” from w? contribute to
order € in the wave function and €? in the frequency correction. Actually the separation
between almost degenerate and non-degenerate modes is not clear cut; one should diag-
onalize matrices of increasing dimension until further increése in dimension has a small
effect on the solutions.

The toroidal modes are non-monochromatic in the poloidal direction (y in our slab

model). Using Eq. (12) one can find that the poloidal spectral width Am associated with

a frequency regime Aw is given for fixed k, and n by

(@) (@) (&)

1/2 )
Ak” > tan o (wLH> (éﬁu_) . (23b)

v WLH

Although the spectral width for degeneracy is small, limited by (Aw / wLH)1/2 & €, the
spread in parallel wave number for a single solution Ak / K can be large and of order 1 for
ion thermal velocity much smaller than the parallel phase velocity of the wave v; & wLH/ k.
Equation (23b) shows that the spread in the parallel wave number increases with increas-
ing density (increasing wyyg). This tendency is consistent with the recent experimental
observations'® in Alcator-C. Increasing density tends to broaden the k) spectrum through

both toroidal effects and scattering off density fluctuations.
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IV. Conclusion and Summary

The marn oufcbme of our analysis is that the toroidal modes generically contain é Wide
spectrum in kj owing to the frequency accumulation in the lower hybrid regime and that
toroidal effects of order € can produce a spectral width Ak / <k“> of order € for small
<7~3”>. We clarify that although the degenerate set contains a narrow frequency band Aw

around wrp(zo), the two-dimensional modes are monochromatic in time oscillating with

the corrected frequency
w?k)zwg—l-eAw?k), k=1,2...,N.

- The mixing of N one-dimensional modes with frequencies w; very close to wrp(zo),
in the sense |wf — wgl w§ < ¢, produces N two-dimensional modes of different frequen-
cies wgy with frequency separation of order e. However one can generally create a set

of two-dimensional modes, the corrected frequen01es of which fall close to a given wy,

l (k) (wp) . / wo & €, as follows: one of the frequenc1es “’(kj of the toro1da1 mode

produced by mixing one-dimensional modes around wz = wp can be very close to one of the

frequencies w? ® of the toroidal mode produced by mixing one-dimensional modes around

w; = ©g with @ different than wy,
2 _ _ ~ 2
w?k) = wg + GAW(k) = w(‘d) = wg + eAw(l) = (wg) .

In a sense, the perturbation splits the old “degeneracy” between the one-dimensional modes
and creates a new between the two-dimensional modes so that the new spectrum remains

dense in w?.

For w? kept fixed while increasing ¢ from zero to a finite value we have a shift of the

mode conversion layer from its initial position zg to z{ given by
wip (20) = wip(zo) — eAw?. (24)

Let us assume, for illustrative purposes, the simple picture of a plasma being excited
by an antenna of frequency w? and single helicity (my,n) located at z = ¢, a < ¢ < b. The

solution must be expressed as a superposition of toroidal modes
N
§=>"gE (z,y,20?) | (25)
=1
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that at & = ¢ have their polarization vector parallel to the antenna, £ (i)(m = c)||é4. Thus,

using the zeroth order terms in Eq. (19) for £, Eq. (25) becomes near z = ¢
§=ea 3 cHmv/ TR f(c)
i i ,

with ’ (26)

fii(z) = Zgicg-i)ﬁfo (m;mj,n,wf) '

In the vicinity of = ¢, and only there, we expect the solution S to behave as monochro- _

matic § ~ e!(mr¥/m+n2/B) in order to satisfy the local matching conditions with the an-

tenna; indeed the coefficients g; can be determined uniquely in a way such that

fii(z = ¢) = 6;x (27)
by solving the system j =1,...N-
' - ‘N:— s e e e s g = ™ ‘
ZGjigi = jk
Gji = c(-z)E'o (:L' = c;mj,n, wzz) .

J
In other words, solutions of the form Eq. (25) exist that start with nearly monochromatic
dependence close to the exciting antenna but pick a,'vs}ide spectrum ;as they gét further
inside the plasma, since the relation (27) cannot hold for z # ¢ once the coefficients g;
have been determined by Eq. (28). A way to visualize this multiple spectrum in k) is to
consider the local parallel “wave number” kj(z,y) = (&) - V) S| /i|S| with S a solution of
the form (25). As the different components £* oscillate with different wavelength in z and
Y, k) changes across the plasma volume as expected from the WKB theory.

The ‘effect of the spread in kj on the efficiency of the mode conversion process can
now be addressed in brief. Each toroidal mode of a single frequency w is composed by
a linear superposition of one-dimensional modes, each one with different kj(m). The
asymptotic behavior of any one-dimensional mode is determined by Egs. (6) and (11).
Accordingly, each individual mode E(m, n;w) will be mode converted, provided its parallel

wave number kj(m) satisfies the accessibility condition Eq. (1), or otherwise it will be
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backscattered before reaching the mode conversion layer. Therefore in the toroidal case, a

gradual depletion of the energy carried by a single frequency mode may occur during the
wave propagation towards the mode conversion layer proportional to the relative width
of the inaccessible portion in the & spectrum. Conversely, an antenna that in cylindrical ’

geometry would excite a single Wavelength k[(l’ below accessibility, in the toroidal case will

‘excite additional spectral components above k” for which the mode conversion layer is
- accessible. It is here that our picture differs from the WKB approach in the following
sense: a toroidal mode centered around k” in the neighborhood of accessibility is a steady'
state, characterized by partial mode conversion and partial reflection coefficients, while a
wave package with k” below accessibility has to bounce off a number of times between the
cut-off and the plasma edge before the necessary cha,nge in k” to allow accessibility occurs
accordmg to the WKB treatment. | |

When a considerable number of reflections Wlth energy spread over the plasma volume

occurs, the global mode approach is more relevant to the s1tuatlon as the state of the system -

is descrlbed by the superposition of a few tor01da1 modes On the other hand a complete
a.ccessibility in “one pass” of the wave when k“ is well above threshold is easier described
by ray optics, the reproduction of which would require a superposition of a considerable
number of toroidal modes.

Our approach recognizes the role of the broad generic spread Ak)| around kﬁ in yielding
partial reflection and partial conversion. The WKB counterpart would be the splitting of

a single wave package in two independently propagating packages due to partial reflection

not accounted for in standard ray tracing methods. On the other hand, the ray tracing

method offers the advantage of treating the nonlinear effects, such as the change of the
average wave number < m > at a given point  and the onset of ergodic ray orbits, while
< m > is conserved in the liﬁear approach. |
For a toroidal mode with parallel spectrum centered around ]\”II and of width Ak, the
condition for full accessibility becomes
2

Ak can be estimated from Egs. (23) or more accurately by determining the expansion
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coefficients in Eq. (20). Strictly speaking, if terms of order € or higher are included in the
expansion Eq. (19), the spread in Ak becomes very large and complete mode conversion
should not occur. For practical purposes, however, it will suffice to consider the width
Akﬁ of the degenerate part of the spectrum in order to determine absorption, since the
energy carried by the rest of the expansion is of order €2. In case Ak” does not satisfy the
condition Eq. (29), the wave covers the plasma volume due to partial reflection combined
with broad Ak” Boundary conditions become imporfcant and the solutions behave as the
global modes described by Eq. (19), rather than thin pencils of rays obeying ‘geometrical
optics. In the absence of excitation and dissipation, our toroidal modes are steady state
solutions that can be thought of as wave trains of infinite dura,tionvin time Twg — o0, T
the duration of the rf pulse, the frequency specfrum_be'co_ming a é-function Aw — 0, while
Ak still remains large and finite due to toroidicity. A

In conclusion, there is a natural and significant spectral width Ak associated with

each toro1da1 mode of smgle frequency w. ThlS should be partly respons1b1e for the Wlde -

spectrum in k” observed durlng lower hybrld heatlng experlments together w1th scattermg
off density fluctuations, the importance of which is not to be downplayed. Our analysis
shows that a wide spectrum should persist in the limit that the thickness of the turbulent
layer near the tokamak edge is much shorter than the characteristic length for wave scat-
tering off fluctuations. It also suggests a method for the calculaﬁon of the efficiency of the
lower hybrid mode conversion in toroidal geometry in the above situation. _

It appears that the width of the turbulent layer in modern.experiments sﬁch as the
Alcator-A and Alcator-C is enough to justify extensive scattering in kj, 1% masking the
effects of degeneracy discussed so far. We take the opportunity to emphasize that fluctua-
tions in general do not invalidate the eigenmode approach which we consider appropriate
for waves occupying a large section of the torus. Stochastic terms due to fluctuations

can be added to the wave propagation Eq. (2) that then must be solved as a stochastic

eigenvalue problem?! for <w2>, <Aw2> yielding <k2> and <Ak2>
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Figure Captions

Fig. 1 Dispérsion rélation ni vs distanée from the boundary for constant k). Fast
electromagnetic mode FEM (dashed line) and slow electromagnetic mode
SEM (dot-dash) are the two branches in cold plasma theory. The warm
plasma dispersion for SEM (solid line) shows the two mode conversions at
==z, and z #mcz. -

Fig. 2 Field aligned geometry for the wave propagation equations. Local magnetic

field is along €.
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